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1 Introduction

One possible way that the mathematics can help the various fields of science is to become
more powerful and flexible in modeling theory so that different types of phenomena with
distinct parameters can be written in mathematical formulas. In this case, different types
of software can be developed to allow for more cost-free testing and less material con-
sumption. One of the basic methods in this way is working with fractional calculus and
investigating different mathematical modelings based on fractional operators in fractional
boundary value problems with applied boundary conditions. Nowadays, many researchers
are studying different types of integro-differential equations [1-7] or inclusions [8, 9], q-
differences [10—13], approximate solutions [14—20], the hybrid equations [21-28], and
advanced fractional modelings [29-34].

The starting point for this field was a work of Dhage and Lakshmikantham in 2010 [35].
They introduced a new category of nonlinear differential equation called ordinary hybrid
differential equation and studied the existence of extremal solutions for this boundary
value problem by establishing some fundamental differential inequalities [35]. In 2012,
Zhao et al. provided an extension for Dhage’s work to fractional order and considered a
boundary value problem of fractional hybrid differential equations [36]. Later, some pa-
pers on different properties of solutions for fractional hybrid boundary value problems
were published. In 2015, Hilal and Kajouni discussed the existence of extremal solutions
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for the Caputo hybrid boundary value problem

DY) = g(t, k(1) =

k(O) KT)
H0,k(0) bh(Tk Ty =<

a

where t € J = [0,T], p € (0,1), the functions #: ] x R > R\ {0} and g:J x R — R are
continuous, and a, b, ¢ € Rwitha+b #0[37].In 2016, Ahmad et al. studied the existence of
solutions for the nonlocal boundary value problem of fractional hybrid inclusion problem

m /31'
k(=372 Loy  hi(tk(2))
Dy (“Ea 0 O ¢ Gt k() =

k(0) = u(x),  k(1)=A€R,

where t € ] = [0, 1], “D§ denotes the Caputo fractional derivative of order « € (1,2], and Ig
is the Riemann-Liouville fractional integral of order ¢ > 0 with ¢ € {81, 82,..., Bm} [38].
In the same year, Baleanu et al. investigated some existence results and the dimension of
the solution set for the fractional hybrid inclusion problem

¢V k(t) 1 Bm
D (A(t,k(t),I“lk(t),...,Z“nk(t))> € ¥ (6, k), I7 k), ..., TP k(?)),

with boundary value conditions k(0) = &} and k(1) = &}, where ¢ € [0,1], v € (1,2], D"
and Z" denote the Caputo derivative operator of the fractional order v and the Riemann—
Liouville integral operator of the fractional order y € {a;, 8;} C (0,00) for i =1,...n and
j=1,...,m, respectively [8]. In 2019, Derbazi et al. studied the existence and uniqueness
results for the fractional hybrid boundary value problem

o (MOHKOD) _ (1 (1),

a1 (M Do + by (s e =
ay DF (ROHEKO)) |, + by DF (MIHEKD))| 1 = 3,5,
where t € [0, T], a € (1,2], B € (0,1], n € (0, T), ay, as, by, by, A1, Ay € R, and the fractional
derivatives that appeared are Caputo-type ones [39].
By using the idea of these works, we investigate the fractional hybrid multi-term integro-

differential inclusion of Caputo type

k() )
Dy S(t, k), pr (k(2)), ..., o (k(D))), 1
°<s(t,k(t), [Tks)ds)) (&, k(0), @1 (K(D)), ... $un (K (1)) 1)

with four-point sum and integral hybrid boundary value conditions

L (— K -
( E(6k(D), [T K Moo+ 351 bDol E(Lk(D), [ k(s)ds) Neen =0,
2 k(¢
Al (7S(tk D) ey + A2 311 BDG( 7”(( Me=1 = 2)
3]0 tkt)j k )ds—

where £ € [0,1], 0 < 1 < 72 < 1, DY denotes the Caputo fractional derivative of order
we(2,3], £ eC(0,1] x R x R,R\ {0}), S:[0,1] x R — P(R) is a set-valued map
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via some properties, and A1, Ay, A3, b; € R* for j = 1,...,7. Moreover, for each i = 1,...,m,

assume that ¢;(k(1)) = f 15" k(s) ds with @; > 0.

2 Preliminaries
Let > 0. The Riemann-Liouville fractional integral of a function & : [a, 5] — R is defined

by Z&k(t) = fot (t’rs()::)_ Lk(s)ds provided that the right-hand side integral exists ([40, 41]).

Now, let n — 1 < w < n and n = [w] + 1. The Caputo fractional derivative of a function k €
C"([a, b], R) is defined by “Dgk(t) = fot ("L ) (s) ds provided that the right-hand side

I (n-w)
integral exists ([40, 41]). It has been proved that the general solution for the homogeneous

fractional differential equation “Dyk(¢) = 0 is in the form k(¢) = mj + mit + mit> + -+ +
m_ "1, and we have

n-1
T (“Dyk(t)) = k(2) + Z m/’.‘tj = k(t) + my + it + vt + -+ it
j=0

where mj, ..., m,_; are some real constants and n = [w] + 1 [42].

