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Malaysia numerical solution of a two-dimensional time-fractional cable equation is presented.

We use Laplace transform method to approximate the time fractional derivative
which reduces the problem into an approximating partial differential equation. The
obtained partial differential equation is solved by four-point group iterative methods
derived from two implicit finite difference schemes. Matrix norm analysis together
with mathematical induction are utilized to investigate the stability and convergence
properties. A comparative study with the recently developed hybrid standard point
(HSP) iterative method accompanied by their computational cost analysis are also
given. Numerical experiments are conducted to demonstrate the superiority of the
proposed hybrid group iterative methods over the HSP iterative method in terms of
the number of iterations, computational cost as well as the CPU times.

Keywords: Caputo fractional derivative; Time-fractional derivative; Cable equation;
Laplace transform; Finite differences; Group iterative methods; Stability and
convergence analyses

1 Introduction
The numerical solutions of fractional differential equations are of great importance in
describing and modeling many problems in engineering and applied sciences. In this study,

we consider the following two-dimensional problem of a class of time-fractional cable
type,

0%u(x,y, t O%ulx, y,t
u(x,y )my u(x,y,t)
0x? 0y?

SDulx,y,t) = a, — pou(x, 3, t) + f(x,9,8), O<a<1, (1)

subject to the initial and boundary conditions

u(x,,0) = p(x, y), 2)
u(x, 0, t) =P1(x» t)r u(x»L’ t) :p2(xr t):

u(0,y,8) =ps(,8), (L, y,t) = pa(y, 1),

(3)
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defined on £2 = {(x,5,£)|0 <x,y < L,0 <t < T}, where a,, a, and 11, are positive constants.
Here, 0 < o < 1 is the order of the Caputo fractional derivative defined by

L u(x,y, 1)

C o
D Vb)) =
0 tu(xy ) F(I’I—O() 0 (t—‘L’)D“'l_"

Fractional cable equations play a crucial role in modeling anomalous diffusion in spiny
neuronal dendrites in biological systems [1]. Since the equations containing fractional or-
der derivatives are deeply complex, and not easy to solve analytically, it is recommended
to investigate their solutions numerically. In recent years, a variety of numerical meth-
ods including finite element, finite difference and collocation methods have been estab-
lished for solving one-dimensional and two-dimensional fractional cable equations [1-
9]. For instance, an unconditionally stable compact finite difference scheme with conver-
gence order O(t + #*) has been suggested to generate highly accurate results [2] for one-
dimensional fractional cable equation. Zhang et al. [3] established the numerical method
in solving the two-dimensional fractional cable equation using collocation and finite dif-
ference methods for the space and time discretizations, respectively. Liu et al. [4] devel-
oped a numerical scheme based on finite element in space and finite difference in time
for solving one-dimensional and two-dimensional time-fractional cable equations. They
proved that the resulting scheme is unconditionally stable and the convergence order is
O(rminll+enl+az} 4 pr+ly Yo and Jiang [5] presented a compact finite difference scheme of
fourth order accuracy for solving two-dimensional fractional cable equation. Later, Li et
al. [6] formulated another compact difference scheme with better accuracy in time for the
two-dimensional fractional cable equation. They proved that the compact scheme is un-
conditionally stable and the numerical solution converges to the exact solution with order
O(t? +h}+ hj). In [9], Li and Rui presented an unconditionally stable block-centered finite
difference method for solving the non-linear fractional cable equation on non-uniform
grid. In another study, Sweilam and Al-Mekhlafi [8] proposed a new fractional cable equa-
tion in which the fractional operator is described in the Atangana—Baleanu—Caputo sense.
The Atangana—Baleanu derivative has been employed in describing many fractional prob-
lems very recently [10-12]. A non-standard compact finite difference scheme is formu-
lated to solve the resulting problem.

In solving differential equations numerically, the complexity of fractional differential
equations is well-known to be significantly greater than that of integer order differential
equations. The discretization of differential operators with integer and non-integer orders
is the fundamental base of almost all numerical schemes proposed in the literature so far,
see [13] and the literature therein. Numerical methods based on discretization schemes for
solving time-fractional partial differential equations require total O(MN?) computational
cost and O(MN) memory complexity, compared with O(MN) cost and O(M) memory for
integer order partial differential equations [14—16], where N and M are the total number
of time levels and spatial grid points, respectively. This is mainly caused by the non-local
property of the fractional operator that necessitates the storage of all the preceding so-
lutions to compute the solution at the present time level, making the computations even
more complicated and very expensive in terms of the memory and CPU time usage. In the
light of such computational challenges in solving time-fractional differential equations,
developing efficient numerical methods that generate fast results and use less computer
resources is of great importance. Therein lies the main motivation of this study. In regard



