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Abstract
A generalized Nicholson blowfies system with patch structure is studied. Some
existence and asymptotic stability results of the positive periodic solution to the
considered system are obtained by coincidence degree theory and some analysis
techniques. Finally, two examples are given to show the effectiveness of the results in
the present paper.
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1 Introduction
In 1980, Gurney et al. [1] studied the delayed Nicholson blowflies equation

x′(t) = Px(t – τ )e–αx(t–τ ) – γ x(t), (1.1)

where x(t) represents the population of mature adults at time t, 1
α

denotes the population
size at which the complete population reproduces at its maximum rate, P denotes the max-
imum possible per capita egg production rate, τ > 0 is a delay term, γ > 0 is the mortality
rate. Consider the different practical conditions, model (1.1) is generalized to more general
models. Berezansky et al. [2] considered a more general Nicholson blowflies equation with
distributed delays and periodic coefficients and obtained rich dynamic properties includ-
ing oscillation, permanence, local and global stability of solutions for the above models.
Shu, Wang and Wu [3] changed Nicholson’s blowflies equation with natural death rate in-
corporated into the delay feedback case and regarded the delay as a bifurcation parameter
and checked termination and the onset of Hopf bifurcations of periodic solutions coming
from a positive solution. In very recent years, the stability of Nicholson’s blowfies equation
with two different delays was investigated by the authors in [4].

On the other hand, the existence and stability of positive periodic solutions of population
dynamic systems belong to the important issues in differential dynamic systems. Wang [5]
studied a new fishery equation with a nonlinear mortality term, which is a generalization
of the classical Nicholson blowflies equation. By the use of topology degree theory, some
sufficient conditions are obtained to guarantee the existence of positive periodic solutions
of the considered model. Chen [6] studied a class of new Nicholson’s blowflies equations
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with delays and periodic coefficients. Based on coincidence degree theory, the authors
obtained some sufficient conditions for the existence of positive periodic solutions to the
considered model. Li and Du [7] obtained the existence of positive periodic solutions for
a Nicholson blowflies model with multiple delays by using the Krasnoselskii cone fixed
point theorem. Chen and Liu [8] obtained the existence and dynamic properties of posi-
tive almost periodic solutions for the generalized Nicholson blowflies equation with mul-
tiple delays and derived some conditions to ensure that the solutions of the considered
model converge locally exponentially to a unique equilibrium point. For more on periodic
solutions of the differential system, see [9, 10].

Motivated by the above discussion, in the present paper, by the introduction of dis-
tinctive maturation and feedback delays, we study the generalized structure Nicholson
blowflies system with multiple time-varying delays which can be described as follows:

x′
i(t) = –aii(t) + bii(t)e–xi(t) +

n∑

j=1,j �=i

(
aij(t) – bij(t)e–xj(t))

+
m∑

j=1

αij(t)xi
(
t – τij(t)

)
e–βij(t)xi(t–γij(t)), (1.2)

where i ∈ I = {1, 2, . . . , n}, j ∈ J = {1, 2, . . . , m}, aij(t), bij(t), βij(t), τij(t) and γij(t) are all posi-
tive T-periodic continuous functions and αij(t) ≤ 0 is for T-periodic continuous functions
for any t ∈R, i ∈ I , j ∈ J . The ith path aii(t) + bii(t)e–xi(t) is the nonlinear density-dependent
mortality term; the time-dependent birth function αij(t)xi(t – τij(t))e–βij(t)xi(t–γij(t)) contains
two types of delays: maturation delays τij(t) and feedback delays γij(t); the weight function
aij(t) – bij(t)e–xj(t) describes the population cooperative connection in ith patch and jth
patch.

Remark 1.1 Recalling the research of Nicholson’s blowfies systems, when τij(t) = γij(t) for
t ∈ R, i ∈ I , j ∈ J in (1.2), we find that a great deal of research has been done; see e.g. [11–
15]. Few results for dynamic properties of system (1.2) have been derived. We only find
that some stability results for the case n = 1 in (1.2) are obtained in [16]. In this paper, we
will continue to study the properties of positive periodic solution to system (1.2).

Throughout this paper, let

f – = inf
t∈R

f (t), f + = sup
t∈R

f (t).