Assume that (X, || - || x) is a normed space. The set of all subsets of X, the set of all closed
subsets of X, the set of all bounded subsets of &, the set of all compact subsets of X', and
the set of all convex subsets of X’ are represented by P(&X), Pu(X), Pp(X), Pep(X), and
Peov(X), respectively. We say that k* € X is a fixed point for the set-valued map S: X —
P(X) if k* € S(k*) [43]. The set of all fixed points of the set-valued map S is denoted by
FIX(S) [43]. The Pompeiu—Hausdorff metric PH, : P(X) x P(X) — RU {oo} is defined
by

PHu (A1, Az) = max{ sup dx(ar, A2), sup dx(An,a2)},

aj€eA; azeAs

where dx(A1,a;) = infy,eq, dx (a1, a2) and dx(a1,Az) = infy,en, dx(ar,az) [43]. A set-
valued map S : X — Py(X) is said to be Lipschitz with constant 1* > 0 whenever we
have PHy, (S(k1), S(k2)) < A*dx(ki, ko) for all ki,ky € X. A Lipschitz map S is called
contraction whenever 1* € (0,1) [43]. We say that the set-valued map S is completely
continuous whenever the set S(W) is relatively compact for every W € Pp(X). A set-
valued map S : [0,1] — Py(R) is said to be measurable if the function ¢t +—> dx (v, S(t))
is measurable for all v € R [43, 44]. We say that the set-valued map S is upper semi-
continuous (u.s.c.) whenever, for each k* € X, the set S(k*) belongs to Py(X), and for
every open set V containing S(k*), there exists an open neighborhood U of k* such
that S(U) € V [43]. The graph of the set-valued map S : X — Py()) is defined by
Graph(S) = {(k,s) € X x YV :s € S(k)}. We say that graph of S is a closed set if, for each se-
quence {k,},>1 in X and {s,},>1 in Y, k, = ko, s, — sp and s,, € S(k,,), we have sy € S(ko)
[43, 44]. Suppose that the set-valued map S : X — P()) is upper semi-continuous. Then
Graph(S) is a subset of the product space X x ) which is a closed set. Conversely, if the
set-valued map S is completely continuous and has a closed graph, then S is upper semi-
continuous ([43], Proposition 2.1). A set-valued map S is convex-valued if S(k) is a convex
set for each element k € X. A set of selections of set-valued map S at point k € C([0, 1], R)
is defined by

(SEL)sk:={ € L1([0,1),R) : ¥(¢) € S(£, k(1)) }
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for almost all £ € [0, 1] [43, 44]. If S is an arbitrary set-valued map, then for each function
k € C([0,1], X), we have (SEL)sx # @ whenever dim X < oo [43]. A set-valued map S :
[0,1] x R — P(R) is called Caratheodory whenever ¢ — S(¢, k) is a measurable mapping
for each function k € R and k — S(¢, k) is an upper semi-continuous mapping for almost
all ¢ € [0,1] [43, 44]. Moreover, a Caratheodory set-valued map S : [0,1] x R — P(R) is
said to be L£!-Caratheodory whenever, for each constant u > 0, there exists a function
é, € L£1([0,1], R*) such that ||S(t, k)| = sup,co, gl : g € S(t,k)} < ¢ (¢) for all [k| < p
and for almost all £ € [0, 1] [43, 44]. We need the next results.

Theorem 1 ([45]) Suppose that X is a separable Banach space, S : [0,1] x X — Pep ev(X)
isan L'-Carathéodory set-valued map, and = : £1([0,1], X) — C([0,1], X) is a linear con-
tinuous mapping. Then the composition & o (SEL)s : C([0,1], X) = Pep,ev(C([0, 1], X))
is an operator in the product space C([0,1],X) x C([0,1], X) with action k — (& o
(SEL)s) k) = E((SEL)s k) having the closed graph property.

Theorem 2 ([46]) Let X be a Banach algebra. Assume that there exist a single-valued map
@1 : X — X and a set-valued map @y : X — Pepoy(X) such that
(i) @y is an operator including the Lipschitzian property with a Lipschitz constant I*;
(i) D, is an operator including upper semi-continuity and the compactness property;
(iii) 20*A <1 such that A = || ®5(X)]].
Then either the set O* = {v* € X | aogv* € ®1v* Pyv*, 0 > 1} is unbounded or there is a

solution in X for the operator inclusion k € ®1kP,k.

3 Main results

Now, we are ready to study the fractional hybrid multi-term inclusion problem (1)-
(2). Consider the Banach space X' = {k(¢) : k(¢) € Cgr([0,1])} with the norm |k|x =
SUP,cio,1] |k(£)]. For convenience, consider the constants

20 Yo by = hany =202 3 by 1
AO = ) AS = <r 7
Al Zj:l bj—m
r )\17]% + 2)&2 Z}":l b/
Ay = (6ma(Am1 + A2) + 41(2 - 3m1)) Zb‘, Ag = ,
j-1 M
r r (3)
A2:(3Mn%+ﬁq§:@><l—2§:@)—ZAMb A7 = 2 (As — 12 A0 As),
j=1 j=1
3(2n2 - 1)
Az=———, Ag = [21(As + Ag)[m2 Ao As — Ag] — (1245 + 1)].
Al + A2
- 6(3_ /-1 b —m)
+ Al + A2 ’

Here, we prove our first key result.

