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Abstract
In this paper, we build a mathematical model to study the impact of external
removable devices on a network with weakly- and strongly-protected computers. The
model describes the dynamics between weak, strong, infected computers and
susceptible, infected removable media. Analytical investigations of the model
produce two equilibrium points: virus-free and endemic. Moreover, we investigate
the local and global stability of both equilibria. The existence and stability conditions
of the equilibrium points depend primarily on the basic reproduction number (R0) of
the model. Furthermore, we perform numerical simulations to substantiate the
analytical results. Also, a sensitivity analysis is carried out to examine the critical
parameters that lead to strategies to control the dissipation of viruses.
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1 Introduction
The development of communication networks has made computers increasingly present
in our daily lives. The human dependence on many electronic devices, such as mobile
phones and laptops, is increasing every day since almost everything can be accessed on-
line. For these reasons, a computer virus has become a major problem for individuals,
institutions and even governments. A virus is a malicious program developed to harm the
operating systems of computers and mobile phones. It plays the same role as a biologi-
cal virus in the human body. Computer viruses slow down or crash the operating system,
erase data, steal information, disrupt normal operations, spy on users with webcams, mi-
crophones, and other damages. According to the Ponemon Institute, 7 out of 10 organi-
zations say that security risks increased dramatically in 2017 [1]. In 2017, the Wannacry
virus infected more than 400,000 devices from 100,000 groups in at least 150 countries, at
a total damage cost of about 4 billion [2].

The propagation of computer viruses is similar to the spread of infectious diseases in
which viruses are transmitted through communication. Computer viruses are usually
transmitted in networks via e-mail messages and when downloading an infected file. In
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addition, connecting a computer to removable devices such as USB, mobile phones and
hard drives is another way to spread viruses. Anti-virus software always strives to protect
computers from viruses. However, due to the emergence of new viruses, this keeps the
anti-virus programs lagging behind the new ones. As a result, this requires the user to
update their anti-virus software regularly.

Mathematical experiments are necessary to understand the dynamics of computer virus
spread in order to improve the safety and reliability of a computer network. Cohen [3] and
Murray [4] were among the first to pave the way for the use of mathematical models of
infectious diseases to explore the dynamics of the spread of computer viruses due to their
similarity. Consequently, the computer’s population is divided into compartments accord-
ing to their status such as susceptible (S), latent (L), infectious (I), recovered (R), antidotal
(A), and breaking out (B). By considering the dynamics between these compartments, dif-
ferent types of models have been studied [5–15]. In particular, Kephart and White [5] pre-
sented an SIS model of the biological epidemic to explore the way computer viruses spread
on the Internet. L. Yang et al. [9] proposed an SLB model assuming that both latent and
broken computers posses infectivity; however, the cure rate of latent computers is lower
than the broken out computers. Zhu et al. [16] investigated theoretically, a computer virus
model SIRS with an anti-virus strategy known as the countermeasure competing that was
proposed in [17]. Their work provided a theoretical approach to assess the efficiency of
different deployment strategies for anti-virus software. In [7], Gan et al. incorporated the
probability of immunization into the classic SIRS model to examine the impact of vacci-
nation (i.e. the measure that an uninfected computer has the latest version of anti-virus
software installed) on the spread of computer viruses. Further, in [8], they studied the same
model; however, expressing the infection rate as a generic nonlinear incidence rate. Khanh
and Huy [11] investigated an SLIR model of computer network where some nodes have
antidote rates to represent a vulnerability to viruses in the system. Meanwhile, in [12, 13],
antidotal computers are expressed as a separate compartment generating an SAIR model.
Recently, Upadhyay and Singh [18] proposed a model with two different classes of com-
puter nodes, the attacking and targeting nodes. They studied the virus propagation from
an attack node into the targeted system.

Furthermore, Liu et al. [6] proposed a different mathematical model that examines the
impact of user security awareness on the spread of infectious malware. To understand how
user security awareness affects the spread of malware, they have divided computers that
are vulnerable to viruses into two compartments in terms of protection. They suggested
two levels of protection: weakly-protected and strongly-protected, where they assumed
that the latter has a lower infection rate than the former.

