
Kittisopaporn and Chansangiam Advances in Difference Equations (2020) 2020:259
https://doi.org/10.1186/s13662-020-02715-9

R E S E A R C H Open Access

The steepest descent of gradient-based
iterative method for solving rectangular
linear systems with an application
to Poisson’s equation
Adisorn Kittisopaporn1 and Pattrawut Chansangiam1*

*Correspondence:
pattrawut.ch@kmitl.ac.th
1Department of Mathematics,
Faculty of Science, King Mongkut’s
Institute of Technology Ladkrabang,
Bangkok, Thailand

Abstract
We introduce an effective iterative method for solving rectangular linear systems,
based on gradients along with the steepest descent optimization. We show that the
proposed method is applicable with any initial vectors as long as the coefficient
matrix is of full column rank. Convergence analysis produces error estimates and the
asymptotic convergence rate of the algorithm, which is governed by the term√
1 – κ–2, where κ is the condition number of the coefficient matrix. Moreover, we

apply the proposed method to a sparse linear system arising from a discretization of
the one-dimensional Poisson equation. Numerical simulations illustrate the capability
and effectiveness of the proposed method in comparison to the well-known and
recent methods.

MSC: 15A12; 15A60; 26B25; 65F10; 65N22

Keywords: Rectangular linear system; Iterative method; Gradient; Steepest descent;
Condition number; Poisson’s equation

1 Introduction
Linear systems play an essential role in modern applied mathematics, including numer-
ical analysis, statistics, mathematical physics/biology, and engineering. In this paper, we
develop an effective algorithm for solving rectangular linear systems. The proposed algo-
rithm can be applied for most of the scientific models involving differential equations. As
a model problem, we concern Poisson’s equation, which arises in many applications, for
example, electromagnetics, fluid mechanics, heat flow, diffusion, and quantum mechanics.

Let us consider a (square) linear system Ax = b with given A ∈ Mn(R) and b ∈ R
n. Here

we denote the set of m-by-n real matrices by Mm,n(R), and for square matrices, we set
Mn(R) = Mn,n(R). For solving linear systems, iterative methods have received much at-
tention. In principle, iterative methods create a sequence of numerical solutions so that
starting from an initial approximation, an iteration with sufficiently large number finally
becomes an accurate solution. A group of methods for solving the linear system, called

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-02715-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02715-9&domain=pdf
http://orcid.org/0000-0002-9885-5685
mailto:pattrawut.ch@kmitl.ac.th

Kittisopaporn and Chansangiam Advances in Difference Equations (2020) 2020:259 Page 2 of 17

stationary iterative methods, can be expressed in the simple form

x(k + 1) = Bx(k) + c,

where B is the associated iteration matrix derived from the coefficient matrix A, and c is
the vector derived from A and b. The Jacobi method, the Gauss–Seidel (GS) method, and
the successive over-relaxation (SOR) method are three classical ones (see, e.g., [1, Ch. 10])
derive by splitting

A = D – L – U ,

where D is a diagonal matrix, and L (U) is a lower (upper) triangular matrix. The SOR
method has received much attention and has been evolved continually into new iterative
methods, for example:

• Jacobi over-relaxation (JOR) method [2]

B = D–1(αL + αU + (1 – α)D
)
, c = αD–1b, α > 0.

• Extrapolated SOR (ESOR) method [3]

B = (D – ωL)–1((τ – ω)L + τU + (1 – τ)D
)
,

c = τ (D – ωL)–1b, 0 < |τ | < ω < 2.

• Accelerated over-relaxation (AOR) method [4]

B = (D + αL)–1((α – β)L – βU + (1 – β)D
)
,

c = β(D + αL)–1b, 0 < α < β < 2.

In the recent decade, many researchers developed gradient-based iterative algorithms
for solving matrix equations based on the techniques of hierarchical identification and
minimization of associated norm-error functions; see, for example, [5–24]. Convergence
analysis for such algorithms relies on the Frobenius norm ‖ · ‖F , the spectral norm ‖ · ‖2,
and the condition number respectively defined for each A ∈ Mm,n(R) by

‖A‖F =
√

tr
(
AAT

)
, ‖A‖2 =

√
λmax

(
AT A

)
, κ(A) =

(
λmax(AT A)
λmin(AT A)

)1/2

.

Moreover, such techniques can be employed for any rectangular linear system of the form

Ax = b, A ∈ Mm,n(R), b ∈R
m. (1)

If A is assumed to be of full column rank, then the consistent system (1) has a unique
solution x∗ = (AT A)–1AT b. The following algorithms are derived from such techniques.

Kittisopaporn and Chansangiam Advances in Difference Equations (2020) 2020:259 Page 3 of 17

Proposition 1.1 ([25, 26]) Consider the linear system (1) with full-column-rank matrix A.
Let 0 < μ < 2/‖A‖2

2 or 0 < μ < 2/‖A‖2
F . Then the iterative solution x(k) given by the gradient-

based iterative (GI) algorithm

x(k + 1) = x(k) + μAT(
b – Ax(k)

)
(2)

converges to a unique solution for any initial value x(0).

Proposition 1.2 ([25, 26]) Consider the linear system (1) with full-column-rank matrix A.
Let 0 < μ < 2. Then the iterative solution x(k) given by the least-squares iterative (LS) algo-
rithm

x(k + 1) = x(k) + μ
(
AT A

)–1AT(
b – Ax(k)

)
(3)

converges to a unique solution for any initial value x(0).