Lemma 3 Letz € X. Then ky is a solution for the fractional hybrid differential equation

e
E(t, k(t), [, k

= ds)) =z(t), (tel0,1],we(2,3]) (4)
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with four-point hybrid integral boundary value conditions

. ko
( £tk (t), f k(s )|t 0+Z} lb] 0 E(t k(¢ fo ks)ds))“zn1 0,

P e =
M(S(r,k(t),j;) s)ds))|t:”2 + A2 ZJ 15/D5( O, JL K6 )Ne=1=0, (5)

1
23 Jo ( tkt)fk )d =0,

if and only if ko is a solution for the integral equation

1
k(t)=¢& <t, k(t),/0 k(s) ds) |:1"( ) / (t—5)"""z(s)ds

[(A347 = 2 As) + t(h1 Ao Az = 1) As = P21 A3] 371 by
I'w-1)

n
x /0 (1 — ) 22(s) s

+

+(tAg + M) As + (Az + Ag) (20 — A7) /nz(m —8)* z(s)ds

I'(w)
Aal(1 +tA5) Ag + E201(A3 + Ag)] Z;:l by ! -3
+ T2 /o (1-5“"z(s)ds
)»1/\4[(15 12) Ao As — t* — -

where Ao, ..., As are given in (3).

Proof Assume that kg is a solution for hybrid equation (4). Then there exist constants
ko(t)
ko(0)fo ko(s)ds)

1 t w—
ko(t) = £ (t, ko(2), /0 ko(s) ds) [ /0 %z(s) ds+ mf + mit + m;tz} (7)

and so

mg, mi, my € R such that = Iz(t) + myy + miit + mjt*. Hence,

w-2
Do ( kolt) ) = t&z(s)ds+m>{ +2mt,
£(t, ko(t) fo ko(s) ds) 0o Nw-1)

kO(t) t (t _ s)a)—S
D> [
°<$(t,ko(t),f;ko<s)ds>> | T2 W ds+2m

[t
T ds
0 \&(t,ko(0), [y ko(s)ds)

1 ps (o _ \o-1 1 1
= / / &z(r)dr ds + mj + —m] + —mj.
0 0 F(Cl)) 2 3

Page 5 of 20
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By using the four-point hybrid boundary value conditions, we obtain

* _
my =

(AsA7 =M A5) Y\ by [m
INo-1) - 1/ (1= 5)"2(s) ds
- 0
A7(As+ A As+1 (7
_ A 3+F4()w;’72 5° / (2 —)“"2(s) ds
M Ag Y by
e
Ml (w-2)
MA NAoAs+ A
M 4(772F(<;))5+ 6)/ /(s—r)“’_lz(t)drds,
0 0
(M AgA3—1)As Z}ll b]
I'w-1) 0
1- A Ag(As + Ag)]As (7
[ 1 01(“(;; 4)] 5/ M —8)” " z(s) ds
0

/ (1-15)*32(s)ds

*_
my =

n
(m — )" *z(s)ds

Aol = A1 Aop(A3 + As)]As Z,r 1b;

bt _3
s SR fou_s) 2(s) ds

MAgALAs (1 [F
+M./ /(s—r)‘”’lz(t)drds,
0

and

3

MA3 Z;:l bj m 02
2 ——m/(; (m — )" "z(s)ds

M(Az+ Ay) [T -1
e fo (11 - 5)2(s) ds

Ma(As+ Ad) 3, by

1
= w-3
¥ o2 [0 (1-5)“z(s)ds

)»1/\4

/(s 1) z(r) dr ds.

By substituting the values m1j, m}, and mz} in (7), we get

1 t
olt) =s(t,ko(t>, /0 o(s) ds> [ﬁ /O (£ - 5)" Le(s) ds

[(A3A7 — T]2A5) + t()\,lA()Ag — 1)A5 — tz)\lAg] Z;:l b/
+

I'w-1)
X ’71(m - 5)"2(s) ds
0
L (tAg +12) As + (Az + Ag) (211 — A7) —5)71z(s)ds
I'(w)
Mal(L+245)Ag + 22a(A3 + A1 30, by (! o3
* Il (w-2) / oo

2
. A Ag(t - 7723_'/2;))/)15 — 17— Ag] / / (s—1)°z(r)dr dS]

Page 6 of 20
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This shows that the function kj is a solution for integral equation (6). Conversely, one can
easily check that k is a solution for problem (4)—(5) whenever kq is a solution function for

integral equation (6). O

Definition 4 An absolutely continuous function k : [0,1] — R is called a solution for the
fractional hybrid inclusion problem (1)—(2) whenever there exists an integrable function
¥ € L£1([0,1],R) with ©9(t) € S(t,k(t), p1(k(2)), ..., Pm(k(t))) for almost all £ € [0, 1] satisfy-
ing the four-point fractional hybrid sum and integral boundary value conditions

o gy
( E(6.k(2) fo 5)ds) )|t0+21 1b] 0( E(6k(t fo S)dS))|t n 0,

7 2 7
)Ll(S(rk £, J k(s)ds) Newny + 32 351 lbD O, L K0 )|t 1=
1
23 [ (W)ds—

and

1 t
k(t)=¢& (t,k(t),/o k(s) ds) [ﬁ /0 (t—s)""0(s)ds

[(A3A7 - 7]2A5) + t()\leAg - 1)A5 - tz)\.lAgl Z;:l b]
+
INw-1)