Other mathematical models studied the dynamics between computers and external re-
movable devices because these devices could be affected by viruses [19], which result in
computer infection. For example, Zhu et al. [20] expressed explicitly in their SIR model
compartments that represents removable devices. A similar model is given in [21] but
with an added compartment expressing latent computers. However, in [22, 23], the effect
of removable media is analyzed without expressing it as a separate compartment. Also, in
[24], Gan and Yang incorporated the effects of removable storage devices as well as anti-
virus software in their SLIR model but not as separate compartments. Recently, in [25],
Gan et al. studied the impact of network topology and removable devices on the trans-
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mission of viruses. They compared the theoretical results of the model with numerical
experiments based on the Oregon routing network in order to verify their model.

In this paper, we build a mathematical model to study the effect of external removable
devices on a network with weakly- and strongly-protected computers (i.e. heterogeneous
immunity). Our model is an extended model to the compartment model given in [6]. We
added to the model in [6] two compartments representing susceptible and infected remov-
able media. We believe that a lack of user awareness regarding the correct use of removable
devices plays a fundamental role in the spread of viruses. Connecting infected removable
media to the computer causes the virus to spread. In particular, computers with weak
protection will be more vulnerable to infection with the virus than those with strong pro-
tection. Therefore, to explore the effect of removable devices on the spread of viruses,
we need to include removable devices in the dynamics of the model as explicit compart-
ments. Moreover, we assume that strongly-protected computers are unlikely to possess
an infection without being first weakly-protected. Therefore, we modify the model in [6]
by removing the terms that demonstrate infection of strongly-protected computers due
to the connection with infected computers. The study aims to investigate the impact of
user awareness on the computer network during a virus outbreak.

The rest of this work is organized as follows. Section 2 deals with formulating the math-
ematical model with its notations and assumptions. In Sect. 3, the equilibrium points and
their stabilities are investigated. Moreover, Sect. 4 illustrates numerical experiments of the
model and demonstrates the analysis of the sensitivity of its parameters. Finally, a brief
conclusion is given in Sect. 5.

2 Mathematical model
We consider the impact of removable devices in a network with weakly- and strongly-
protected computers. We introduce two compartments: susceptible and infected remov-
able devices to the model in [6]. Accordingly, the proposed model is divided into five com-
partments denoted as follows: S(t), strongly-protected computers (S-node); W (t), weakly-
protected computers (W -node); I(t), infected computers (I-node); RS(t), susceptible re-
movable devices (RS-node), and RI(t), infected removable devices (RI -node). We assume
that the total number of computers and removable devices in the network are N(t) and
RN (t), respectively.

Strongly-protected computers are installed with anti-virus software that is updated con-
tinuously. Weakly-protected computers are either installed with outdated anti-virus soft-
ware or without security products. An S-node is infected only when its anti-virus software
is outdated; thus, it becomes a W -node. On the contrary, when the anti-virus software of a
W -node is updated or installed, it then becomes an S-node. Virus infection is caused due
to the connection between the I and W nodes. Also, viruses are transmitted to W -node
when an infected removable device is connected to it. When W -node is infected, it be-
comes I-node. Meanwhile, if I-node is cleaned from all viruses and its anti-virus software
is updated, it then becomes an S-node. An infected removable device, RI -node, is cleaned
when it is scanned by anti-virus software that is installed on a strongly-protected com-
puter, S-node; therefore, it becomes an RS-node. On the other hand, once the susceptible
removable device is connected to an infected computer, it is infected again (see Fig. 1).

User security awareness plays a vital role in the dynamics of the model. High security
awareness is regarded when users continuously update their anti-virus software and scan



Al-Tuwairqi and Bahashwan Advances in Difference Equations        (2020) 2020:260 Page 4 of 20

Figure 1 The dynamics of the model

Table 1 Characterization of notations

Notation Meaning Unit

S(t) Strongly-protected susceptible computers In number
W(t) Weakly-protected susceptible computers In number
I(t) Infected computers In number
RS(t) Susceptible removable devices In number
RI(t) Infected removable devices In number
N(t) The total number of computers In number
RN(t) The total number of removable devices In number
β The infection rate ofW-node caused by an infected computer Day–1
δ The infection rate ofW-node caused by an infected removable device Day–1
ε The rate thatW-node enters S-node Day–1
α The rate that S-node converts toW-node Day–1
γ The recovery rate of infected computers Day–1
σ1 The infection rate of RS-node caused by an infected computer Day–1
σ2 The recovery rate of infected removable devices Day–1

all removable devices when connected to their computers, and vice versa is considered as
acts of low security awareness.

The state variables S, W , I , RS and RI are non-negative and the parameters α, β , ε, δ,
γ , σ1, σ2 are positive and lie in the interval (0, 1]. A summary of the model’s notations is
given in Table 1.