Another study of solving linear systems considers unconstrained convex optimization,
where the gradient method along with the steepest descent is used (see, e.g., [27]). The
steepest descent is a gradient algorithm where the step size αk is chosen at each individual
iteration to achieve the maximum amount of decrease of the objective function. Suppose
we would like to minimize a continuously differentiable function f on R

n. To do this, let xk

be the current iterate point, and let gk = ∇f (xk) be the gradient vector at xk . The steepest
descent method defines the next iteration by

xk+1 = xk – α∗
k gk , (4)

where α∗
k > 0 satisfies

f
(
xk – α∗

k gk
)

= min
α>0

f (xk – αgk).

Barzilai and Borwein [28] approached the step size in the current iteration. For the iterative
equation (4), the step size αk can be chosen as

αk =
sT

k–1yk–1

‖yk–1‖2
2

(5)

or

αk =
‖sk–1‖2

2

sT
k–1yk–1

, (6)

where sk–1 = xk – xk–1 and yk–1 = gk – gk–1. We call such iterative method the BB method.
Convergence analysis of the BB method is provided in [28, 29]. This idea has encouraged
and brought about many researches on the gradient method; see, for example, [30–34].

In the present paper, we propose a new gradient-based iterative algorithm with a se-
quence of optimal convergent factors for solving rectangular linear systems (see Sect. 2).

Kittisopaporn and Chansangiam Advances in Difference Equations (2020) 2020:259 Page 4 of 17

Then we make convergence analysis for the proposed algorithm, including the conver-
gence rate and error estimates (see Sect. 3). Numerical experiments are provided to il-
lustrate the capability and effectiveness of the proposed algorithm in comparison to all
mentioned algorithms (see Sect. 4). We also apply the algorithm to a sparse linear system
arising from a discretization of the one-dimensional Poisson equation (see Sect. 5). Finally,
we conclude the paper with some remarks in Sect. 6.

2 Proposing the algorithm
In this section, we introduce a new method for solving rectangular linear systems based on
gradients, and we provide an appropriate sequence of convergent factors that minimizes
an error at each iteration.

Consider the rectangular linear system (1) where A ∈ Mm,n(R) is a full-column-rank
matrix, b ∈ R

m is a known constant vector, and x ∈ R
n is an unknown vector. We first

define the quadratic norm-error function

f : Rn →R, f (x) :=
1
2
‖Ax – b‖2

F . (7)

Since A is of full column rank, the consistent system (1) has a unique solution, and hence
an optimal vector x∗ of f exists. We will start by having an arbitrary initial vector x(0), and
then at every step k > 0, we iteratively move to the next vector x(k + 1) in an appropriate
direction, that is, the negative gradient of f together with a suitable step size τk+1. Thus the
gradient-based iterative method can be described through the following recursive rule:

x(k + 1) = x(k) – τk+1∇f
(
x(k)

)
. (8)

To minimize the function f , we will deduce their gradients in detail. Indeed, we get

∇f (x) =
1
2

d
dx

tr
(
(Ax – b)(Ax – b)T)

=
1
2

d
dx

tr
(
AxxT AT – bxT AT – AxbT + bbT)

= AT (Ax – b).

Thus our iterative equation is of the form

x(k + 1) = x(k) + τk+1AT(
b – Ax(k)

)
.

To generate the best step size at each iteration, we recall the technique of the steepest
descent, which minimizes the error occurring at each iteration. Thus we consider the error
f (x(k + 1)) as a function of τ ≥ 0:

φk+1(τ) := f
(
x(k + 1)

)
=

1
2
∥∥A

(
x(k) + τAT(

b – Ax(k)
))

– b
∥∥2

F .

Putting c̃ = b – Ax(k) and b̃ = AAT c̃, we get

φk+1(τ) =
1
2
‖τ b̃ – c̃‖2

F .

Kittisopaporn and Chansangiam Advances in Difference Equations (2020) 2020:259 Page 5 of 17

To obtain the critical point, we make the differentiation:

0 =
d

dτ
φk+1(τ) =

1
2

d
dτ

tr
(
(τ b̃ – c̃)(τ b̃ – c̃)T)

=
1
2

d
dτ

tr
(
τ b̃τ b̃T – τ b̃c̃T – c̃τ b̃T + c̃c̃T)

=
1
2
(
2τ tr

(
b̃b̃T)

– 2 tr
(
b̃c̃T))

,

which gives τ = tr(b̃c̃T)/ tr(b̃b̃T). Note that the second derivative of φk+1(τ) is given by
tr(b̃b̃T), which is positive. Hence the minimizer of the function φk+1(τ) is

τk+1 =
tr(AAT (b – Ax(k))(b – Ax(k))T)

tr(AAT (b – Ax(k))(b – Ax(k))T AAT)
=

‖AT (b – Ax(k))‖2
F

‖AAT (b – Ax(k))‖2
F

. (9)

We call {τk+1}∞k=0 the sequence of optimal convergent factors. Now we summarize the
search direction and optimal step size.

Algorithm 2.1 The steepest descent of gradient-based iterative algorithm.
Input step: Input A ∈ Mm,n(R) and b ∈R

m.
Initializing step: Choose an initial vector x(0) ∈ R

n. Set k := 0. Compute c = AT b, C =
AT A, d = Ac, D = AC.

Updating step:
τk+1 =

∑n
i=1(ci –

∑n
j=1 Cijxj(k))2/

∑m
i=1(di –

∑n
j=1 Dijxj(k))2,

x(k + 1) = x(k) + τk+1(c – Cx(k)).
Set k := k + 1 and repeat the updating step.

Here we denote by ci the ith entry of c and by Cij the (i, j)th entry of C. In case of stopping
the algorithm, a stopping criteria is necessary and can be described as ‖b – Ax(k)‖F < ε,
where ε is a small positive number. Note that we introduce the vectors c, d and the matrices
C, D to avoid duplicated computations.