Salama et al. Advances in Difference Equations (2020) 2020:257 Page 3 of 20

to two-dimensional time-fractional cable equation, fast and unconditionally stable nu-
merical schemes are quite rare in the literature. An example of such scarcities is a method
presented by Liu et al. [7] who formulated the high order compact difference scheme for
solving time-fractional cable equation. The Riemann-Liouville fractional derivative was
used to approximate the time derivative. In the same study, the authors have employed
the fast Fourier transform method to accelerate their compact scheme, where the com-
putational cost has been reduced to O(MN log? N). Recently, Salama and Ali [17] devel-
oped fast hybrid standard point (HSP) iterative method based on a combination of Laplace
transform method and implicit finite difference scheme for solving the two-dimensional
time-fractional cable equation (1). It has been proven that the HSP method is uncondition-
ally stable, and it performs much faster than an existing standard finite difference scheme
as it requires only O(MN) computational cost and O(M) memory complexity.

In solving multi-dimensional fractional differential equations, it is worth pointing out
that the finite difference discretizations of these equations would result in large and sparse
systems of linear equations. Due to the sparsity of the coefficient matrix of the resulting
linear systems, iterative methods are viewed as more efficient solvers for such linear sys-
tems in comparison with direct methods [18]. Among iterative methods, group iterative
schemes derived from standard point finite difference approximations have been widely
incorporated in solving the linear systems that emerge from the discretization of various
types of partial differential equations, see [18—26] and the literature therein. This interest
in grouping strategies mainly attributed to their ability to reduce each of the spectral radius
of the iteration matrix and the computing effort required at each iteration [27], making
them computationally superior to their corresponding standard point iterative schemes.
Due to their promising results in solving integer order partial differential equations, inter-
est is now turned to the formulation of group strategies for solving fractional differential
equations. Some attempts have been done recently to solve the two-dimensional time-
fractional advection—diffusion equation [28], two-dimensional time-fractional diffusion-
wave equation [29] and fractional two-point boundary value problem [30]. However, the
development of unconditionally stable group iterative schemes for solving fractional dif-
ferential equations is still at its infancy. Motivated by this background, the primary con-
tribution of our paper is to develop new hybrid group iterative methods for the numerical
solution of the two-dimensional time-fractional cable equation (1). We prove the uncon-
ditional stability and convergence of the proposed method via matrix norm analysis. The
resulting hybrid group iterative methods generate accurate numerical solutions and re-
duce the computational cost, iterations number and CPU time significantly compared to
the HSP iterative method presented in [17]. To the best of our knowledge, this work has
not been done by other researchers.

The rest of this article is structured as follows. In Sect. 2, we provide a brief description
of the HSP iterative method for solving problem (1). In Sect. 3, we explain the formula-
tion of the proposed hybrid group iterative methods pursued by stability and convergence
analyses in Sect. 4. In order to verify the efficiency of the proposed methods, several com-
putational experiments are conducted and presented with their results in Sect. 5. Finally,

we conclude our remarks in Sect. 6.

2 Review of the hybrid standard point (HSP) iterative method
The Laplace transform is regarded as a very important transform which can be utilized to
solve many models arising in various fields of science, technology and engineering [31].
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Due to the presence of the fractional derivative’s non-local property, the design of finite
difference methods for solving problem (1) necessitates the storage of the solution out-
comes at all previous time levels if the solution at the present time level is to be computed.
To surmount this obstacle, the Laplace transform method together with the lineariza-
tion property suggested by Ren et al. [32] were used to approximate the Caputo fractional
derivative as follows [17]:

ou(x,y,t)

SD%u(x,y,t) ~ ”

+(1- a)[u(x,y, ) — u(x,y, O)]. (4)

By substituting (4) into (1), the original two-dimensional time-fractional cable equation

(1) is approximated by the following partial differential equation:

du 0%u(x, y, t) 0%u(x, y, t)
— =Ay +A,
ot dx? 9y?

- 7714(96,}/, t) + (I"— I)P(x»y) + 7’f(x,}/, t)’ (5)

u(x,y,0)=px,y), &) €L, (6)

u(x, O) t) :pl(xr t)r u(x, L; t) :pZ(xr t)r ( )
7
M(O,J’, t) :p3(y’ t)’ M(L,J’» t) =p4(y, t)? (x:y: t) € £,

where A, = “a—", A, = {Z—y, n= 1_‘1% and 7 = é are positive constants.