The model is based on the following reasonable assumptions:
(H1) The network in this model is static which means that the total number of nodes

over the network is invariant.
(H2) An up-to-data anti-virus software is powerful enough to keep S-node computers

immune from viruses.
(H3) Every W -node gets infected with probability β per day due to possible connection

with I-node.
(H4) Due to the contact with an infected removable device, W -node computers

become infected with constant probability δ per day.
(H5) When anti-virus software is expired or not updated, the computers in S-node go

to W -node with rate α.
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(H6) W -node computers go to S-node with rate ε, when installed by an updated
anti-virus software.

(H7) Each infected computer is successfully cured by the effect of anti-virus software
with rate γ .

(H8) An infected removable device can become susceptible if it is connected to a
strongly-protected computer with rate σ2 and a susceptible one can become
infected if it is connected to an infected computer with rate σ1.

According to the above assumptions, one can immediately describe the dynamics of the
model by the following system of nonlinear ordinary differential equations:

Ẇ = –βW
I
N

– δ
RI

RN
W – εW + αS,

Ṡ = εW + γ I – αS,

İ = βW
I
N

+ δ
RI

RN
W – γ I,

ṘS = σ2
S
N

RI – σ1
I
N

RS,

ṘI = σ1
I
N

RS – σ2
S
N

RI ,

(1)

where S, W , I , N , RS , RI and RN are abbreviations of S(t), W (t), I(t), N(t), RS(t), RI(t) and
RN (t), respectively.

From the assumption (H1), the network is static, thus, the total number of computers
connected to the network is constant, i.e., N(t) = W (t) + S(t) + I(t) = N0 = constant for
all t ≥ 0. This is also the case for the total number of removable devices in the network,
i.e., RN (t) = RS(t) + RI(t) = RN0 = constant. Therefore, model (1) can be normalized by
setting the state variables as follows: w = W /N , s = S/N , i = I/N , Rs = RS/RN and Ri =
RI/RN . Consequently, model (1) has the equivalent form

ẇ = –βwi – δRiw – εw + αs,

ṡ = εw + γ i – αs,

i̇ = βwi + δRiw – γ i,

Ṙs = σ2sRi – σ1iRs,

Ṙi = σ1iRs – σ2sRi.

(2)

By using the identities w + s + i = 1 and Rs + Ri = 1 in (2), we can facilitate the study of the
model by examining a reduced subsystem which is mainly the compartments where the
virus appears. Thus, the model can be expressed by the following limiting system:

ẇ = –βwi – δRiw – εw + α(1 – w – i),

i̇ = βwi + δRiw – γ i,

Ṙi = σ1i(1 – Ri) – σ2Ri(1 – w – i).

(3)
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Let the feasible region for system (3) be

Ω =
{

(w, i, Ri) : w ≥ 0, i ≥ 0, Ri ≥ 0, w + i ≤ 1, Ri ≤ 1
}

.

It follows, from system (3), that

ẇ|(w=0) = α(1 – i) ≥ 0, i̇|(i=0) = δRiw ≥ 0, Ṙi|(Ri=0) = σ1i ≥ 0.

This implies that, for t ≥ 0, all solutions that are non-negative remain non-negative.
Now, from system (3), we have

(w + i + Ri)′ = –εw + α(1 – w – i) – γ i + σ1(1 – Ri) – σ2Ri(1 – w – i),

≤ –εw – γ i. (4)

On the boundary of Ω , i.e., when w + i = 1 and Ri = 1, we find that the vector field in (4)
points into the interior of Ω . Hence, Ω is positively invariant, that is, every solution of
model (3), with initial conditions in Ω , remains there for all t ≥ 0.

3 Mathematical analysis of the model
In this section, we find the equilibria of model (3). Also, we use the next generation method
[26] to calculate the basic reproductive number. Moreover, we examine the local stability
of the equilibrium points using the linearization method [27] and Routh–Hurwitz’ crite-
rion [28]. The global stability is investigated using Castillo-Chavez et al.’s theorem [29] and
Lyapunov’s theorem [28].

3.1 Equilibrium points and basic reproductive number
In general, the equilibrium points are obtained by equating the rates in system (3) to zero,
that is,

0 = –βwi – δRiw – εw + α(1 – w – i),

0 = βwi + δRiw – γ i,

0 = σ1i(1 – Ri) – σ2Ri(1 – w – i).