n
x/ (m —$)°729(s)ds
0
1
+

+ (LAg + 1) As + (A3 + Ag) (221 = A7) /m(ﬁz -5) o (s)ds

I'(w)
)\2 [(1 + tA5)A8 + tz)\l(Ag + A4)] Z/}":l b} 1 w3
+ T @=2) /(; (1-5)270(s)ds
)»1A4[(f m)AoAs -2 — Agl [ [* ool ]
@) /0 /0 (s—t) " v(r)drds

forall £ € [0,1].
Now, we provide our main result.

Theorem 5 Suppose that & : [0,1] Xx R x R — R\ {0} is a continuous function and S :
[0,1] x R™*1 — Pepev(R) is a set-valued map. Assume that
(C1) there exists a bounded mapping 0 : [0,1] — R* such that

2
|& (ki (0), ka(8)) — & (8, K, (), Ky ()| < 0 Y |Kile) = Ki(8)]
i=1

Sorall ky, ky, ki, ky € R, and t € [0,1];
(C2) theset-valued map S : [0,1] x R™*1 — epev(R) has the LY-Caratheodory property;
(C3) there exists a positive mapping q(t) € L1([0, 1], R*) such that
HS(If, ki, ko, ... ,km+1) H = sup{ | : 0 € S(t, kl(lf),kz(t), cee ,km+1(t))} < q(t)

forall ky, ..., ky.1 € R and for almost all t € [0,1];
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(C4) there exists a positive real number p € R such that

*M
5 E*Mllqll cr ’ ®)
1-20*M|\qll z1

where ||q| p1 = fol lq(s)|ds, & = sup,c(o,1) [€(£,0,0)], 0% = sup,c (1) 10(¢)| and

B 1
T Tw+1)
(| A3A7| + [m2As| + (JA Ao As| + 1) As| + [A1 AslIng™ > b
+
I'(w)
. [1+](Ag +n2)As| + [(Az + Ag) (A1 + [A7])]ng
I'w+1)
Mall(1+ As) Al + Ml Az + Aal] 31, by
+
)\11—'(0)— 1)
Al A4l [(X + m2)[ Ao As| + | Ag| + 1] ©)
Iw+2) '

Then the hybrid inclusion problem (1)—(2) has a solution whenever 40*M||q|| 01 < 1.

Proof For each k € X, define the set of selections of the operator S by
(SEL)sk = {0 € £1([0,1]) : ¥ (2) € S(t, k(8), 1 (k(2)), ... B (k(2))) }
for almost all ¢ € [0, 1]. Define G : X — P(X) by
G(k)={g e X:g(t) =a(t) for t € [0,1]},

where

alt) = g(t, k@), /0 1 k(s) ds) [ﬁ fo (= 5 19(5)ds

. [(A3A7 — M2 As) + t(A Ag Az — 1) As — t241 A3] Z;:l b; /’71 (= 5J25(5) ds
I'(w-1) 0
N 1+ (tAg +1m2)As + (Az + Ag) (20 — A7)
I'(w)
2 r
22l 245)As + Pha(As + An)] 30 by /1(1 9739 (s)ds

A Agl(t - AA—2 A
M a[(t ’72) 0As —1 6]// 7)1 T)deS],

n2
f (2 =99 () ds
0

for some ¥ € (S€L)s . One can easily check that g is a solution for the hybrid inclusion
problem (1)-(2) if and only if gj is a fixed point of the operator G. Define the maps @ :
X — X by (@1k)(2) = &(¢, k(t),fo1 k(s)ds) and @, : X — P(X) by

(P2h)(t) = {;‘ e X:¢(t)=b(t) fort € [0, 1]},

Page 8 of 20
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where

RS R
b(t)_F(w)/o(t $)? 0 (s)ds

[(A3A7 = 12 As5) + (A Ag Az — 1) As — £221 A3] le b; /"1( 9
m-

w-2
) ?(s) ds

+

1+ (tAg + 7]2)A5 + (A3 + Ag)( tz)\l - A7 w1
+ @) / (12 =) ¥(s)ds
)\.2[(1 + lfA5)A3 + tz)\.l(Ag + A4) Z] 19j -3
=2 / (1-9)“"70(s)ds
)» 1A4[(¢ = 12) Ao As — 82 — Ag] o1
@) / / ?r)drds

for some ¥ € (SEL)s k. Then we obtain G(k) = @1kP,k. We prove that ¢, and @, satisfy
the assumptions of Theorem 2. We first show that the operator @, is Lipschitz. Let k1, k, €
X. Assumption (C1) implies that

1 1
K¢Mﬂ&%&¢%ﬁ&ﬂ=%(ahuxf‘h@hh)—€<abUL/‘&®ﬁkN
0 0

1) (ki () = ka(8)| + [Ka (£) = Ko (2) )
=20(8)| ki (8) - ka(2)
for all ¢ € [0,1]. Hence, we get ||®1k; — P1ky || v < 20%| k1 — k|| x for all ki, ky € X. This

means that the operator @, is Lipschitz with constant 20*. Now, we claim that the set-
valued map @, has convex values. Let ky, ky € @2k. Choose ¥, ¥, in (SEL)s x such that