In numerically solving the original problem (1), an economical computational solution
can be obtained by solving the resulting approximating partial differential equation (5)
using finite difference methods. For the discretization of the solution domain, we uti-
lize a uniform grid points (x;,y;, tx), with x; = ih, y; = jh, i,j = 0,1,...,n, and & = kAt,
k=0,1,...,N for some positive integers n and N, h = Ax = Ay = % and At = % are the
uniform space and time step sizes, respectively. Various finite difference schemes can be
utilized to solve (5). Here, and depending on the discretizations forward in time and cen-

tered in space about the point (x;,y;, t), the following HSP iterative scheme is obtained

[17]:
1
k+1 _ k+1 k+1 k+1 k+1
T T ady v ad, 1 0 ) + e )
+ uf‘] +(r- l)Atugj +rAf if}”], (8)
where d; = AZZAt, and dj = %. In applying this HSP iterative method, the iteration pro-

cess at any time level is carried out on all of the solution grid points using Eq. (8) until a
predefined convergence criterion is attained, prior to proceeding to the next time level.
The process goes on until it hits the target time level.

The advantage of the described HSP method lies in its ability to generate fast numerical
solutions by reducing the computational cost and memory requirement significantly in
comparison with the standard finite difference schemes used to solve problem (1). For
further details, refer to [17]. As the group iterative methods can accelerate the rate of
convergence compared to their counterparts point iterative methods, the formulation of
the hybrid explicit group (HEG) and the hybrid modified explicit group (HMEG) iterative
methods will be illustrated in the next section.
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3 Design of the hybrid group iterative methods

3.1 The hybrid explicit group (HEG) iterative method

In order to formulate the HEG method, we assume that the grid points of the solution
domain at any time level are arranged in group of four points as illustrated in Fig. 1. Then,
we apply Eq. (8) to each of these points so that the following (4 x 4) system of equations

is obtained:

k+1

VvV -d 0 —d, Ui 7 hsi,j
—dl vV —dz 0 u{(:ll,j _ VhSH.L]‘ (9)
_ _ k+1 - L ’
0 d2 |4 dl Mi+1,j+1 VhSL+1,;+1
—d. 0 -d Vv k+1 rhs;;
2 1 uw,ﬂ ij+1

where

V =1+nAt+2d;, +2d,,

k+1 k+1 k 0 k+1
rhsij = diw; "y + dout; [y + g+ (r = 1) Adu; + r AT,

_ k+1 k+1 k 0 k+1
rhsi1j = dlum,j + d2’4i+1,/_1 + Uyt (r- 1)Atui+1,j + rAtfHLj,

_ k+1 k+1 k 0
ThSisje1 = dlumﬁl + dgumﬁz + Uiy T (r—1)Atu;

+1,j+1
k+1
+ r At s
_ k+1 k+1 k 0 k+1
rhsij1 = dl”i—1,j+1 + dgbti,j+2 + Ut (r- I)At”i,/u + rAtfml.

Invert the coefficients matrix in (9) results in the following four-point HEG formula:

k+1

U a, dy as ds rhs;;
uk+1 1 I
i+1j | _ L |42 a1 d4 as TASit1,j (10)
k+1 - F ’
U1 alas as ap a rhsi1 i1
k+1 ds dsz d, a rhs;
ui,j+1 4 3 2 1 ij+1

where

a=1+d +dy+nAt)(1 +3dy +dy + nAt)(1 +dy + 3dy + nAt)
x (1 + 3dy + 3d, + nAl),
ar = (1 +2d; +2dy + nAt)(1 +4d; + 3d; + 4d, + 8dyd, + 3d5 + 4dinAt
+4dyn At + 2nAt + (nAt)2),
ay = di (1 +4d, +3d; +4dy + 8d1dy + 5d5 + 4din At + 4don At + 2n At
+(nAt)?),
az = 2d1dy(1 + 2d1 + 2d, + nAt),
as = dy(1 +4dy +5d; +4dy + 8dydy + 3dy + 4dinAt + 4dan At + 2nAt

+(nAL)?).

Page 5 of 20
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Figure 1 Four-point groups of the HEG method 10
with mesh size n=10
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In applying this HEG method, iterations at time level #;,; are generated on each group
of grid points using Eq. (10) until a predefined convergence criterion is attained. The con-
verged solution values are then adopted as the initial guess for the next time level. Through
the iteration process, we treat each group of four points explicitly similar to the way we
treat the single point in the point iterative methods. The process goes on until it hits the
target time level. From Fig. 1, it is worth noting that ungrouped points would take a place
near to the top and right boundaries if # is even. In such a case, the HSP formula (8) is
used to iterate the solutions on the ungrouped points next to the boundaries.