(5)

By letting i = 0 in system (5), we obtain the virus-free equilibrium point E0 = ( α
ε+α

, 0, 0),
which exists always. Next, we apply the next generation method on system (3) in order to
compute the basic reproductive number R0. Let x = (i, Ri)T , then system (3) can be written
as

x′ = F(x) – V (x),

where

F(x) =

(
βwi + δRiw

0

)

,

V (x) =

(
γ i

–σ1(1 – Ri) + σ2Ri(1 – w – i)

)

.
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The Jacobian matrices of F(x) and V (x) at the virus-free equilibrium point E0 are, respec-
tively,

f =

(
β α

ε+α
δ α

ε+α

0 0

)

, v =

(
γ 0

–σ1 σ2(1 – α
ε+α

)

)

.

Consequently, the next generation matrix is G = f .v–1, i.e.,

G =

(
βασ2ε+σ1δα(ε+α)

γ σ2ε(ε+α)
δα
σ2ε

0 0

)

.

It follows that the spectral radius of G is the basic reproductive number, thus,

R0 =
βασ2ε + σ1δα(ε + α)

γ σ2ε(ε + α)
.

Now, when i �= 0, the solution to system (5) gives the unique endemic equilibrium point
of model (3), E∗ = (w∗, i∗, R∗

i ), where

w∗ =
α(1 – i∗)d

d(βi∗ + (ε + α)) + δσ1i∗
,

i∗ =
√

b2 – 4ac – b
2a

,

R∗
i =

σ1i∗

d
.

Here,

a = β(α + γ )
[
ε(σ1 – σ2) + ασ1 + σ2γ

]
,

b = βσ2ε(α + γ ) – βα
[
σ1(ε + α) + σ2(γ – ε)

]
+ δσ1(ε + α)(α + γ )

+ γ (ε + α)
[
σ1(ε + α) + σ2(γ – ε)

]
,

c = –δσ1(ε + α)α + γ (ε + α)σ2ε – βασ2ε,

d = σ2ε
(
1 – i∗

)
+

[
σ1(ε + α) + σ2γ

]
i∗.

If R0 > 1, then c < 0 and if σ1 > σ2, then a > 0. This means that
√

b2 – 4ac > b, which leads
to i∗ > 0. As a result, w∗, R∗

i and d are positive since 0 < i∗ < 1. Consequently, E∗ exists
when R0 > 1 and σ1 > σ2.

3.2 Local stability of the equilibrium points
Theorem 1 If R0 < 1, the virus-free equilibrium point E0 is locally asymptotically stable.
If R0 = 1, E0 is locally stable. If R0 > 1, E0 is unstable.
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Proof By linearizing system (3), we obtain the following Jacobian matrix evaluated at the
equilibrium E0 = ( α

ε+α
, 0, 0):

J =

⎛

⎜
⎝

–ε – α –βw0 – α –δw0

0 βw0 – γ δw0

0 σ1 –σ2(1 – w0)

⎞

⎟
⎠ .

One eigenvalue of the Jacobian matrix can be found easily, namely, λ1 = –(ε + α). The rest
of the eigenvalues, λ2,3, satisfy the equation:

λ2 + A1λ + A2 = 0, (6)

where

A1 = –βw0 + γ + σ2(1 – w0),

A2 =
1

ε + α

(
–

βασ2ε

ε + α
+ γ σ2ε – σ1δα

)
.

Solving (6) yields λ2,3 = (–A1 ± √
A2

1 – 4A2)/2. If βα < γ (ε + α), then A1 > 0 and if βασ2ε +
σ1δα(ε + α) < γ σ2ε(ε + α), i.e., R0 < 1, then A2 > 0. Consequently, A1 >

√
A2

1 – 4A2 which
means that λ2,3 < 0. Notice that the condition R0 < 1 leads to βα < γ (ε + α) since

βασ2ε + σ1δα(ε + α) < γ σ2ε(ε + α),

βα +
σ1δα(ε + α)

σ2ε
< γ (ε + α),

βα < γ (ε + α).

Therefore, under the condition R0 < 1, all the eigenvalues have negative real parts, this
proves that E0 is locally asymptotically stable when R0 < 1. On the other hand, when R0 > 1,
then A2 < 0, thus, Eq. (6) has at least one root with positive real part and. Hence, E0 is
unstable provided R0 > 1. If R0 = 1, then the eigenvalues are λ1,2 < 0 and λ3 = 0, thus, E0 is
locally stable. �

Theorem 2 E∗ is locally asymptotically stable with respect to Ω if γ < (α + ε).