IR S AV
50 = 1 /0 (£—9)"19,(s)ds

[(A3A7 — T]2A5) + t()\,lA()Ag — 1)A5 — tz)\.lAg] Z;=1 b}
+
I'w-1)

n
x | (1 —s)"*9(s)ds
0

1+ (tAg +m2) As + (As + Ag) (24 — A7)
+

@) -5)”7'9i(s) ds
Mal(1 +tA5) Ag + 201(As + Ag)] Z, 19 -3
* M (w-2) / (=970 d
2 1
+x1A4[(t—nz)Ffzz);1s—f ~ Al /0 /0 (s- 1) 19i(r)deds, (i=1,2)

for almost all £ € [0,1]. Let A € (0,1). Then we have

M (t) + (1= Mko(2) = ﬁ/o (t = 9)* 7 [A91(5) + (1 = L)Ds(s)] ds

[(A3A7 = As) + t(h Ao Az = 1) As = 221 A3] 37, by
I'w-1)

+
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ni
x / (11— 5 [A91(6) + (1 = 1)(s)] ds
0

1+ (¢Ag +m2)As + (Az + Ag) (241 — A7)
+
I'(w)

n
X / (n2 - s)‘“’l[)u?l(s) +(1- A)ﬁz(s)] ds
0

)\2 [(1 + tA5)A8 + tz)»l(A3 + A4)] Z/}":l b/

" Il (@-2)

1
X / (1-s)°3 [Al?l(s) +(1- A)l?z(s)] ds
0

. M Ag[(E = 12) Ao As — t* — Ag]
I (w)

1 s
X/o /O(S 7) [kﬂl(r)+(l A)z?z(r)]drds

for almost all £ € [0, 1]. Since S has convex values, (SE€L)s  is convex-valued. This gives
that 291(¢) + (1 — A)92(¢) € (SEL) s for all t € [0,1], and so P,k is a convex set for all
keX.

Now, we prove that the operator @, is completely continuous. We have to prove the
equi-continuity and uniform boundedness of the set @,(X). First, we show that @, maps
all bounded sets into bounded subsets of X'. For a positive number ¢* € R, consider the
bounded ball V;x = {k € X : ||k||x < &*}. For every k € Ve and ¢ € ®,k, there exists a
function ¥ € (5€L)sx so that

_L ! _ w-1
£(0) - F(a))/o (£- 919 (s)ds

[(A3A7 = 2 As) + t(h1 Ao Az = 1) As = 221 A3] 371 by
+
INw-1)

n
x /0 (1 —$)*29(s) ds

1+(A As + (Ag + A)(EPh — A n”
L1t (EAg +m2) As + (Ag + Ag)(E°h1 — A7) / (1 — ) 19(s) ds
0

I'(w)
ol(1 4 £AA 23 (A4 A " b 1
p— - 2_ 1 $
+A1A4[(t n2}?;?5 L A6]/0 /O(S_f)w‘lz?(r)drds

for all £ € [0, 1]. Then we have

1 t
!C(t)lfmfo (£ -9 [9(s)|ds

[(A3A7 =12 As) + t(l Ao Az = 1) As — A1 A3 221, by
I'w-1)

m
< [Cn -9

+

Page 10 of 20
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1+(A As + (Az + Ag)(B2h — A n”
+| + (tAg + 1) As + (A3 + A)(E°0 7)|/ (12— )1 9(5)| s
I'(w) 0
)»2|(]. + tAs)Ag + tz)\l(Ag + A4)| Z;:l bj

" ml(@-2)

1
X /(; @a —s)“”3|19(s)| ds

N M| Aa[(t — 1) Ao As — 7 — Ag]|
I'(w)

1 s 1 t
_ w-1 _e-l
X./o /O(S 7) |ﬁ(r)|drds§—r(w)/0 (t-9)"""q(s)ds

|(A3A7 - 772A5) + t()\.leAg - 1)A5 - t2A1A3| Z;:l b]
+

I'w-1)
n ,
x | (nm—-s)""q(s)ds
0
|1+ (tAg + n2) As + (Az + Ag)(EPhy — A7)| (™ w1
+ (m2—5)""q(s)ds
I (w) 0
ol(L+tA5)Ag + 221 (Az + A Y by 1
. 2 5) s 1Az + Ag Z;] l/(l—s)’”’sq(s)ds
Ml (@—-2) A
Ml ALl(t = m2) AgAs — 2 — A Loprs
s 11 A4[(E = m2) Ao As 6]|/ /(s—t)‘”‘lq(r)drds
I (o) o Jo
1
<\
- |:F(w+ 1)
[1A3A7] + 2 As| + (1A Ao As| + D) As| + [a AslIng™ 327, by
+
I' ()
s (1 +[(Ag +n2)As| + [(Az + A)|(A1 + [ A7])]0S
I'w+1)
Moll(1+ As) Al + A1l Az + Aal] 20, by
+
AT (w-1)
+)»1|A4|[(1+772)|A0A5|+|A6|+1] lall o
Tw+2) 1lc
=Mllqll z1,

where M is given in (9). Thus, [|¢|| < M||q|l 1 and this shows that the set @,(X) is uni-
formly bounded. Next, we prove that the operator @, maps bounded sets into equi-

continuous sets. Let k € V. and ¢ € @,k. Choose ¢ € (SEL) s« such that

1 ! w-1
;m=ﬁaluw>ﬁmm
. [(A347 — 2 As) + E(A1 Ag Az — 1) A5 — 1241 A3] Z;:l b;