3.2 The hybrid modified explicit group (HMEG) iterative method

The HMEG method is constructed based on a new uniform grid of step size 24 = 2L/n. By
utilizing the forward in time and centered in space discretizations about these 2/-spaced
points, the following 2/ spacing-based HSP formula is obtained to discretize Eq. (5):

k+1 k k+1 k+1 k+1 k+1 k+1 k+1
Upj- — U Uiln; =2 + Uy Uiy =20 + Uiy
=Ax 2 4y 2

At 4h 4h

—nug 4 (= Dy + rff + O(AL + (M%) + (Ay)°). (11)

Upon simplification, the above equation can be rewritten as

1 d
k+1 1/ k+l k+1 2 ¢ k+l k+1
Uu.: = — (v u )+ —(u U
YT 1At +di/2 + dy/2 [ 4 (s + ) 4 (2 + 43))
+ ufl +(r = 1) At + rAg l{;*l] (12)

Consider the group of four points (i,/), (i + 2,/), (i + 2,j + 2) and (i,j + 2) at any time level.
Applying Eq. (12) at these four interior points will generate the following 4 x 4 system of

equations:
k
Ve —da 0 —dya\ [ ) rhs;;
—d/A V¥ —dyJa 0 uiby || rhsiay 13
0 _dZ /4 v* —d1 /4 ui(-:21,/+2 rhSi+2,j+2 ’
—d, /4 0 —d /4 v* 1kl VhS,"]urz

ij+2
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where

V*=1+nAt+(dq1/2) + (d2/2),

rhsij = (dv18)ug’y, + (do/A)uf sy + uf; + (r — 1) Aty + rAtfS,

rhsiva; = (d1/4)uf‘:j] + (d2/4)uf(:211 5+ qu] + (=1 At

i+2,)

k+1
+rAtfis

rhsl+21+2 = (d1/4') z+4/+2 + (d2/4) z+2}+4 + Mf+2/+2 +(r— ]‘)Atul+2]+2

k+1
+1rAY i+2,j+27

rhsije = (dl/élw)uf_"zll+2 + (do/4)u ”+4 + uf‘ﬁz +(r— l)AL‘uU+2

k+1
+rAtf/12

By inverting the coefficients matrix in (13), the four-point HMEG equation is attained

as follows:
k+1
ij ai a; a3 a rhs;;
k+1 * * * *
Uigj | 1 |ay a7 ai a3 rhsiso (14)
k+1 Tk * * * * o g
Uis o a* |ay a; ai a; rhsiso 2
k+1 a; ai ab at rhs; ;
Uijvo 4 3 2 1 ij+2
where

=4 +dy +dy+AnAt)(4 + 3dy + dy + AnAt)(4 + dy + 3dy + 4 AL)
X (4 + 3d; + 3dy + 4nAt),
=8(2+dy +dy+2nAt)(16 + 16d, + 3d; + 16dy + 8d1dy + 3 + 16d1n At
+16dynAt +32nAt +16(nAt)?),
@ = 4d1 (16 + 16d, + 3d; + 16d, + 8dydy + 5d3 + 16d1n At + 16drn At
+32nAt +16(nAt)?),
asy =16d,d>(2 + dy + dy + 2nAtL),
@y = 4dy (16 + 16d; + 5d; + 16d, + 8d1dy + 3ds + 16d1n At + 16dan At

+32nAt +16(nAt)?).

In view of Fig. 2, all the grid points of the solution domain at any time level are par-
titioned into three distinct kinds of points (¢, O,). It can be observed that the imple-
mentation of Eq. (14) involves only points of kind 4. Thus, we use Eq. (14) to iterate the
solutions at these points until convergence is attained. After convergence is achieved, the
HMEG method proceeds with the computations of the solutions at the residual points of
kind O and O directly once. For convenience, the four-point HMEG method is summa-

rized in Algorithm 1.
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Figure 2 Four-point groups of the HMEG method
with mesh size n=10

Algorithm 1: Solution algorithm using the HMEG iterative method

1. Partition the grid points of the solution domain into three kinds 4, O and [J as

illustrated in Fig. 2.

Put all the 4 points into group of four points.

3. Use Eq. (14) to iterate the solutions at points of kind 4 in all the groups at time

level k + 1.

4. Test the convergence. If the iterative solutions converge, move to step 5.

Otherwise, repeat the iteration process at the same time level in step 3.