Proof The characteristic equation of the Jacobian matrix of the linearized system of (3) at
E∗ is given by

det

⎛

⎜
⎝

λ + βi∗ + δR∗
i + (ε + α) βw∗ + α δw∗

–βi∗ – δR∗
i λ – βw∗ + γ –δw∗

–σ2R∗
i –σ1(1 – R∗

i ) – σ2R∗
i λ + σ1i∗ + σ2(1 – w∗ – i∗)

⎞

⎟
⎠ = 0,

(7)



Al-Tuwairqi and Bahashwan Advances in Difference Equations        (2020) 2020:260 Page 9 of 20

which is equivalent to

det

⎛

⎜
⎝

λ + a11 a12 a13

–a21 λ + a22 –a23

–a31 –a32 λ + a33

⎞

⎟
⎠ = 0,

where a11 = βi∗ + δR∗
i + (ε + α), a12 = βw∗ + α, a13 = δw∗, a21 = βi∗ + δR∗

i , a22 = –βw∗ + γ ,
a23 = δw∗, a31 = σ2R∗

i , a32 = (σ2 – σ1)R∗
i + σ1, a33 = (σ1 – σ2)i∗ + σ2(1 – w∗).

Substituting w∗ = γ i∗
βi∗+δR∗

i
in a22, we get

a22 =
γ δR∗

i
βi∗ + δR∗

i
> 0.

Moreover, since σ1 > σ2 is the existence condition of E∗, then a32 and a33 are positive.
Clearly, the rest of the a are positive also.

By expanding the determinant we get the following cubic equation in λ:

λ3 + C1λ
2 + C2λ + C3 = 0, (8)

where

C1 = a11 + a22 + a33,

C2 = a11a22 + a11a33 + a22a33 + a13a31 – a23a32 + a12a21,

C3 = a13a21a32 + a13a22a31 – a11a23a32 + a12a23a31 + a11a22a33 + a12a21a33.

According to the Hurwitz criteria,

H1 = C1 = (a11 + a22 + a33) > 0,

H2 = C1C2 – C3

= (a11 + a33)a13a31 – (a22 + a33)a23a32 + (a11 + a22)a11a22 + (a11 + a33)a11a33

+ (a22 + a33)a23a32 + 2a11a22a33 – a13a21a32 – a12a23a31 + (a11 + a22)a12a21.

Taking the term (a22 + a33) as a common factor and evaluating the term a22a33 – a23a32,
we have

a22a33 – a23a32 =
(
–βw∗ + γ

)(σ1i∗

R∗
i

)
–

(
δw∗)(–(σ1 – σ2)R∗

i + σ1
)

>
(
δσ1w∗ – δσ1w∗)

= 0.

Here, we used (σ1 – σ2)i∗ + σ2(1 – w∗) = σ1i∗
R∗

i
and i∗ = δw∗R∗

i
γ –βw∗ . Therefore, (a22 + a33)(a22a33 –

a23a32) ≥ 0.
Next, we evaluate the terms

a11a22a33 + a11a13a31 – a12a23a31

=
(
βi∗ + δR∗

i + (ε + α)
)(

–βw∗ + γ
)(

σ1i∗ + σ2
(
1 – i∗ – w∗))
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+
(
δw∗)(βi∗ + δR∗

i + (ε + α)
)(

σ2R∗
i
)

–
(
δw∗)(βw∗ + α

)(
σ2R∗

i
)

=
(
βi∗ + (ε + α)

)(
–βw∗ + γ

)(
σ1i∗ + σ2

(
1 – i∗ – w∗))

+
(
δR∗

i
)(

–βw∗ + γ
)(

σ1i∗ + σ2
(
1 – i∗

))
+ δβσ2R∗

i w∗2 – γ δσ2R∗
i w∗

+
(
δw∗)(βi∗ + δR∗

i + ε
)(

σ2R∗
i
)

– δβσ2R∗
i w∗2.