Lemma 1.1 ([17]) Suppose that X and Y are two Banach spaces, and L : D(L) ⊂ X → Y ,
is a Fredholm operator with index zero. Furthermore, Ω ⊂ X is an open bounded set and
N : Ω̄ → Y is L-compact on Ω̄ . if all the following conditions hold:

(1) Lx �= λNx, ∀x ∈ ∂Ω ∩ D(L), ∀λ ∈ (0, 1),
(2) Nx /∈ Im L, ∀x ∈ ∂Ω ∩ Ker L,
(3) deg{JQN ,Ω ∩ Ker L, 0} �= 0,

where J : Im Q → Ker L is an isomorphism. Then the equation Lx = Nx has a solution on
Ω̄ ∩ D(L).
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We organize the following sections as follows: Sect. 2 gives existence of positive periodic
solutions for system (1.2). In Sect. 3, we give some sufficient conditions for the asymptotic
behaviors of positive periodic solutions to system (1.2). In Sect. 4, two numerical examples
are given to show the feasibility of our results. Finally, some conclusions and discussions
are given for system (1.2).

2 Existence of positive periodic solutions for system (1.2)
Theorem 2.1 Suppose that the following conditions hold:

(H1) 1
b–

ii (a+
ii+

∑n
j=1,j �=i b+

ij +
∑m

j=1 |αij|+) > 1, i ∈ I , j ∈ J ;

(H2) b+
ii

a–
ii–

∑n
j=1,j �=i a+

ij
> 1, i ∈ I , j ∈ J .

Then system (2.1) has at least one T-periodic solution, i.e., system (1.2) has at least one
positive T-periodic solution.

Proof Let xi(t) = eyi(t), i ∈ I , t ∈ R, then the positive T-periodic solution of system (1.2) is
equivalent to the T-periodic solution of the following system:

y′
i(t) = –

aii(t)
eyi(t) +

bii(t)
eyi(t)+eyi(t) +

n∑

j=1,j �=i

(
aij(t)
eyi(t) –

bij(t)

eyi(t)+eyj(t)

)

+
m∑

j=1

αij(t)
exi(t–τij(t))

eyi(t)+βij(t)eyi(t–γij(t)) . (2.1)

Let

CT =
{

x =
(
x1(t), . . . , xn(t)

)
|x ∈ C
(
R,Rn), x(t + T) ≡ x(t),∀t ∈R

}

with the norm

‖x‖ = max
t∈[0,T]

∣∣xi(t)
∣∣, ∀x ∈ CT , i ∈ I.

Let X = Y = CT . Define a linear operator

L : D(L) ⊂ X → Y , (Ly)(t) = y′(t), ∀t ∈R, (2.2)

where

(Ly)(t) =
(
y′

1(t), . . . , y′
n(t)

)
.

Obviously, Ker L = R
n, Im L = {y ∈ Y | ∫ T

0 y(s) ds = 0}, Im L is a closed set in X and
dimKer L = codimIm L = n. Hence L is a Fredholm operator with index zero. Define a non-
linear operator N by

N : X → Y , (Ny)(t) =
(
(Ny)1(t), . . . , (Ny)n(t)

)
, ∀t ∈R,

(Ny)i(t) = –
aii(t)
eyi(t) +

bii(t)
eyi(t)+eyi(t) +

n∑

j=1,j �=i

(
aij(t)
eyi(t) –

bij(t)

eyi(t)+eyj(t)

)

+
m∑

j=1

αij(t)
eyi(t–τij(t))

eyi(t)+βij(t)eyi(t–γij(t)) .

(2.3)
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Define continuous projectors P , Q

P : X → Ker L, (Px)(t) =
1
T

∫ T

0
x(t) dt

and

Q : X → X/ Im L, Qy =
1
T

∫ T

0
y(t) dt.

Hence

ImP = Ker L, KerQ = Im L.

Let

LP = L|D(L)∩KerP : D(L) ∩ KerP → Im L,

then

L–1
P = KP : Im L → D(L) ∩ KerP .

From Im L ⊂ CT , then KP is an embedding operator and KP is a complete operator in Im L.
In view of the definitions of projector Q and nonlinear operator N , it follows that QN(Ω̄)
is bounded on Ω̄ , where Ω is a bounded open set on X. Hence the nonlinear operator N
is L-compact on Ω .