5. The solutions at the residual grid points [J and O are evaluated directly once as
follows:

(a) For the points of kind [J, the rotated (skewed) finite difference scheme
established from the skewed grid is utilized. This scheme is constructed by
discretizing the approximating problem (5) on the skewed grid attained by
rotating the standard grid 45° clockwise so that the following rotated
difference scheme is obtained:

1 d
k+1 1/ k+1 k+1
UG s — | — (i u
T Tt nAt+d+dy| 2 (i1 + 2870 01)
d
k+1 k+1 k 0 k+1
t (”i+1,j+1 + ”i—l,j—l) +uy; + (r = 1) Aty + r AL .

(b) For the remaining points of kind O, the HSP formula (8) is employed.

4 Stability and convergence analyses

In this section, we will present the stability and convergence results. In view of the previous
section, both the HEG and HMEG methods are derived from the same formula (8), but
with different spacing. Thus, the stability and convergence analyses of both methods can
be investigated in a similar manner. In the subsequent subsections, the matrix stability
approach [28] together with mathematical induction will be used to analyze the stability
and convergence of the HMEG method. Firstly, we recall the following remarks for the

convenience of the subsequent analysis
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Remark 4.1 Let A,x, be an n x n matrix. The infinity norm ||-|| of the matrix A is given
by

n

”Anxn”oo:max E aij (-
1<i<n 1
]:

Remark 4.2 ([33]) Ann X n matrix A, is said to be strictly diagonally dominant if |a;;| >

r;(A), where r;(A) = Z]‘;'j:l la;j|, 1 < i < nis the ith deleted absolute row sum.

Remark 4.3 ([34]) If a matrix A, is strictly diagonally dominant, then A, is invertible
and

1

ming <;<,f{|a;;| - ri(A)}

lAlleo =

4.1 Stability analysis
Here, we analyze the stability of the HMEG method. For the sake of simplification, we

assume that d; = d, = At/h*. Consequently, Eq. (13) can be represented in matrix form as

Al = BuF + Cu + b, (15)
where
VI H
B ) H
A = ] B = )
JER S L) H
VLR H
M Wi
M Wi
C- . ob=| |
M w1
M w1
QA Qs Qs
Q Q1 Q3 Qs
]1 = . . ) ]2 = ‘. . )
Q Q Q3 Qs
Q A Qs
Q4 I
Qa4 Iy
]3 = ) H= . ’
Q4 I

Q4 Iy
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T1 Ll
Tl Ll
M= ’ Wl— : )
T1 Ll
T1 Ll
1+nAt+d —d/4 0 —d/4
Q= —d/4 1+nAt+d —dl4 0
b 0 —dl4  l+nAt+d  -dia |’
—-d/4 0 —-d/4 l+nAt+d
00 0 -da 0 0 0 0
0 0 —di4 0 0 0 0 0
@={g o o o ' @ o _aa o0 ol
00 0 0 ~dl4 0 0 0
0 -d/4 0 0 0 00 0
0 0 0 0 —dl4 0 0 0
Q=ly o o ol 7| o o0 0 —aal
0 0 -d4 o 0 00 0
(r—1)At 0 0 0
0 (r—1)At 0 0
le )
0 0 (r—1)At 0
0 0 0 (r—1)At
1 00 0 fij
0100 o
I = . Li=rAt Jivaj
00 1 0 i+2,j+2
0 0 01 Sije2

In the light of the distinguishing form of the matrices in Eq. (15), a further clarified form
of Eq. (15) is found by writing

k+1 k 0
[A (#-22 | (n-2)2 Ju** =B (=22 _ (n-2)2 Ju® + [C(n—2)2 o (=22 lu” +b.

2
3 - X7 a T 7

Theorem 4.1 The hybrid modified explicit group scheme (14) is unconditionally stable.
Proof Suppose U**! is the approximate solution of (15). The error at time level k + 1 is de-

fined as ek*! = y**1 — /**1, Considering Remarks 4.2 and 4.3, it follows that 4 is invertible

and
W = AT Buf + ATV Cu® + A7 (16)
From Eq. (16), the error satisfies

= AT Bk + A7 Ce, (17)
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where
k+1
e}(§+1 1//1 1//k+1
K+l 1/,k+1 b
€y 2 I//kJrl
e/<+1 _ ek+1 _ 1pk+1 _ i+2,]
=1 . |- 0 = : J = k+l ’
. : 1pi+2,j+2
k+1 k+1
e’é*l 14 (1-2)2 Vijo
16

and wk+1 _ uk+1 uk+1'
To demonstrate the stability we shall prove that [|e**!|| < ||€°|| for k= 0,1,...,N — 1. We
use mathematical induction to prove it. For k = 0, we have

el =A'Be® + A1 CE.