3 Convergence analysis
In this section, we show that Algorithm 2.1 converges to the exact solution for any ini-
tial vector. Moreover, we provide the convergence rate, error estimates, and the iteration
number corresponding to a given satisfactory error.

3.1 Convergence of the algorithm
The convergence analysis is based on a matrix partial order and strongly convex functions.
Recall that the Löwner partial order
 for real symmetric matrices is defined by A
 B if
B–A is a positive semidefinite matrix or, equivalently, xT Ax ≤ xT Bx for all x ∈R

n. A twice-
differentiable convex function f : Rn → R is said to be strongly convex if there exist con-
stants 0 ≤ m < M such that for all x ∈R

n,

mI
 ∇2f (x)
 MI.

Using the definition of the partial order
, this is equivalent to

myT y ≤ yT∇2f (x)y ≤ MyT y for all x, y ∈R
n.

Kittisopaporn and Chansangiam Advances in Difference Equations (2020) 2020:259 Page 6 of 17

In other words, m (resp., M) is a lower (resp., upper) bound for the smallest (resp., largest)
eigenvalue of ∇2f (x) for all x.

Lemma 3.1 ([35]) If f is strongly convex on R
n, then for any x, y ∈R

n,

f (y) ≥ f (x) + ∇f (x)T (y – x) +
m
2

‖y – x‖2
F ,

f (y) ≤ f (x) + ∇f (x)T (y – x) +
M
2

‖y – x‖2
F .

Theorem 3.2 If system (1) is consistent and A is of full column rank, then the sequence
{x(k)} generated by Algorithm 2.1 converges to a unique solution for any initial vector x(0).

Proof The hypothesis implies the existence of a unique solution x∗ for the system. We will
show that x(k) → x∗ as k → ∞. In case the gradient ∇f (x(k)) becomes the zero vector for
some k, we have x(k) = x∗, and the result holds. So assume that ∇f (x(k)) �= 0 for all k. Since
∇2f (x) = AT A is a positive semidefinite matrix, we have

λmin
(
AT A

)
I ≤ AT A ≤ λmax

(
AT A

)
I. (10)

Thus f is strongly convex. For convenience, we write λmin and λmax instead of λmin(AT A)
and λmax(AT A), respectively. We consider the function φk+1(τ) of the step size τ . Applying
Lemma 3.1, we obtain

f
(
x(k + 1)

) ≤ f
(
x(k)

)
– τ

∥
∥∇f

(
x(k)

)∥∥2
F +

λmaxτ
2

2
∥
∥∇f

(
x(k)

)∥∥2
F .

Minimize this inequality over τ . The right-hand side (RHS) is minimized by τk+1 = 1/λmax,
and thus

f
(
x(k + 1)

) ≤ f
(
x(k)

)
–

1
2λmax

∥∥∇f
(
x(k)

)∥∥2
F . (11)

From the other inequality in Lemma 3.1 we have

f
(
x(k + 1)

) ≥ f
(
x(k)

)
– τ

∥
∥∇f

(
x(k)

)∥∥2
F +

λminτ
2

2
∥
∥∇f

(
x(k)

)∥∥2
F .

We find that τ = 1/λmin minimizes the RHS, that is,

0 ≥ f
(
x(k)

)
–

1
λmin

∥∥∇f
(
x(k)

)∥∥2
F +

1
2λmin

∥∥∇f
(
x(k)

)∥∥2
F

= f
(
x(k)

)
–

1
2λmin

∥∥∇f
(
x(k)

)∥∥2
F .

Now ‖∇f (x(k))‖2
F ≥ 2λminf (x(k)), and hence by (11) we have

f
(
x(k + 1)

) ≤
(

1 –
λmin

λmax

)
f
(
x(k)

)
.

Kittisopaporn and Chansangiam Advances in Difference Equations (2020) 2020:259 Page 7 of 17

Since A is a full-column-rank matrix, the matrix AT A is positive definite, that is, λ > 0 for
all λ ∈ σ (AT A). It follows that c := 1 – λmin/λmax < 1 and

f
(
x(k + 1)

) ≤ cf
(
x(k)

)
. (12)

By induction we obtain that for any k ∈N,

f
(
x(k)

) ≤ ckf
(
x(0)

)
, (13)

which shows that f (x(k)) → 0 or, equivalently, x(k) → x∗ as k → ∞. �

3.2 Convergence rate and error estimates
From now on, denote κ = κ(A), the condition number of A. According to the proof of
Theorem 3.2, bounds (12) and (13) give rise to the following estimates:

∥
∥Ax(k) – b

∥
∥

F ≤ (
1 – κ–2) 1

2
∥
∥Ax(k – 1) – b

∥
∥

F , (14)
∥
∥Ax(k) – b

∥
∥

F ≤ (
1 – κ–2) k

2
∥
∥Ax(0) – b

∥
∥

F . (15)

Theorem 3.3 Assume the hypothesis of Theorem 3.2. The asymptotic convergence rate of
the Algorithm 2.1 (with respect to the certain error ‖Ax(k) – b‖F) is governed by

√
1 – κ–2.

Moreover, the error estimates ‖Ax(k) – b‖F compared to the previous step and the first step
are provided by (14) and (15), respectively. In particular, the relative error at each iteration
gets smaller than the previous (nonzero) one.

Now we recall the following properties.

Lemma 3.4 (e.g. [1]) For any matrices A and B of proper sizes, we have
(i) ‖AT‖2 = ‖A‖2,

(ii) ‖AT A‖2 = ‖A‖2
2,

(iii) ‖AB‖F ≤ ‖A‖2‖B‖F .