Consider the following operator equation:

Ly = λNy, λ ∈ (0, 1), (2.4)

i.e.,

(Ly)i = λ(Ny)i, λ ∈ (0, 1), i ∈ I, (2.5)

where L and N are defined by (2.2) and (2.3), respectively. Let y ∈ X be an arbitrary T-
periodic solution of (2.4), then, by (2.5),

y′
i(t) = –λ

aii(t)
eyi(t) + λ

bii(t)
eyi(t)+eyi(t) + λ

n∑

j=1,j �=i

(
aij(t)
eyi(t) –

bij(t)

eyi(t)+eyj(t)

)

+ λ

m∑

j=1

αij(t)
eyi(t–τij(t))

eyi(t)+βij(t)eyi(t–γij(t)) . (2.6)

For such a solution yi(t) (i ∈ I) in (2.6), there are ξ ∈ [0, T] and η ∈ [0, T] such that

yi(ξ ) = min
t∈[0,T]

yi(t), yi(η) = max
t∈[0,T]

yi(t), (2.7)

and

y′
i(ξ ) = y′

i(η) = 0. (2.8)
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From (2.6)–(2.8), we have

0 = –
aii(ξ )
eyi(ξ ) +

bii(ξ )
eyi(ξ )+eyi(ξ ) +

n∑

j=1,j �=i

(
aij(ξ )
eyi(ξ ) –

bij(ξ )

eyi(ξ )+eyj(ξ )

)

+
m∑

j=1

αij(ξ )
eyi(ξ–τij(ξ ))

eyi(ξ )+βij(ξ )eyi(ξ–γij(ξ )) (2.9)

and

0 = –
aii(η)
eyi(η) +

bii(η)
eyi(η)+eyi(η) +

n∑

j=1,j �=i

(
aij(η)
eyi(η) –

bij(η)

eyi(η)+eyj(η)

)

+
m∑

j=1

αij(η)
eyi(η–τij(η))

eyi(η)+βij(η)eyi(η–γij(η)) . (2.10)

By (2.9), we get

aii(ξ ) =
bii(ξ )
eeyi(ξ ) +

n∑

j=1,j �=i

(
aij(ξ ) –

bij(ξ )

eeyj(ξ )

)

+
m∑

j=1

αij(ξ )
eyi(ξ–τij(ξ ))

eβij(ξ )eyi(ξ–γij(ξ ))

≥ b–
ii

eeyi(ξ ) –
n∑

j=1,j �=i

b+
ij –

m∑

j=1

|αij|+. (2.11)

In view of (2.11) and assumption (H1), we have

yi(ξ ) ≥ ln

(
ln

1
b–

ii(a+
ii +

∑n
j=1,j �=i b+

ij +
∑m

j=1 |αij|+)

)
:= M1,i. (2.12)

By (2.10), we get

aii(η) =
bii(η)
eeyi(η) +

n∑

j=1,j �=i

(
aij(η) –

bij(η)

eeyj(η)

)

+
m∑

j=1

αij(η)
eyi(η–τij(η))

eβij(η)eyi(η–γij(η))

≤ b+
ii

eeyi(η) +
n∑

j=1,j �=i

a+
ij . (2.13)

In view of (2.13) and assumption (H2), we have

yi(η) ≤ ln

(
ln

b+
ii

a–
ii –

∑n
j=1,j �=i a+

ij)

)
:= M2,i. (2.14)
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Thus,

‖y‖ = max
{|M1,i|, |M2,i|, i ∈ I

}
:= M.

Take Ω = {y ∈ X : ‖y‖ ≤ M + 1}. Based on the above proof, the condition (1) of Lemma 1.1
holds. For y ∈ ∂Ω ∩ Ker L, then y is a constant vector in R

n. For i ∈ I there exists i such
that |yi| = M and |yj| < M (j �= i). We claim that

QNi(–M) > 0 and QNi(M) < 0 for i ∈ I. (2.15)

Otherwise, if QNi(–M) ≤ 0 (i ∈ I), then, by (2.3) and the definition of Q, we have

QNi(–M) =
1
T

∫ T

0

[
–

aii(t)
e–M +

bii(t)
e–M+e–M +

n∑

j=1,j �=i

(
aij(t)
e–M –

bij(t)
e–M+e–M

)

+
m∑

j=1

αij(t)
e–M

e–M+βij(t)e–M

]
dt

≤ 0. (2.16)

By (2.12) and (2.16), we have

–M > ln

(
ln

1
b–

ii(a+
ii +

∑n
j=1,j �=i b+

ij +
∑m

j |αij|+)

)
= M1,i, i ∈ I,

which is a contradiction to the definition of M. if QNi(M) ≥ 0 (i ∈ I), then, by (2.3) and the
definition of Q, we have