By substituting i∗ = δw∗R∗
i

γ –βw∗ in the above equation and since σ1 > σ2 leads to –σ2 > –σ1, we
get

a11a22a33 + a11a13a31 – a12a23a31

≥ βi∗
(
–βw∗ + γ

)(
σ1i∗ + σ2

(
1 – i∗ – w∗)) + (ε + α)

(
–βw∗ + γ

)

×
(

σ1

(
δw∗R∗

i
γ – βw∗

))
+ (ε + α)

(
–βw∗ + γ

)(
σ2

(
1 – i∗ – w∗)) +

(
δR∗

i
)

× (
–βw∗ + γ

)(
σ1i∗ + σ2

(
1 – i∗

))
+

(
δw∗)(βi∗ + δR∗

i + ε
)(

σ2R∗
i
)

– γ δσ1R∗
i w∗

= βi∗
(
–βw∗ + γ

)(
σ1i∗ + σ2

(
1 – i∗ – w∗)) + (ε + α – γ )

(
σ1δw∗R∗

i
)

+ (ε + α)
(
–βw∗ + γ

)(
σ2

(
1 – i∗ – w∗)) +

(
δR∗

i
)(

–βw∗ + γ
)

× (
σ1i∗ + σ2

(
1 – i∗

))
+

(
δw∗)(βi∗ + δR∗

i + ε
)(

σ2R∗
i
)
.

Thus, a11a22a33 + a11a13a31 – a12a23a31 ≥ 0 if γ < ε + α. Lastly, we evaluate the terms

a11a22a33 – a13a21a32

=
(

γ i∗

w∗ + (ε + α)
)(

γ – βw∗)
(

σ1i∗

R∗
i

)
– δw∗

(
γ i∗

w∗

)(
(σ2 – σ1)R∗

i + σ1
)

≥
(

γ i∗

w∗ + (ε + α)
)(

γ – βw∗)
(

σ1( δw∗R∗
i

γ –βw∗ )
R∗

i

)
– δw∗

(
γ i∗

w∗

)
(σ1)

= γ σ1δi∗ + (ε + α)σ1δw∗ – γ σ1δi∗

= (ε + α)σ1δw∗

> 0.

Hence, H2 > 0 if γ < ε + α. Calculating H3, we get

H3 = C3H2 = (a13a21a32 + a13a22a31 + a11a22a33 – a11a23a32 + a12a23a31 + a12a21a33)H2.

We take the terms

a13a21a32 + a11a22a33 – a11a23a32

= δw∗
(

γ i∗

w∗

)(
(σ2 – σ1)R∗

i + σ1
)

+
(
βi∗ + δR∗

i + (ε + α)
)(

–βw∗ + γ
)

×
(

σ1i∗

R∗
i

)
– δw∗

(
γ i∗

w∗ + (ε + α)
)(

(σ2 – σ1)R∗
i + σ1

)
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=
(
βi∗ + δR∗

i + (ε + α)
)(

–βw∗ + γ
)(σ1i∗

R∗
i

)
– δw∗(ε + α)

× (
(σ2 – σ1)R∗

i + σ1
)

≥ (
βi∗ + δR∗

i + (ε + α)
)(

–βw∗ + γ
)(σ1( δw∗R∗

i
γ –βw∗ )
R∗

i

)
– δw∗(ε + α)(σ1)

=
(
βi∗ + δR∗

i + (ε + α)
)(

σ1δw∗) – δw∗(ε + α)(σ1)

=
(
βi∗ + δR∗

i
)(

σ1δw∗)

> 0.

Hence, C3 > 0 and therefore H3 is positive. Since H1 > 0, H2 > 0 and H3 > 0, all the eigen-
values of Eq. (8) have negative real parts. Thus, if γ < ε + α, then the endemic equilibrium
point E∗ is locally asymptotically stable. �

3.3 Global stability of the equilibrium points
First, we present some theories that we will use to investigate the stability of the virus-free
equilibrium point of system (3).

Lemma 1 ([29]) Consider a disease model system written in the form:

dX
dt

= F(X, Y ),

dY
dt

= G(X, Y ), G(X, 0) = 0,
(9)

where X ∈ Rm denotes (its components) the number of uninfected individuals and Y ∈ Rn

denotes (its components) the number of infected individuals including latent, infectious,
etc. U0 = (x0, 0) denotes the disease-free equilibrium of system (9). Assume the conditions
(C1) and (C2) below:

(C1) For dX
dt = F(X, 0), x0 is globally asymptotically stable,

(C2) G(X, Y ) = AY – Ĝ(X, Y ), with Ĝ(X, Y ) ≥ 0 for (X, Y ) ∈ Ω ,
where A = ∂G

∂Y (x0, 0) has all non-negative off-diagonal elements and Ω is the region where
the model makes biological sense.

If system (9) satisfies the above two conditions then the following theorems hold.