Since the matrix infinity norm ||A|| is consistent with the vector infinity norm |le]|, we
obtain

' < a”B]fle*] + Ja~ <] ]€’]
< [a7[uBufe] + 4~ fuch]e’]-
As A is strictly diagonally dominant and using Remark 4.3, we have

EE Jeo) + L2DAL o) L La U= DAL o)
1+nAt 1+nAt 1+nAt

sincer—-1<n,

et = e

Now, we assume that ||e*!|| < ||€°||, s = 1,2,...,k — 1. We show this inequality is true for
s=k.

Since r — 1 < 1, and from Eq. (17), we obtain

[ = T [uBie] + a7 [ncu]e’]
= [a[usife’] + |4~ [cn]e’]
(r—1)At
SSvevvild ks vervails

1+ (r-1)At
© 1+nAt

et = e

This implies that the HMEG scheme (14) is unconditionally stable. O

4.2 Convergence analysis
Here, we follow an analogous approach as that in the previous subsection to investigate
the convergence of the HMEG scheme (14).

Page 11 of 20
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Theorem 4.2 The hybrid modified explicit group scheme (14) is convergent and ||[EX*!|| <
Cr(t + (Ax)? + (Ay)?).

Proof Let Rf;l be the truncation error at the location (x;, yj, tx,1). From Eq. (11), there is a

positive constant C* such that
R < C* (¢ + (A%)” + (Ay)), (18)

where C* = max{C}}}, ,j=2,3,...,n-2,k=0,1,..., N - L.
We obtain the error equation by subtracting Eq. (15) from the following equation:

AUR = BU + cU® + b + RF,

The error equation immediately follows as

AE*! = BE* + CE® + R**, (19)
where
k+1
E16+1 ¢1 ('blkj]
k+1 éﬁl ¢k+l
kL 0 kL P = i+2,/
- . ’ (U . ’ - k+1
: ¢i+2,/+2
k+1 k+1 k+1
E; Do ®; o

16

k+1 _ 7rk+1 k+1
and ¢i’j = Ui'j —u;

Next, we utilize mathematical induction to complete the proof. For k = 0 and using that
E° =0, we have
AE' =R

Then

[ = A== <
1+nAt

C*(t + (Ax)* + (Ap)®) = Co(t + (Ax)* + (AY)?),
where Cy = C*/(1 + nAt).
S EY| = Colt+ (A%)? + (A)?).

Now, assume that ||[ES*! || < Cy(t+ (Ax)? + (Ay)?),s = 1,2,...,k— 1. We show this inequal-
ity is true for s = k.
From Equation (19), we obtain

[ = At i) + A~ 1R

1

= 1+17At”Ek” " 1+77At|

|Rk+1 ”
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< m[ck_l(t +(Ax)* + (Ay)*) + C* (£ + (A%)* + (Ay)?) ]

= Cr(t + (Ax)* + (Ay)?),
where Cy = Ci_1 + C* since lim_, o, Af =0.
HEk+1 ” < Ck(t +(Ax)? + (Ay)Z).
Hence, the proof is completed. g

5 Numerical experiments and results

In this part, we carry out computer simulations to investigate the performance of the hy-
brid group iterative methods developed in this work, and to compare their performances
with the HSP iterative method which was developed in [17]. The computational experi-
ments were conducted in Mathematica software and run on a laptop with quad core pro-
cessor, 8 GB of RAM and Windows 10 operating system. In practice, the Gauss—Seidel
method with a fixed relaxation factor of 1 was employed to obtain the numerical results.
For convenience, the [/, norm along with a tolerance factor of 1075 were utilized for the
convergence criteria throughout the computational experiments.

In developing fast iterative numerical schemes, the computational cost estimated by the
total number of arithmetic operations to be implemented per iteration is a crucial de-
terminant. The higher the number of arithmetic operations to be executed (i.e. higher
computational cost), the more the algorithm’s computational time, and hence slowness in
the convergence is indicated. Here, the computational cost of the presented methods is
measured by computing the total arithmetic operations involved for each method as illus-
trated in Table 1. For further details about the computational cost of the group iterative
schemes, kindly refer to [25, 28].