QNi(M) =
1
T

∫ T

0

[
–

aii(t)
eM +

bii(t)
eM+eM +

n∑

j=1,j �=i

(
aij(t)
eM –

bij(t)
eM+eM

)

+
m∑

j=1

αij(t)
eM

e–M+βij(t)eM

]
dt

≥ 0. (2.17)

By (2.14) and (2.17), we have

M < ln

(
ln

b+
ii

a–
ii –

∑n
j=1,j �=i a+

ij

)
:= M2,i, i ∈ I,

which is a contradiction to the definition of M. Thus the condition (2) of Lemma 1.1 is
satisfied. It remains to verify the condition (3) of Lemma 1.1. In order to prove it, define
the continuous function H(yi,μi) (i ∈ I) as follows:

H(yi,μi) = –(1 – μi)yi +
μ

T

∫ T

0

[
–

aii(t)
eyi

+
bii(t)
eyi+eyi +

n∑

j=1,j �=i

(
aij(t)

eyi
–

bij(t)
eyi+eyi

)

+
m∑

j=1

αij(t)
eyi

eyi+βij(t)eyi

]
dt, μ ∈ [0, 1].
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By (2.15), for yi ∈ ∂Ω ∩ Ker L and μi ∈ [0, 1], we have yiH(yi,μi) �= 0 (i ∈ I). Using the
homotopy invariance theorem, we have

deg{QN ,Ω ∩ Ker L, 0} = deg
{

H(·, 0),Ω ∩ Ker L, 0
}

= deg
{

H(·, 1),Ω ∩ Ker L, 0
}

= deg{–yi,Ω ∩ Ker L, 0}
�= 0.

Therefore, by the use of Lemma 1.1, it is easy to see that the system (2.1) has at least one
T-periodic solution, i.e., system (1.2) has at least one positive T-periodic solution. �

3 Globally asymptotic stability of positive periodic solutions
Definition 3.1 If x∗(t) = (x∗

1(t), x∗
2(t), . . . , x∗

n(t))
 is a periodic solution of system (1.2) and
x(t) = (x1(t), x2(t), . . . , xn(t))
 is any solution of system (1.2) satisfying

lim
t→+∞

n∑

i=1

∣∣xi(t) – x∗
i (t)

∣∣ = 0.

Then x∗(t) is globally asymptotic stable.

By the theory of Hale [18] for functional differential equations, consider the following
system with initial condition:

⎧
⎪⎪⎨

⎪⎪⎩

x′
i(t) = –aii(t) + bii(t)e–xi(t) +

∑n
j=1,j �=i(aij(t) – bij(t)e–xj(t))

+
∑m

j=1 αij(t)xi(t – τij(t))e–βij(t)xi(t–γij(t)),

xi(t) = φi(t), t ∈ [–τ , 0], i ∈ I,

(3.1)

where τ = max{τij(t),γij(t), i ∈ I, j ∈ J}, φi(t) ∈ C([–τ , 0],R). Let

fi(t,φi) = –aii(t) + bii(t)e–φi(·) +
n∑

j=1,j �=i

(
aij(t) – bij(t)e–φj(·))

+
m∑

j=1

αij(t)φi(·)e–βij(t)φi(·), i ∈ I.

From Theorem 2.3 in [18], if fi(t,φi) (i ∈ I) is Lipschitzian for φi in C([–τ , 0],R), then for
system (3.1) there exists a unique solution. In this section, fi(t,φi) (i ∈ I) always satisfies
Lipschitz condition. For convenience of the proof, in this section we also assume that x∗ = 0
is unique solution of system (3.1).

Theorem 3.1 Under conditions of Theorem 2.1, assume further that
(H3) a–

ii – b–
ii
∑n

j=1,j �=i a+
ij > 0 for i ∈ I , j ∈ J .

Then system (3.1) has a unique T-periodic solution x∗(t) = 0 which is globally asymptotic
stable.
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Proof Suppose that x(t) be any positive T-periodic solution of system (3.1). Let

Vi(t) =
1
2

x2
i (t), i ∈ I.

Use the xi(t) > 0 and αij(t) ≤ 0 for i ∈ I , j ∈ J , derivation of it along the solution of system
(3.1) and one obtains

V ′
i (t) = –aii(t)xi(t) + bii(t)xi(t)e–xi(t) + xi(t)

n∑

j=1,j �=i

(
aij(t) – bij(t)e–xj(t))

+ xi(t)
m∑

j=1

αij(t)xi
(
t – τij(t)

)
e–βij(t)xi(t–γij(t))

≤ –

(
a–

ii – b–
ii

n∑

j=1,j �=i

a+
ij

)
xi(t).