I'w-1)

m
xﬁ(mﬂwwmw

Page 11 of 20
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1+(A As + (Ag+ Ag)(EPr — A n”
L1t (EAg +m2) As + (A3 + Ag)(t°A — A7) / (1 — ) 19(s) ds
0

I'(w)
Jol(1+£A5)Ag + EAa(As + ADI ST by (1
. Rl ‘4(1-9 2(s) ds
2 L ps
+x1A4[(t—nz)F/2$15-t — Al /0 fo (s - 1) 10 (r) dr ds

for all £ € [0,1]. Let £1, £, € [0,1] with #; < £,. Then we have

£(62) - 2(t)] < ﬁ /0 (-9 — (6 9121 |9(9)| ds
1 2 w-1
+m/t1 (ty - ) ’ﬂ(s)’ds
N [l(t2 = 1) (M Ao Az — 1) As| + | (83 — £2)A1 As]] > b

I'w-1)
m
x/o (m—s)‘”_2|19(s)|ds

(t2 — t1) Ag As| + A1 (A3 + Au) (5 — 83)]

. fo " = [9(5)| ds

I'(w)

Mall(ts = 1) As Agl + (8 — )1 (A + A X1, by
* Ml (w-2)

1
X /0 @1 —s)")‘3|19(s)| ds

Al Ad[|(tr = £1) Ag A 22— Lops
. 11 A4l[l(E2 — t1) Ao As| + |55 1I]/ /(s—r)”"lw(r)]drds
0 0

I'(w)

1 i w-1 w-1 1
<o /0 [ -9 = 1 -9 a9 d s
y / % (= ) ds

[(t2 — 1) (M Ao Az — 1) As| + |(8 — t1)A1 As]] Z,; b;
" Mw-1)

x fo " - 9°4(s) ds

.\ [(t2 — t1) Ag As| + A1 (As + Ag) (&3 — )]
I'(w)

x fo " - 9 g(s) ds

Mall(ts = 01) As Agl + (8 — ) (As + A XL, by
* Wl (w-2)

1
_ @3
X /0 (1-5)“"g(s)ds

Page 12 of 20
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. Ml Al — 7)Ao As| + |85 — £1]]
I'w)

X /Olfos(s—r)wlq(r)dr ds.

Note that the right-hand side tends to zero independently of k € V. as £, — t;. By using
the Arzela—Ascoli theorem, the complete continuity of @, : C([0, 1], R) — P(C([0, 1], R))
is deduced. Now, we show that @, has a closed graph, and this follows the upper semi-
continuity of the operator @,. Assume that &, € V,+ and ¢, € @k, with k, — k* and ¢, —
¢*. We claim that {* € @,k*. For every n > 1 and ¢, € @2k, choose ¥, € (SEL)sx, such
that

w-1
£lt) = ”)/u@ 9 (s)ds

[(A3A7 — 2 As) + t(l Ao A3 = 1) As = P21 A3] D1 by
I'w-1)

n1
x /0 (n1 —5)“7*D,(s) ds

1+ (tAg + 1) As + (As + Ag)(£20 — A7)
+

n2
/(m—w“mw$

I' ()
Az[(l +tAs5) Ag + M (As + A1 Y7 by e
-2 / (1-9“"0,(s)ds
)» 1A4[(E = m2) Ao A5 — 12 — Ag] yo-1
@) / /(s H(t)dr ds

for all ¢ € [0,1]. It is sufficient to show that there exists a function 9* € (S€L)s+ such
that

*_Lt_a)—l*
;m-”mﬂus)ﬁww

[(A3A7 - 7]2A5) + t()\leAg - 1)A5 - tz)\.lAgl Z;:l b]
+
I'w-1)

n
xﬂ(m—mﬂww¢

1+ (¢Ag +m2) As + (As + Ag) (241 — A7) /"2
+

(112 =)' 9*(s) ds

I'(w)
Mal(1+tA5)Ag + 241(A3 + Ay)] Yiab ! w-3 g%
+ T @=2) / (1-5)“70"(s)ds
)»1A4[(t M) Ao As — £ — Ag] o-1
) / / (s—1) " 9*(r)dr ds

for all ¢ € [0, 1]. Define the continuous linear operator = : £1([0,1],R) — X by

wan=mo=7%5A(p4w4mg¢

[(A3A7 =2 As) + t(h1 Ao Az = 1) As = P21 A3] 307, by
I'w-1)

+
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0
X (n1 — )29 (s)ds
0

1+ (¢Ag +m2)As + (Az + Ag) (241 — A7)
+
I'(w)