In order to illustrate the validity of the proposed methods, the maximum error norm is

applied using the following formula:

exact _ _ num

Errory = max‘ui 4 U
i J J

Example5.1 In this example, we specify a solution domain of £2 = {(x,7,£)[0 <x,y < 1,0 <

¢t <1} for solving the following two-dimensional time-fractional cable equation [35]:

2u(x,y,t)  %u(x,y,t) 212
C o _ ') INZ] 2 X
oDfulx,y,t) = 2 + 0y —u(x,y,t) + <7F(3 ~a) —t )e o3

with the exact solution given by u(x, y,t) = ey,

Table 1 The computational cost of the HSP, HEG and HMEG methods (o0 =n—-1)

Method Per iteration After convergence Total operations
HSP 2102 % Ite - 2102 % Ite
HEG (19(0 = 1)? +21Q20 - 1)) * Ite - (19(0 = 1)? +21Q20 - 1)) * Ite

HMEG 5.25(0 — 1) * Ite 525302+ 20 - 1) 5.25(0 —1)? % lte + 525302 + 20 - 1)
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Table 2 The numerical results of the HSP, HEG and HMEG methods at o = 0.1 for Example 5.1

h! Method CPU time (sec) Ite Erroree Total operations
6 HSP 0.140 33 1.5652E-03 17,325
HEG 0.078 22 1.5795E-03 10,846
HMEG 0.015 2 3.9024E-03 609
14 HSP 3.500 150 8.2547E-04 532,350
HEG 1.593 84 8.9366E-04 273,924
HMEG 0.187 24 14212E-03 20,937
22 HSP 21171 330 5.4014E-04 3,056,130
HEG 12359 182 6.9130E-04 1,539,902
HMEG 0.828 54 1.0299E-03 120,561
30 HSP 67.234 562 3.1519E-04 9,925,482
HEG 38.468 311 5.2364E-04 5,004,923
HMEG 3.093 93 8.7262E-04 396,333

Table 3 The numerical results of the HSP, HEG and HMEG methods at o = 0.3 for Example 5.1

h! Method CPU time (sec) Ite Erroreg Total operations
6 HSP 0.125 31 4.8575E-03 16,275
HEG 0.078 21 4.8648E-03 10,353
HMEG 0.015 2 6.9708E-03 609
14 HSP 2.796 141 4.3450E-03 500,409
HEG 1578 79 44206E-03 257,619
HMEG 0.171 23 4.8858E-03 20,181
22 HSP 20.093 309 4.0362E-03 2,861,649
HEG 10.734 171 4.2367E-03 1,446,831
HMEG 0.796 51 4.5519E-03 114,261
30 HSP 64.468 527 3.6839E-03 9,307,347
HEG 35515 291 4.0316E-03 4,683,063
HMEG 2.984 87 4.4048E-03 371,637

The initial and boundary conditions of this problem are derived from the above exact
solution. In solving this problem, several mesh sizes of 6, 14, 22 and 30 have been utilized
for the space discretization with fixed temporal step size of At = 1/10. The obtained results
of the CPU computational time (in seconds), number of iterations (Ife), total number of
arithmetic operations (Total operations) and numerical errors (Errors) for the presented
methods described in Sects. 2 and 3 are compared in Tables 2 and 3 when « = 0.1 and 0.3,
respectively. Clearly, it can be seen that the proposed hybrid group iterative methods are
able to reduce the iterations number, computational cost and hence the CPU time sig-
nificantly compared to the HSP iterative method [17], without deteriorating the accuracy
of numerical solutions. From the experimental results, the CPU time, iterations number
and total arithmetic operations of the HEG method are, respectively, only about 45.51—
62.40%, 55.15—67.47% and 50.31-63.61% of the HSP method. Similarly, the CPU time,
iterations number and total operations of the HMEG method are, respectively, only about
3.91-12.00%, 6.06—16.54% and 3.51-3.99% of the HSP method. The comparison of the
computational results for the hybrid iterative methods are illustrated in Figs. 3, 4 and 5.
Figure 6 depicts the graphical error representation of the HEG and HMEG methods when
a =0.3. In view of this figure, the hybrid group iterative methods are able to simulate Ex-
ample 5.1 precisely and rather quickly.
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Figure 6 The graphical error representation of the HEG and HMEG methods at o = 0.3, h = 1/30 for
Example 5.1

Table 4 The numerical results of the HSP, HEG and HMEG methods at o = 0.7 for Example 5.2