Take the Lyapunov functional for system (3.1) in the following form:

V (t) =
n∑

i=1

Vi(t).

Use assumption (H3), taking the derivation of it along the solution of system (3.1) one
obtains

V ′(t) ≤ –
n∑

i=1

(
a–

ii – b–
ii

n∑

j=1,j �=i

a+
ij

)
xi(t) < 0.

For sufficiently large positive constant t0, integrating both sides of the above inequality
from t0 to +∞, we get

V (t) +
∫ ∞

t0

n∑

i=1

(
a–

ii – b–
ii

n∑

j=1,j �=i

a+
ij

)
xi(t) dt ≤ V (0). (3.2)

It follows by (3.2) and Barbalat’s lemma [19] that

lim
t→+∞

n∑

i=1

xi(t) = 0.

Then the solution x∗ = 0 of system (3.1) is globally asymptotic stable. �

Remark 3.1 From the proof of Theorem 3.1, it is easy to see that constructing a Lyapunov
functional for system (3.1) is not difficult because of xi(t) > 0 (i ∈ I). If xi(t) is a variable sign
solution of system (3.1), since system (3.1) contains e exponential functions, constructing
a proper Lyapunov functional for system (3.1) becomes very difficult. By developing a new
technique, we hope to study the stability of the general solution of the system (3.1) in the
future.
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4 Two numerical examples
This section gives two examples for system (1.2) that demonstrate the validity of our the-
oretical results.

Example 4.1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1(t) = –(4 + sin t) + 2+sin t

40 e–x1(t) + 117–cos 2t
40 – 2–cos 2t

20 e–x2(t)

+ (–2 + sin2 t)x1(t – sin2 π t
2 )e–(2+sin2 t)x1(t–sin2 π t

2 )

+ (–2 + cos2 t)x1(t – cos2 π t
2 )e–(2+cos2 t)x1(t–cos2 π t

2 ),

x′
2(t) = –( 1

60 + 1
60 cos2 t) + (2 + cos t)e–x2(t) + 2–cos2 t

20 – 2–cos2 t
20 e–x1(t)

+ (–6 + cos2 t)x2(t – sin2 π t
2 )e–(3+sin2 t)x2(t–sin2 π t

2 )

+ (–6 + cos2 t)x2(t – cos2 π t
2 )e–(3+cos2 t)x2(t–cos2 π t

2 ),

(4.1)

where

a11(t) = 4 + sin t, b11(t) =
2 + sin t

40
,

a12(t) =
117 – cos 2t

40
, b12(t) =

2 – cos 2t
20

,

α11(t) = –2 + sin2 t, τ11(t) = sin2 π t
2

,

β11(t) = 2 + sin2 t, γ11(t) = sin2 π t
2

,

α12(t) = –2 + cos2 t, τ12(t) = cos2 π t
2

,

β12(t) = 2 + cos2 t, γ12(t) = cos2 π t
2

,

a21(t) =
1

60
+

1
60

cos2 t, b21(t) = 2 + cos t,

a22(t) =
2 – cos2 t

20
, b22(t) =

2 – cos2 t
20

,

α21(t) = –6 + cos2 t, τ21(t) = sin2 π t
2

,

β21(t) = 3 + sin2 t, γ21(t) = sin2 π t
2

,

α22(t) = –6 + cos2 t, τ22(t) = cos2 π t
2

,

β22(t) = 3 + cos2 t, γ21(t) = cos2 π t
2

.

Obviously, τ = max{τij,γij, i, j = 1, 2} = 1, then for the initial values of system (4.1) one takes
xi(t) = φi(t) ∈ C([–1, 0],R), i = 1, 2. After simple calculation, we have

b–
11 =

1
40

, a+
11 = 5, b+

12 =
3

20
, |α11|+ = |α12|+ = 2,

1
b–

11(a+
11 + b+

12 + |α11|+ + |α12|+)
=

800
143

> 1,

b–
22 =

1
20

, a+
22 =

1
10

, b+
21 = 3, |α21|+ = |α22|+ = 5,
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Figure 1 State trajectories of system (4.1) for x1(t)

Figure 2 State trajectories of system (4.1) for x2(t)

1
b–

22(a+
22 + b+

21 + |α21|+ + |α22|+)
=

200
113

> 1,

a–
11 = 3, a+

12 =
118
40

, b+
11 =

3
40

,
b+

11
a–

11 – a+
12

=
3
2

> 1,

a–
22 =

1
20

, a+
21 =

1
30

, b+
22 =

1
10

,
b+

22
a–

22 – a+
21

= 6 > 1.