Theorem 3.5 Assume the hypothesis of Theorem 3.2. Then the error estimates ‖x(k) – x∗‖F

compared to the previous step and the first step of Algorithm 2.1 are given as follows:

∥∥x(k) – x∗∥∥
F ≤ κ

√
κ2 – 1

∥∥x(k – 1) – x∗∥∥
F , (16)

∥∥x(k) – x∗∥∥
F ≤ κ2(1 – κ–2) k

2
∥∥x(0) – x∗∥∥

F . (17)

In particular, the asymptotic convergence rate of the algorithm is governed by
√

1 – κ–2.

Proof By (15) and Lemma 3.4 we obtain

∥
∥x(k) – x∗∥∥

F =
∥
∥(

AT A
)–1(AT A

)
x(k) –

(
AT A

)–1(AT A
)
x∗∥∥

F

≤ ∥∥(
AT A

)–1∥∥
2

∥∥AT∥∥
2

∥∥Ax(k) – b
∥∥

F

≤ (
1 – κ–2) k

2
∥∥(

AT A
)–1∥∥

2

∥∥AT∥∥
2

∥∥Ax(0) – Ax∗∥∥
F

Kittisopaporn and Chansangiam Advances in Difference Equations (2020) 2020:259 Page 8 of 17

≤ (
1 – κ–2) k

2
∥∥(

AT A
)–1∥∥

2

∥∥AT∥∥
2‖A‖2

∥∥x(0) – x∗∥∥
F

=
(
1 – κ–2) k

2 λmax(AT A)
λmin(AT A)

∥
∥x(0) – x∗∥∥

F

= κ2(1 – κ–2) k
2
∥∥x(0) – x∗∥∥

F .

Since the end behavior of this error depends on the term (1 – κ–2) k
2 , the asymptotic

rate of convergence for the algorithm is governed by
√

1 – κ–2. Similarly, from (14) and
Lemma 3.4 we have

∥∥x(k) – x∗∥∥
F ≤ (

1 – κ–2) 1
2
∥∥(

AT A
)–1∥∥

2

∥∥AT∥∥
2

∥∥Ax(k – 1) – b
∥∥

F

≤ (
1 – κ–2) 1

2
∥
∥(

AT A
)–1∥∥

2

∥
∥AT∥

∥
2‖A‖2

∥
∥x(k – 1) – x∗∥∥

F

= κ2(1 – κ–2) 1
2
∥∥x(k – 1) – x∗∥∥

F ,

and thus we get (16). �

Hence the condition number κ of the coefficient matrix determines the asymptotic rate
of convergence, as well as how far our initial point was from the exact solution. As κ gets
closer to 1, the algorithm converges faster.

Proposition 3.6 Let {x(k)}∞k=1 be the sequence of vectors generated by Algorithm 2.1. For
each ε > 0, we have ‖Ax(k) – b‖F < ε after k∗ iterations for any

k∗ >
log ε – log‖Ax(0) – b‖F

log (1 – κ–2)
. (18)

Besides, for each ε > 0, we have ‖x(k) – x∗‖F < ε after k∗ iterations for any

k∗ >
2(log ε – 2 logκ – log‖x(0) – x∗‖F)

log (1 – κ–2)
. (19)

Proof From (13) we have ‖Ax(k) – b‖F ≤ (1 – κ–2)k‖Ax(0) – b‖F → 0 as k → ∞. This
means precisely that for each ε > 0, there is a positive integer N such that for all k ≥ N ,

(
1 – κ–2)k∥∥Ax(0) – b

∥∥
F < ε.

Taking the logarithm on both sides, we obtain (18). Another result can be obtained in a
similar manner; here we start with approximation (17). �

From Proposition 3.6 we obtain the iteration number such that the relative error
‖Ax(k) – b‖F and the exact error ‖x(k) – x∗‖F have an accuracy to a decimal digit after
iterations. Indeed, if p is a satisfactory decimal digit, then the desired iteration number is
obtained by substituting ε = 0.5 × 10–p.

Remark 3.7 A sharper bound for error estimation is obtained when the coefficient matrix
A is a square matrix. However, the convergence rate is governed by the same value. Indeed,

Kittisopaporn and Chansangiam Advances in Difference Equations (2020) 2020:259 Page 9 of 17

the condition that A is of full column rank is equivalent to the invertibility of A. Using
Lemma 3.4, we have the following bound:

∥∥x(k) – x∗∥∥
F =

∥∥A–1Ax(k) – A–1Ax∗∥∥
F ≤ ∥∥A–1∥∥

2

∥∥Ax(k) – b
∥∥

F

≤ ∥∥A–1∥∥
2

(
1 – κ–2) k

2
∥∥Ax(0) – b

∥∥
F

≤ ∥
∥A–1∥∥

2‖A‖2
(
1 – κ–2) k

2
∥
∥x(0) – x∗∥∥

F

= κ
(
1 – κ–2) k

2
∥
∥x(0) – x∗∥∥

F .

Similarly, we get ‖x(k) – x∗‖F ≤ √
κ2 – 1‖x(k – 1) – x∗‖F . Since κ ≥ 1, these bounds are

sharper than those in (16) and (17).

4 Numerical simulations for linear systems
In this section, we illustrate the effectiveness and capability of our algorithm. We report
the comparison of TauOpt, our proposed algorithm, with the existing algorithms we have
presented in the introduction, that is, GI (Proposition 1.1), LS (Proposition 1.2), BB1 (5),
and BB2 (6). All iteration results have been carried out by MATLAB R2018a in Intel(R)
Core(TM) i7-6700HQ CPU @ 2.60 GHz, RAM 8.00 GB PC environment. To measure the
computational time taken for each program, we apply the tic and toc functions in MAT-
LAB and abbreviate them CT. The readers are recommended to consider all reported re-
sults, such as errors, CTs, figures, while comparing the performance of any algorithms. For
each example, unless otherwise stated, we consider the following error at the kth iteration
step:

γk :=
∥
∥x(k) – x∗∥∥

F .