Theorem 3 ([29]) The fixed point U0 = (x0, 0) is a globally asymptotic stable equilibrium
of (9) provided that R0 < 1 and that assumptions (Cl) and (C2) are satisfied.

Theorem 4 The virus-free equilibrium E0 of system (3) is globally asymptotically stable
with respect to Ω if σ2 < σ1, R0 < 1 and the assumptions in Lemma 1 are satisfied.

Proof Apply Lemma 1 to system (3). Consider X = w and Y =
[ i

Ri

]
.

When i = Ri = 0, the uninfected subsystem becomes

dw
dt

= α – (ε + α)w, (10)
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which has the solution

w(t) =
α

ε + α
+ e–(ε+α)t

(
w(0) –

α

ε + α

)
.

Clearly, w(t) → α
ε+α

= w0 as t → ∞ regardless of the initial condition value w(0). Thus,
condition (C1) from Lemma 1 is satisfied.

Next, we can write the right hand side of the infectious subsystem as

dY
dt

= G(X, Y ) =

[
βwi + δwRi – γ i

σ1i – σ1iRi – σ2Ri(1 – w – i)

]

=

[
βw0 – γ δw0

σ1 –σ2w0

][
i

Ri

]

–

[
0

σ1iRi – σ2iRi

]

= AY – Ĝ(X, Y ),

where

A =

[
βw0 – γ δw0

σ1 –σ2w0

]

, Ĝ =

[
0

σ1iRi – σ2iRi

]

.

Clearly, A has all non-negative off-diagonal elements, and Ĝ(X, Y ) ≥ 0 for (X, Y ) ∈ Ω if
σ1 > σ2. Thus, the condition (C2) in Lemma 1 hold for system (3) when σ1 > σ2. Hence E0

is globally asymptotically stable if σ2 < σ1 and R0 < 1. �

Next, we use Lyapunov’s theorem to examine the global stability of the endemic equi-
librium point of system (3).

Theorem 5 The endemic equilibrium E∗ of system (3) is globally stable with respect to Ω

if β > α.

Proof Define the Lyapunov function as

L(w, i, Ri) =
σ1(1 + R∗

i )
α

(
w – w∗ – w∗ ln

w
w∗

)
+

σ1(1 + R∗
i )

α

(
i – i∗ – i∗ ln

i
i∗

)

+
(

Ri – R∗
i – R∗

i ln
Ri

R∗
i

)
.

Clearly, L is a positive definite function. Computing the derivative of L along the solutions
of system (3), we obtain

L′ =
σ1(1 + R∗

i )
α

(
1 –

w∗

w

)
w′ +

σ1(1 + R∗
i )

α

(
1 –

i∗

i

)
i′ +

(
1 –

R∗
i

Ri

)
R′

i

=
σ1(1 + R∗

i )
α

(
1 –

w∗

w

)(
–βwi – δRiw – εw + α(1 – w – i)

)

+
σ1(1 + R∗

i )
α

(
1 –

i∗

i

)
(βwi + δRiw – γ i)

+
(

1 –
R∗

i
Ri

)(
σ1i(1 – Ri) – σ2Ri(1 – w – i)

)
. (11)
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Since E∗ is an equilibrium point to system (3),

α = βw∗i∗ + δR∗
i w∗ + (ε + α)w∗ + αi∗, (12)

γ =
1
i∗

(
βw∗i∗ + δR∗

i w∗), (13)

σ2 =
σ1i∗

R∗
i

– σ1i∗ + σ2w∗ + σ2i∗. (14)

Thus, using (12)–(14) in (11), we have

L′ =
σ1(1 + R∗

i )
α

(
1 –

w∗

w

)(
–βwi – δRiw – (ε + α)w – αi + βw∗i∗ + δR∗

i w∗ + (ε + α)w∗

+ αi∗
)

+
σ1(1 + R∗

i )
α

(
1 –

i∗

i

)(
βwi + δRiw –

i
i∗

(
βw∗i∗ + δR∗

i w∗)
)

+
(

1 –
R∗

i
Ri

)
(σ1i(1 – Ri) + σ2Ri(w + i) – Ri

(
σ1i∗

R∗
i

– σ1i∗ + σ2
(
w∗ + i∗

))

=
σ1(1 + R∗

i )
α

(
1 –

w∗

w

)[
βw∗i∗

(
1 –

wi
w∗i∗

)
+ δR∗

i w∗
(

1 –
Riw

R∗
1w∗

)

+ (ε + α)w∗
(

1 –
w
w∗

)
+ αi∗

(
1 –

i
i∗

)]