Xal(1+2A5) Ag + 201 (As + Al Y1, by

= ! _3
+ T @=2) /0 (1-s)"0(s)ds

2 1 s
. A Ag[(t - 772;/22);15 —t7 = Ag] /(; /0 (s— 1) 19(r) dr ds

f " 1 = 5" 19(s)ds
0

for all ¢ € [0, 1], where X = C([0,1],R). Hence,

l6u6) - 2*(@)] = Hﬁ fo (6= 9" (9,(5) - 9*(5)) ds

[(A3A7 =2 As) + t(h1 Ao Az = 1) As = P21 A3] 3071 by
I'w-1)

n
x f (11— 912(9a(5) = 9*()) s
0

+

1+ ((Ag + M) As + (A3 + Ag)(#h1 — A7)
+
I'(w)

n2
< [T 00 976 &
0

)\.2 [(1 + tA5)A8 + tz)»l(Ag + A4)] Z;:l bj
Al (w-2)

+

1
x/ (1 —S)”’B(ﬂ,,(s) - 19*(5)) ds
0

N M A4t = 12) AgAs — £ — Ag]
I'(w)

1 s
_ w-1 _ 9%
X/O /0(5 T) 7 (Va(r) - 9*(1)) dr ds

— 0.

Hence, Theorem 1 implies that the operator & o (S€L)s has a closed graph. Since ¢, €
E((SEL)sk,) and k, — k*, there exists 9* € (SEL)s i+ such that

* _L ! _ w—1 _q*
¢ (r)-r(w)/()(t 9019 () ds

[(A3A7 =2 As5) + t0 Ao Az = 1) As — 221 A3] Y[, by
* rw-1)

x /Om(m — ) 7?9*(s) ds

1+ (tAg + 772)/\5 + (A3 + A4)(t2)\,1
+
I'(w)
)\2 [(1 + tA5)A3 + t2)\1(A3 + A4)] Zr

" b ol
j=1"J -3 9%
1- ¥
! WT(w-2) fa-oroe

— A7) f " s — 57 19%(5) ds
0
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1 prs
. A1A4[(t—ﬁ2}/22);\5 _t2_A6] L /0 (S_t)wflﬁ*(f)df ds

for all £ € [0,1]. Hence, ¢* € ®@,k* and so @, has a closed graph. From this it follows that
the operator @, is upper semi-continuous. Since the operator @, has compact values, @,

is a compact and upper semi-continuous operator. By using assumption (C3), we have

A= @) = tzgpl]{l%m ke X)

B 1
T TMw+1)
[[ A3 A7] + [ As| + (1A Ag As| + 1)| As| + |21 A3y ™ Yo7, by
+
I'(w)
. [1+[(As +n2)As| + [(Az + As)|[(A + [ A7 D]ng
I'w+1)
Mo[l(1+ As) Al +A1] Az + Agl] 2o, by
+
ml(w-1)
s M| A4l [(1 +m2)| Ao As| + | Ag| + 1] 1l
I(w+2) 1lc
=Mllqll 1.

Put [* = 26*. Then Al* < % Now, by using Theorem 2 for @,, we get that one of the con-
ditions, (a) or (b), holds. We claim that condition (b) is impossible. By considering Theo-
rem 2 and assumption (C4), assume that k is an arbitrary element of O* with ||k|| = 5. Then
aok(t) € @1k(t)Pok(t) for all oy > 1. Choose the related function ¢ € (S£L)s . Then, for

each «g > 1, we have

1 ! 1 ! w-1
k(t) = %é (t, k(t),/o k(s) ds) [mfo (t-s)""v(s)ds
. [(A3A7 — T)2A5) + t()\leAg - 1)A5 — tz)\,lAg] Z;:l b]‘

I(w-1)
m
x /0 (m1 — )" 29(s)ds
L Lt (s +m)4s ;((2; + A4)(£h1 = A7) /0"2(,72 — )19 (s) ds
R e e
N M Ag[(t- ?DZ—{EZJ?S — 12— Ag] /01 /OS(S —7)° 9 (r)dr ds]

for all £ € [0, 1]. Thus, one can write

1 ! 1 t ol
’k(t)| = a—o‘é(t,k(t),/o k(s)ds) [mfo (t-3s) }ﬂ(s)|ds

[(A3A7 =12 A5) + t(h Ao Az = 1) As — A1 A3 201, by
+
I'w-1)
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m
< [Con -9

. 11+ (£As +102) As + (A3 + Aa)(#2h1 — A7)

)@t |1?(s)| ds

I'(w)
Bl A s Pl + A1 ja b a-sloolas
M (w-2)
)»1|A4[(t m2) Ao As — £* — Ag| w-1
T(w) / / D) de ds}

[ s0w) v

_ o1
|:F( )/(t s) |19(s)|ds

|(A3A7 — 2 As) + t(h Ag Az — 1) A5 — £22q A3 P
I'w-1)

+ ‘S(t,0,0)‘:|

n
< / (=972 9(5)|

1+(tA As + (As + Ag)(£22 "
| + (tEAg + 12) As + (Az + Ag) (£ - 7)|/ S)w_1|19(s)|ds

I'(w)
dal(1+ tA5) Ag + £2A1(A3 + Ag) |Z, 19j -3
+ T @=2) / -s) |z9(s)|ds
M| Ag[(t — 1) Ao As — 2 — Ag]| -1
N e / / 219 (2)| de ds:|