Example 4.1 We consider the linear system Ax = b with

A =

[
1 2
2 5

]

and b =

[
5

14

]

.

We choose an initial vector x(0) = 10–6[1 –1]T . Running Algorithm 2.1, we see from Table 1
that the approximated solutions converge to the exact solution x∗ = [–3 4]T . Fig. 1 and
Table 2 show the results when running 100 iterations. We can conclude that Algorithm 2.1
gives the fastest convergence.

Table 1 Iterative solution for Ex. 4.1

k x1 x2 γk

1 0.9714 2.3550 0.8597
2 –2.9926 3.9902 0.0025
3 –2.9902 3.9960 0.0021
4 –3.0000 4.0000 0.0000

Solution –3.0000 4.0000

Kittisopaporn and Chansangiam Advances in Difference Equations (2020) 2020:259 Page 10 of 17

Figure 1 Error for Ex. 4.1

Table 2 Error and CT for Ex. 4.1

Method Error CT

TauOpt 8.8818e-16 0.0095
Jacobi 8.9203e-05 0.0050
GS 3.4281e-09 0.0041
SOR 1.0415e-04 0.0045
ESOR 7.7386e-05 0.0050
JOR 0.0954 0.0190
GI 4.0029 0.0025
LS 0.0328 0.0038

Table 3 Condition number, iteration time (IT), and CT for Ex. 4.2

a κ (A) IT CT

–3 1.3504 11 1.7944e-12
7 2.9802 19 3.0440e-11
10 3.8089 27 0.0013
15 5.9720 36 0.0049

Example 4.2 In this example, we consider the convergence rate of the algorithm. Let a ∈R

and consider

A =

[
a 1
2 3

]

.

Thus the condition number of the iteration matrix depends on a. By taking different values
of a we then obtain the results shown in Table 3 and Fig. 2. The simulations reveal that the
closer to 1 the condition number, the faster the convergence of the algorithm. This shows
the correctness of Theorems 3.3 and 3.5.

Example 4.3 We consider a larger linear system. We would like to show that for a coeffi-
cient matrix that has no appropriate property and makes all approximated solutions from

Kittisopaporn and Chansangiam Advances in Difference Equations (2020) 2020:259 Page 11 of 17

Figure 2 Error for Ex. 4.2

Figure 3 Natural logarithm errors for Ex. 4.3

every other method diverge, our method still converges to the exact solution. Let

A =

⎡

⎢⎢⎢
⎢⎢
⎢⎢
⎢
⎣

1 5 8 4 8 5
5 2 7 7 6 5
8 7 9 8 6 4
4 7 8 6 7 1
8 6 6 7 2 0
5 5 4 1 0 2

⎤

⎥⎥⎥
⎥⎥
⎥⎥
⎥
⎦

, b =

⎡

⎢⎢⎢
⎢⎢
⎢⎢
⎢
⎣

–6
–3

–13
9

–4
–30

⎤

⎥⎥⎥
⎥⎥
⎥⎥
⎥
⎦

, x(0) = 10–6

⎡

⎢⎢⎢
⎢⎢
⎢⎢
⎢
⎣

1
–1
1

–1
1

–1

⎤

⎥⎥⎥
⎥⎥
⎥⎥
⎥
⎦

.

As we can see from Fig. 3, the natural logarithm errors log‖x(k) – x∗‖F for Jacobi, GS,
SOR, ESOR, AOR, and JOR diverge, whereas those for our method continue to converge

Kittisopaporn and Chansangiam Advances in Difference Equations (2020) 2020:259 Page 12 of 17

to 0. As a result, the approximated solutions from Algorithm 2.1 converge to the exact
solution

x∗ =
[
–1 –3 0 2 4 –6

]T

with six decimals accuracy using 14,612 iterations and CT = 0.3627.

Example 4.4 In this example, we consider a rectangular linear system where its coefficient
matrix is of full column rank. We compare Algorithm 2.1 with GI, LS, and BB algorithms.
Let

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 3 –2 9 0 4 3 –9
2 –3 1 0 8 4 –1 6
3 4 5 1 0 0 7 –8

–4 1 3 5 9 4 –1 –2
–9 8 3 0 –5 4 1 –3
4 1 1 5 8 –5 4 9

11 3 5 7 –7 3 5 2
–4 3 1 0 –1 2 7 5
2 1 3 5 7 12 –9 –3
1 2 3 –4 1 0 5 7

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

, b =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

34
52
35
33

–98
15
28

–67
93

–26

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

, x(0) = 10–6

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

1
–1
1

–1
1

–1
1

–1

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

.

The exact solution of the system Ax = b is given by

x∗ =
[
7 –4 1 0 5 2 –1 –4

]T
.

The results of running 100 iterations are provided in Fig. 4 and Table 4. Both show that
Algorithm 2.1 outperforms the GI and LS algorithms. On the other hand, both types 1
and 2 of the BB algorithm of are comparable with ours. The BB algorithm gives a better
iteration time; however, our algorithm gives a better computation time.