A Method CPU time (sec) Ite Erroree Total operations
6 HSP 0.109 24 2.4056E-02 12,600
HEG 0.062 16 2.4069E-02 7888
HMEG 0.015 2 8.8093E-02 609
22 HSP 14.187 219 4.7123E-03 2,028,159
HEG 7.796 123 4.9438E-03 1,040,703
HMEG 0.671 38 9.6396E-03 86,961
38 HSP 102.313 540 2.8059E-03 15,524,460
HEG 60.765 307 3.4906E-03 8,030,199
HMEG 5.156 96 5.5162E-03 675,129
54 HSP 379.203 944 1.1587E-03 55,685,616
HEG 215391 545 2.5382E-03 29,201,645
HMEG 19.765 174 4.3268E-03 2,514,897

Example 5.2 Here, we take the following two-dimensional cable equation of fractional

order [4]:

ED%u(x,y,t) =

0%u(x,y,t)  %ulx,y,t)
+
dx? 9y?

- M(x; b2 t)

N <2t27_“ +(1+ 2n2)t2) sin(rx) sin(rry)
'3-a) 7

subject to the initial and boundary conditions extracted from the exact solution u(x, y, t) =

£2 sin(mx) sin(rry).

For the solution of this problem, we determine the solution domain as £2 = {(x,y,£)|0 <

x,7 <1,0 <t < 1}. Various mesh sizes of 6, 22, 38 and 54 and fixed temporal step size At =

1/10 are utilized to discretize the solution domain. Tables 4 and 5 summarize the numer-
ical results obtained by using the HSP, HEG and HMEG methods when « = 0.7 and 0.9,
respectively. From the computational results, the CPU time, iterations number and to-

tal arithmetic operations of the HEG method are, respectively, only about 49.46—63.56%,
56.16—66.66% and 51.31-62.60% of the HSP method. On the other hand, the CPU time,

iterations number and total operations of the HMEG method are, respectively, only about

4.72-16.12%, 8.33-18.43% and 4.28—-5.04% of the HSP method. In Figs. 7, 8 and 9 we
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Table 5 The numerical results of the HSP, HEG and HMEG methods at o = 0.9 for Example 5.2

h! Method CPU time (sec) Ite Erroree Total operations
6 HSP 0.093 23 2.4887E-02 12,075
HEG 0.046 15 2.4897E-02 7395
HMEG 0.015 2 8.8361E-02 609
22 HSP 12.859 208 5.6912E-03 1,926,288
HEG 7.406 117 5.9235E-03 989,937
HMEG 0.625 36 1.0583E-02 82,761
38 HSP 95453 513 3.7797E-03 14,748,237
HEG 60.671 292 44777E-03 7,637,844
HMEG 5.625 91 6.9404E-03 641,109
54 HSP 357.594 899 2.1237E-03 53,031,111
HEG 205.953 518 3.5163E-03 27,754,958
HMEG 18.984 165 5.3069E-03 2,387,133
400 400
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Figure 7 The CPU time plot of the HSP, HEG and HMEG methods for Example 5.2
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Figure 8 The iterations number plot of the HSP, HEG and HMEG methods for Example 5.2

40 45 50 56

sketch the CPU time, iterations number and total operations of the presented methods
by fixing all the parameters and only altering the mesh size. In each figure, the compu-
tational outcomes of the HEG and HMEG methods are considerably less than those of
the HSP method, whereas the HMEG method has the least computing effort among these
methods. This is in good agreement with the theoretical computational cost analysis. Fig-
ure 10 displays the graphical error representation using the HEG and HMEG methods
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Figure 10 The graphical error representation of the HEG and HMEG methods at o = 0.7, h = 1/54 for
Example 5.2

when « = 0.7. It can be observed that the proposed hybrid group iterative methods are
computationally efficient in the sense that they could obtain a satisfying error with rather

least computational cost and CPU time.

6 Conclusions

In this article, two hybrid group iterative methods based on the Laplace transform method
and group iterative schemes have been proposed for solving the two-dimensional time-
fractional cable equation. The HEG method is formulated from the /-spaced implicit finite
difference scheme, whereas the HMEG method is derived from the 2/-spaced implicit fi-
nite difference approximation. The unconditional stability and convergence of the HMEG
method is proved using matrix stability approach. The computational cost (arithmetic
operations per iteration) of the presented methods has been analyzed and verified with
the help of examples. Numerical experiments strongly support theoretical analyses and
illustrate the computational efficiency of the proposed methods. The corresponding nu-
merical results show that the hybrid group iterative methods could simulate the problem
precisely and reduce the computational cost, iterations number as well as CPU time sig-
nificantly when compared to the HSP iterative method [17], where the least computing
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effort has shown to be required by the HMEG method. The development of hybrid group
iterative methods together with the corresponding theoretical analyses will be considered

in future work.
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