Hence, assumptions (H1) and (H2) of Theorem 2.1 hold and system (4.1) has at least one
periodic solution. The numerical solutions with proper initial values are shown in Fig. 1
and Fig. 2.

Example 4.2 If x(t) = 0 is a solution of system (1.2), then the coefficients of system (1.2)
satisfy the following condition:
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(H4) –aii(t) + bii(t) +
∑n

j=1,j �=i(aij(t) – bij) = 0, i ∈ I , j ∈ J .
Consider the following example:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1(t) = –(4 + sin t) + (4 + sin t)e–x1(t) + 2–sin t

40 – 2–sin t
40 e–x2(t)

+ (–2 + sin2 t)x1(t – sin2 π t
2 )e–(2+sin2 t)x1(t–sin2 π t

2 )

+ (–2 + cos2 t)x1(t – cos2 π t
2 )e–(2+cos2 t)x1(t–cos2 π t

2 ),

x′
2(t) = –( 1

60 + 1
60 cos2 t) + ( 1

60 + 1
60 cos2 t)e–x2(t) + 2–cos2 t

20 – 2–cos2 t
20 e–x1(t)

+ (–6 + cos2 t)x2(t – sin2 π t
2 )e–(3+sin2 t)x2(t–sin2 π t

2 )

+ (–6 + cos2 t)x2(t – cos2 π t
2 )e–(3+cos2 t)x2(t–cos2 π t

2 ),

(4.2)

where

a11(t) = 4 + sin t, b11(t) = 4 + sin t,

a12(t) =
2 – cos 2t

20
, b12(t) =

2 – cos 2t
20

,

α11(t) = –2 + sin2 t, τ11(t) = sin2 π t
2

,

β11(t) = 2 + sin2 t, γ11(t) = sin2 π t
2

,

α12(t) = –2 + cos2 t, τ12(t) = cos2 π t
2

,

β12(t) = 2 + cos2 t, γ12(t) = cos2 π t
2

,

a21(t) =
1

60
+

1
60

cos2 t, b21(t) =
1

60
+

1
60

cos2 t,

a22(t) =
2 – cos2 t

20
, b22(t) =

2 – cos2 t
20

,

α21(t) = –6 + cos2 t, τ21(t) = sin2 π t
2

,

β21(t) = 3 + sin2 t, γ21(t) = sin2 π t
2

,

α22(t) = –6 + cos2 t, τ22(t) = cos2 π t
2

,

β22(t) = 3 + cos2 t, γ21(t) = cos2 π t
2

.

Obviously, τ = max{τij,γij, i, j = 1, 2} = 1, then for the initial value of system (4.2) one takes
xi(t) = φi(t) ∈ C([–1, 0],R), i = 1, 2. After simple calculation, assumption (H4) holds and

a–
11 = 3, b–

11 = 3, a+
12 =

3
20

, a–
11 – b–

11a+
12 =

51
20

> 0,

a–
22 =

1
20

, b–
21 =

1
60

, a+
21 =

1
30

, a–
22 – b–

21a+
21 =

89
1800

> 0.

Hence, assumption (H3) of Theorem 2.1 holds and x∗ = 0 of system (4.2) is globally asymp-
totic stable. The numerical solutions with proper initial values are shown in Fig. 3 and
Fig. 4.
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Figure 3 State trajectories of system (4.2) for x1(t)

Figure 4 State trajectories of system (4.2) for x2(t)

5 Conclusions and discussions
In the last past decades, Nicholson’s blowflies model has found successful applications in
many areas, such as population dynamics, system control theory, biomathematics, and
optimization problems. Hence, there is ongoing research interest on the dynamics of
Nicholson’s blowflies model, including the existence, stability and oscillation which have
occurred in the literature; see e.g. [1–4]. In this paper, we study a patch structure Nichol-
son blowflies model with multiple pairs of distinctive maturation and feedback delays and
obtain existence and global asymptotic stability of the positive periodic solution. Two nu-
merical examples are given to show the feasibility of our results.

The methods in this paper can be extended to the study of other types of differential dy-
namic systems such as stochastic differential equations, impulsive differential equations,
and fractional differential equations. We hope other researchers can use the method pro-
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vided in this article to do more in-depth research on various types of differential dynamic
systems.
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