Figure 4 Errors for Ex. 4.4

Kittisopaporn and Chansangiam Advances in Difference Equations (2020) 2020:259 Page 13 of 17

Table 4 Error & CT for Ex. 4.4

Method Error CT

TauOpt 0.0016 6.4740e-04
GI 8.3179 0.0063
LS 0.8852 0.0140
BB1 6.4026e-09 0.0072
BB2 4.2386e-09 0.0027

Table 5 Error & CT for Ex. 4.5

Method Error CT

TauOpt 6.9368 0.2359
GI 4.7083e+03 0.1328
LS 1.5904e+03 0.6062

Figure 5 Relative errors for Ex. 4.5

Example 4.5 For this example, we use the sparse 100 × 100 matrix

A = M + 2rN +
100

(n + 1)2 I,

where M = tridiag(–1, 2, –1), N = tridiag(0.5, 0, –0.5), r = 0.01, and n = 16 as in [36]. We
choose an initial vector x(0) = [xi] ∈ R

100, where xi = 10–6 for all i = 1, . . . , 100. We take
a random vector b ∈ R

100 with every element in [–100, 100]. Since the exact solution is
not yet known, it is appropriate to consider the relative error ‖b – Ax(k)‖F . The numeri-
cal results after 500 iterations in comparing our algorithm with GI and LS algorithm are
shown in Table 5 and Fig. 5. They reveal that our algorithm performs better than GI and
LS methods.

5 Application to one-dimensional Poisson’s equation
We now discuss an application of the proposed algorithm to a sparse linear system arising
from the one-dimensional Poisson equation

–u′′ = f . (20)

Kittisopaporn and Chansangiam Advances in Difference Equations (2020) 2020:259 Page 14 of 17

Here u : (α,β) → R is an unknown function to be approximated, and f : (α,β) → R is
a given function. The function u must satisfy the Dirichlet boundary conditions u(α) =
u(β) = 0. We discretize the problem to solve an approximate solution at N partitioned
points xi between α and β : xi = α + ih, where h = (β – α)/(N + 1) and 0 ≤ i ≤ N + 1. We
denote ui = u(xi) and fi = f (xi). By the centered 2nd-order finite difference approximation
we obtain

–
ui–1 – 2ui + ui+1

h2 = f (xi), i = 1, . . . , N .

Now we can put it into a linear system TN u = h2f , where u = [u1 u2 . . . uN] is an unknown
vector, and the coefficient matrix TN = tridiag(–1, 2, –1) ∈ MN (R) is a tridiagonal matrix.
Now the proposed algorithm for this sparse linear system is presented as follows.

Algorithm 5.1 The steepest descent of gradient-based iterative algorithm for solving one-
dimensional Poisson’s equation.

Input step: Input N ∈N as a number of partition.
Initializing step: Let h = (β – α)/(N + 1). For each i = 1, . . . , N , set x(i) = α + ih and

f (i) = f (x(i)). Compute g = h2f , s = TN g , S = T2
N , t = TN s, and T = TN S, where TN =

tridiag(–1, 2, –1) ∈ MN (R). Choose an initial vector u(0) ∈R
N and set k := 0.

Updating step:
τk+1 =

∑N
i=1(si –

∑N
j=1 Sijuj(k))2/

∑N
i=1(ti –

∑N
j=1 Tijuj(k))2,

u(k + 1) = u(k) + τk+1(s – Su(k)).
Set k := k + 1 and repeat the updating step.

Here the stopping criteria is ‖g – TN u(k)‖F < ε, where ε is a small positive number. Since
the coefficient matrix TN is a sparse matrix, the error norm can be described more pre-
cisely:

∥∥g – TN u(k)
∥∥2

F = ‖g‖2
F – 2 tr

(
gT TN u(k)

)
+

∥∥TN u(k)
∥∥2

F

= ‖g‖2
F – h2

(

2
N∑

i=1

ui(k)fi –
N–1∑

i=1

ui(k)fi+1 – fiui+1(k)

)

+ 5u2
1(k) + 5u2

N (k) + 6
N–1∑

i=2

u2
i (k) – 8

N–1∑

i=1

ui(k)ui+1(k)

+ 2
N–2∑

i=1

ui(k)ui+2(k).

The eigenvalues of TN are given by λj = 2(1 – cos jπ
N+1) for j = 1, . . . , N ; see, for example, [1].

The smallest eigenvalues of TN can be approximated by the second-order Taylor approx-
imation:

λ1 = 2
(

1 – cos
π

N + 1

)
≈

(
π

N + 1

)2

.

Kittisopaporn and Chansangiam Advances in Difference Equations (2020) 2020:259 Page 15 of 17

Figure 6 The analytical solution (left) and the numerical solution (right) for Ex. 5.3

Thus TN is positive definite with condition number

κ =
λN

λ1
=

1 – cos Nπ
N+1

1 – cos π
N+1

≈ 4
π2 (N + 1)2 for large N . (21)

Now, according to Remark 3.7, the convergence analysis of Algorithm 5.1 can be de-
scribed as follows.

Corollary 5.2 The discretization TN u = h2f of the Poisson equation (20) can be solved
using Algorithm 5.1 so that the approximated solution u(k) converges to the exact solution
u∗ for any initial vector u(0). The asymptotic convergence rate of the algorithm is governed
by

√
1 – κ–2, where κ is given by (21).

Thus the convergence rate of the algorithm depends on the number N of partition.

Example 5.3 We consider an application of our algorithm to the one-dimensional Poisson
equation (20) with

f (x) =
(
x2 – 2

)
sin x – 4x cos x, 0 < x < π ,

and u = 0 on the boundary of [0,π]. We choose an initial vector u(0) = 2×ones, where ones

is the matrix that contains 1 at every position. We run Algorithm 5.1 with 8 partitioned
points, so that the size of the matrix TN is 64 × 64. The analytical solution is

u∗(x) = x2 sin x.

Figure 6 shows the result of our algorithm (right) compared to the analytical solution (left)
after running 1000 iterations with CT = 0.0112 seconds.