< [260° k1 +s*][ﬁ /0 (- 5" q(s)ds

[(A3A7 =12 As) + t(A Ao Az = 1) As — A1 A3 X7, by
+
I'w-1)

n
x| (m-9)""qls)ds
0

1+ (A As + (As + A2 - 2

| +(tAg +12) 5;((w§+ )M 7)|/ (12 — )1 q(s) ds

A2|(1 +tA5)Ag + 20 (Az + A9 X7, by .
o f (1- 5)34(s) ds

)»1|A4[(t m2) Ao As — t* — Ag| -1
) // -1T) (r)drds]

<[20%6 + &*|Mliqll o1

£ Mgl 1
120" Mgl ;1 °

tion (b) of Theorem 2 is impossible. Thus, k € @1k®,k. Hence, the operator G has a fixed

for all ¢ € [0, 1]. Hence, we get p < Now, by using (8), we conclude that condi-

point, and so the hybrid inclusion problem (1)-(2) has a solution. O

Here, we provide an example to illustrate our main results.
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Example 1 Consider the fractional hybrid multi-term integro-differential inclusion

cp27 ( k(t) )
0 t| cos k(t)]
7(“'%5;;[) Jio00 *+ 0-0001¢ fo k(s)ds + 0.0009

[ 2, (¢ + 1) cosk(t) + 2sin(Zg®k(2)) + 10 sin®(Z9 k(1)) + %] (10)

with four-point sum and integral boundary value conditions

( Wﬁ[g‘k’ﬁ%wﬁgm i k(s) ds+o.ooo9)|‘=° * Zi3=l b
x Dol %mkg&uﬁ) s) ds+0. 0009)|t=0‘1 =0,

o TrTeos K 10500 +0~k0((§)01t/& rdssooons) 1022 *+ 09 Y (11)
x Do Mﬂsﬁ%m{g&u(/g rosronos) =1 =0

L4 fol( fcosk(@)] iy )ds =0,

1
TR om0 +0-0001¢ [ k(5) ds+0.0009

where t € [0,1], w =2.71, 51 = 0.1, 5, = 0.22, A; = 1.27, A, = 0.9, A3 = 1.4, and r = 3. Then
we have Z _1 bj = 0.24 with b; = 0.09, b, = 0.08, and b3 = 0.07. For m = 2, put ¢ (k(¢)) =
T99k(t) and ¢a(k(2)) = ZO%k(¢), where @ = 0.03 and @ = 0.05. Consider the continuous
map & :[0,1] x R x R — R\ {0} defined by

t| cos ky(z)|
(1 + | cos k1(£)])10,000

1
£(t, ki (0), ko (1)) = +0.0001¢ /0 ko(s) ds + 0.0009

with &% = sup,(o1716(£,0,0)| = 30,000 ooo +0.0009 = 0.00095. On the other hand, it is clear that
the function & is Lipschitzian. Indeed, for each ki, k; € R, we have

1 1
’E(t, kl(t),/ ki(s) ds) —E(t,kz(t),/o kao(s) ds)

[k1(6) = ka®)] + [Ka() ~ Ka(0)]]

- 10 000

" 10, ooo|k1 (&) ~ka(0)]

If we set 6(¢) = 10—300, then 6" = sup,c(o1;10(¢)| = 0.0001. In this position, we define the
set-valued map S : [0, 1] x R*! — P(R) by

S(t,k(0), ¢1 (k(0)), $2 (k(0)))

|: 2, (¢ + 1) cosk(t) + 2sin(Zg%k(2)) + 10 sin®(Z9k(2)) + %]

Since

|¢| < max [—2, (¢ + 1) cosk(¢) + 2 sin(Zy ®k(2)) + 110 sin®(Z9°k(8)) + 1%} <t+ ;
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for all ¢ € S(¢, k(¢), p1(k(2)), po(k(2))), we obtain

S (& k@), ¢1(k(@®)), p2 (k(®))) | = sup{|?] : @ € S(&k(t), 1 (k(2)), 2 (k(2)))}

<t+4.5.

Put q(f) = £ + 4.5 for all £ € [0,1]. Then [igli ;1 = f; Ig(s)|ds = f, (s + 4.5)ds = 5 and M =
42.2585. Now, we choose p > 0 so that

~ E*M|q|l o1 0.00095 x 42.2585 x 5
> -

= ~ 0.209574.
1-20*M|\qll;1  1-2(0.0001 x 42.2585 x 5)

Thus p > 0.209574. Then 46*M||q|| ;1 =~ 0.0845 < 1. Now, by using Theorem 5, the hybrid
multi-term inclusion problem (10)—(11) has a solution.

4 Conclusion

It is known that most natural phenomena are modeled by different types of fractional
differential equations and inclusions. This diversity in investigating complicate fractional
differential equations and inclusions increases our ability for exact modelings of more phe-
nomena. This is useful in designing modern software which helps us to allow for more
cost-free testing and less material consumption. In this work, we study the existence of
solutions for a fractional hybrid multi-term integro-differential inclusion problem with
four-point sum and integral boundary value conditions. By using Dhage’s fixed point re-
sults, we prove our main existence result. Finally, we give an example to illustrate our main
result.
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