6 Conclusion
A new algorithm, the steepest descent of gradient-based iterative algorithm, is proposed
for solving rectangular linear systems. The algorithm is applicable for any rectangular

Kittisopaporn and Chansangiam Advances in Difference Equations (2020) 2020:259 Page 16 of 17

linear systems and any initial points without any conditions, but the coefficient matrix
is of full column rank. We use an optimization technique to obtain a new formula for a
convergence factor, so that it excellently enhances the algorithm in performance of con-
vergence. The asymptotic rate of convergence is governed by

√
1 – κ–2, where κ is the

condition number of the coefficient matrix. The numerical simulations in Sect. 4 illus-
trate the applicability and efficiency of the algorithm compared to all other algorithms
mentioned in this paper. The iteration number and the CT indicate that our algorithm is
a good choice for solving linear systems. Moreover, the sparse linear system arising from
the one-dimensional Poisson equation can be solved efficiently using this algorithm. In our
opinion, the techniques of gradients, steepest descent, and convex optimization might be
useful for a class of matrix equations such as Lyapunov equation, Sylvester equation, and
so on. However, these topics require more studies and can be another further research.

Acknowledgements
This work was supported by Thailand Science Research and Innovation (Thailand Research Fund).

Funding
This second author expresses his gratitude to Thailand Science Research and Innovation (Thailand Research Fund), Grant
No. MRG6280040, for financial supports.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Both authors contributed equally and significantly in writing this article. Both authors read and approved the final
manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 26 February 2020 Accepted: 21 May 2020

References
1. James, W.D.: Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia (1997)
2. Young, D.M.: Iterative Solution of Large Linear Systems. Academic Press, New York (1971)
3. Albrechtt, P., Klein, M.P.: Extrapolated iterative methods for linear systems. SIAM J. Numer. Anal. 21(1), 192–201 (1984)
4. Hallett, A.J.H.: The convergence of accelerated overrelaxation iterations. Math. Comput. 47(175), 219–223 (1986).

https://doi.org/10.2307/2008090
5. Ding, F., Chen, T.: Gradient based iterative algorithms for solving a class of matrix equations. IEEE Trans. Autom.

Control 50(8), 1216–1221 (2005). https://doi.org/10.1109/TAC.2005.852558
6. Ding, F., Chen, T.: Hierarchical gradient-based identification of multivariable discrete-time systems. Automatica 41(2),

315–325 (2005). https://doi.org/10.1016/j.automatica.2004.10.010
7. Ding, F., Chen, T.: Hierarchical least squares identification methods for multivariable systems. IEEE Trans. Autom.

Control 50(3), 397–402 (2005). https://doi.org/10.1109/TAC.2005.843856
8. Ding, F., Liu, P.X., Ding, J.: Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical

identification principle. Appl. Math. Comput. 197(1), 41–50 (2008). https://doi.org/10.1016/j.amc.2007.07.040
9. Niu, Q., Wang, X., Lu, L.Z.: A relaxed gradient based algorithm for solving Sylvester equation. Asian J. Control 13(3),

461–464 (2011). https://doi.org/10.1002/asjc.328
10. Wang, X., Dai, L., Liao, D.: A modified gradient based algorithm for solving Sylvester equation. Appl. Math. Comput.

218(9), 5620–5628 (2012). https://doi.org/10.1016/j.amc.2011.11.055
11. Xie, Y., Ma, C.F.: The accelerated gradient based iterative algorithm for solving a class of generalized

Sylvester-transpose matrix equation. Appl. Math. Comput. 273(15), 1257–1269 (2016).
https://doi.org/10.1016/j.amc.2015.07.022

12. Zhang, X., Sheng, X.: The relaxed gradient based iterative algorithm for the symmetric (skew symmetric) solution of
the Sylvester equation AX + XB = C . Math. Probl. Eng. 2017, Article ID 1624969 (2017).
https://doi.org/10.1155/2017/1624969

13. Sheng, X., Sun, W.: The relaxed gradient based iterative algorithm for solving matrix equations. Comput. Math. Appl.
74(3), 597–604 (2017). https://doi.org/10.1016/j.camwa.2017.05.008

14. Sheng, X.: A relaxed gradient based algorithm for solving generalized coupled Sylvester matrix equations. J. Franklin
Inst. 355(10), 4282–4297 (2018). https://doi.org/10.1016/j.jfranklin.2018.04.008

https://doi.org/10.2307/2008090
https://doi.org/10.1109/TAC.2005.852558
https://doi.org/10.1016/j.automatica.2004.10.010
https://doi.org/10.1109/TAC.2005.843856
https://doi.org/10.1016/j.amc.2007.07.040
https://doi.org/10.1002/asjc.328
https://doi.org/10.1016/j.amc.2011.11.055
https://doi.org/10.1016/j.amc.2015.07.022
https://doi.org/10.1155/2017/1624969
https://doi.org/10.1016/j.camwa.2017.05.008
https://doi.org/10.1016/j.jfranklin.2018.04.008

Kittisopaporn and Chansangiam Advances in Difference Equations (2020) 2020:259 Page 17 of 17

15. Li, M., Liu, X., Ding, F.: The gradient based iterative estimation algorithms for bilinear systems with autoregressive
noise. Circuits Syst. Signal Process. 36(11), 4541–4568 (2017). https://doi.org/10.1007/s00034-017-0527-4

16. Sun, M., Wang, Y., Liu, J.: Two modified least-squares iterative algorithms for the Lyapunov matrix equations. Adv.
Differ. Equ. 2019(1), Article ID 305 (2019). https://doi.org/10.1186/s13662-019-2253-7

17. Zhu, M.Z., Zhang, G.F., Qi, Y.E.: On single-step HSS iterative method with circulant preconditioner for fractional
diffusion equations. Adv. Differ. Equ. 2019(1), Article ID 422 (2019). https://doi.org/10.1186/s13662-019-2353-4

18. Zhang, H.M., Ding, F.: A property of the eigenvalues of the symmetric positive definite matrix and the iterative
algorithm for coupled Sylvester matrix equations. J. Franklin Inst. 351(1), 340–357 (2014).
https://doi.org/10.1016/j.jfranklin.2013.08.023

19. Zhang, H.M., Ding, F.: Iterative algorithms for X + ATX–1A = I by using the hierarchical identification principle.
J. Franklin Inst. 353(5), 1132–1146 (2016). https://doi.org/10.1016/j.jfranklin.2015.04.003

20. Ding, F., Zhang, H.: Brief paper – Gradient-based iterative algorithm for a class of the coupled matrix equations related
to control systems. IET Control Theory Appl. 8(15), 1588–1595 (2014). https://doi.org/10.1049/iet-cta.2013.1044

21. Xie, L., Ding, J., Ding, F.: Gradient based iterative solutions for general linear matrix equations. Comput. Math. Appl.
58(7), 1441–1448 (2009). https://doi.org/10.1016/j.camwa.2009.06.047

22. Xie, L., Liu, Y.J., Yang, H.Z.: Gradient based and least squares based iterative algorithms for matrix equations
AXB + CXTD = F. Appl. Math. Comput. 217(5), 2191–2199 (2010). https://doi.org/10.1016/j.amc.2010.07.019

23. Ding, F., Lv, L., Pan, J., et al.: Two-stage gradient-based iterative estimation methods for controlled autoregressive
systems using the measurement data. Int. J. Control. Autom. Syst. 18, 886–896 (2020).
https://doi.org/10.1007/s12555-019-0140-3

24. Ding, F., Xu, L., Meng, D., et al.: Gradient estimation algorithms for the parameter identification of bilinear systems
using the auxiliary model. J. Comput. Appl. Math. 369, Article ID 112575 (2020).
https://doi.org/10.1016/j.cam.2019.112575

25. Ding, F., Chen, T.: Iterative least-squares solutions of coupled Sylvester matrix equations. Syst. Control Lett. 54(2),
95–107 (2005). https://doi.org/10.1016/j.sysconle.2004.06.008

26. Ding, F., Chen, T.: On iterative solutions of general coupled matrix equations. SIAM J. Control Optim. 44(6), 2269–2284
(2006). https://doi.org/10.1137/S0363012904441350

27. Edwin, K.P.C., Stanislaw, H.Z.: An Introduction to Optimization, 2nd edn. Wiley-Interscience, New York (2001)
28. Barzilai, J., Borwein, J.: Two point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148 (1988).

https://doi.org/10.1093/imanum/8.1.141
29. Yuan, Y.X.: Step-sizes for the gradient method. AMS/IP Stud. Adv. Math. 42, 785–797 (2008)
30. Dai, Y.H., Yuan, J.Y., Yuan, Y.: Modified two-point step-size gradient methods for unconstrained optimization. Comput.

Optim. Appl. 22, 103–109 (2002). https://doi.org/10.1023/A:1014838419611
31. Dai, Y.H., Fletcher, R.: On the asymptotic behaviour of some new gradient methods. Numerical analysis report

NA/212, Department of Mathematics, University of Dundee, Scotland, UK (2003)
32. Dai, Y.H., Yuan, Y.: Analysis of monotone gradient methods. J. Ind. Manag. Optim. 1(2), 181–192 (2005).

https://doi.org/10.3934/jimo.2005.1.181
33. Fletcher, R.: On the Brazilar–Borwein method. Research report, University of Dundee, Scotland, UK (2001)
34. Yuan, Y.: A new stepsize for the steepest descent method. Research report, Institute of Computional Mathematics

and Scientific/Engineering Computing, Chinese Academy of Sciences, China (2004)
35. Stephen, P.B., Lieven, V.: Convex Optimization. Cambridge University Press, Cambridge (2004)
36. Zhong, Z.B.: On Hermitian and skew-Hermitian spliting iteration methods for continuous Sylvester equations.

J. Comput. Math. 29(2), 185–198 (2011). https://doi.org/10.4208/jcm.1009-m3152

https://doi.org/10.1007/s00034-017-0527-4
https://doi.org/10.1186/s13662-019-2253-7
https://doi.org/10.1186/s13662-019-2353-4
https://doi.org/10.1016/j.jfranklin.2013.08.023
https://doi.org/10.1016/j.jfranklin.2015.04.003
https://doi.org/10.1049/iet-cta.2013.1044
https://doi.org/10.1016/j.camwa.2009.06.047
https://doi.org/10.1016/j.amc.2010.07.019
https://doi.org/10.1007/s12555-019-0140-3
https://doi.org/10.1016/j.cam.2019.112575
https://doi.org/10.1016/j.sysconle.2004.06.008
https://doi.org/10.1137/S0363012904441350
https://doi.org/10.1093/imanum/8.1.141
https://doi.org/10.1023/A:1014838419611
https://doi.org/10.3934/jimo.2005.1.181
https://doi.org/10.4208/jcm.1009-m3152

	The steepest descent of gradient-based iterative method for solving rectangular linear systems with an application to Poisson's equation
	Abstract
	MSC
	Keywords

	Introduction
	Proposing the algorithm
	Convergence analysis
	Convergence of the algorithm
	Convergence rate and error estimates

	Numerical simulations for linear systems
	Application to one-dimensional Poisson's equation
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References