+
σ1(1 + R∗

i )
α

(
1 –

i∗

i

)[
βw∗i∗

(
wi

w∗i∗
–

i
i∗

)
+ δR∗

i w∗
(

Riw
R∗

i w∗ –
i
i∗

)]

+
(

1 –
R∗

i
Ri

)[
σ1i∗

(
i
i∗

–
Ri

R∗
i

)
+ σ1R∗

i i∗
(

Ri

R∗
i

–
iRi

i∗R∗
i

)
+ σ2R∗

i w∗
(

Riw
R∗

i w∗ –
Ri

R∗
i

)

+ σ2R∗
i i∗

(
iRi

i∗R∗
i

–
Ri

R∗
i

)]
. (15)

Collecting and simplifying terms yield

L′ =
σ1(1 + R∗

i )
α

[
βw∗i∗

(
2 –

w∗

w
–

w
w∗

)

+ δR∗
i w∗

(
4 –

w∗

w
–

i
i∗

–
R∗

i
Ri

–
Riwi∗

R∗
i w∗i

+
R∗

i
Ri

+
Ri

R∗
i

– 2
)

+ (ε + α)w∗
(

2 –
w∗

w
–

w
w∗

)
+ αi∗

(
1 –

i
i∗

–
w∗

w
+

w∗i
wi∗

)]

+ σ1i∗
(

1 –
Ri

R∗
i

+
i
i∗

–
R∗

i i
Rii∗

)
+ σ1R∗

i i∗
(

–1 +
Ri

R∗
i

+
i
i∗

–
Rii

R∗
i i∗

)

+ σ2R∗
i w∗

(
1 +

Riw
R∗

i w∗ –
w
w∗ –

Ri

R∗
i

)
+ σ2R∗

i i∗
(

1 –
Ri

R∗
i

–
i
i∗

+
Rii

R∗
i i∗

)
. (16)

From the inequality of arithmetic and geometric means, we have

2 –
w∗

w
–

w
w∗ ≤ 0,

4 –
w∗

w
–

i
i∗

–
R∗

i
Ri

–
Riwi∗

R∗
i w∗i

≤ 0.
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Employing the above inequalities and recollecting terms give

L′ ≤ C +
R∗

i
Ri

(
σ1δR∗

i w∗(1 + R∗
i )

α

)

+
Ri

R∗
i

(
σ1δR∗

i w∗(1 + R∗
i )

α
+ σ1i∗

(
R∗

i – 1
)

– σ2R∗
i
(
w∗ + i∗

))

+
i
i∗

(
–σ1i∗

(
1 + R∗

i
)

+ σ1i∗
(
1 + R∗

i
)

– σ2R∗
i i∗

)
–

w∗

w
σ1i∗

(
1 + R∗

i
)

–
w
w∗ σ2R∗

i w∗

+
w∗i
wi∗

(
σ1i∗

(
1 + R∗

i
))

– σ1i∗
R∗

i i
Rii∗

+
Rii

R∗
i i∗

(σ2 – σ1)R∗
i i∗ + σ2R∗

i w∗ Riw
R∗

i w∗ , (17)

where

C = –
2σ1δR∗

i w∗(1 + R∗
i )

α
+ σ1i∗

(
1 + R∗

i
)

+ σ1i∗
(
1 – R∗

i
)

+ σ2R∗
i
(
w∗ + i∗

)
.

Again using the fact that E∗ is an equilibrium point, we have

C ≤ σ1i∗
(
1 + R∗

i
)

+ σ2R∗
i

=
σ1

α

(
1 + R∗

i
)(

–βw∗i∗ – δR∗
i i∗ – εw∗ + α – αw∗)

+
σ2

δw∗
(
–βw∗i∗ – εw∗ + α – α

(
w∗ + i∗

))
.

Since β > βw∗i∗, we have C ≤ 0 if β > α. Accordingly,

L′ ≤ R∗
i

Ri

σ1(1 + R∗
i )

α

(
–βw∗i∗ – εw∗ + α – α

(
w∗ + i∗

))
+

Ri

R∗
i

(
σ1(1 + R∗

i )
α

[
–βw∗i∗

– εw∗ + α – α
(
w∗ + i∗

)]
– σ2R∗

i

)
–

i
i∗

σ2R∗
i i∗ +

w
w∗

(
–σ1i∗

(
1 + R∗

i
)

– σ2R∗
i w∗)

+
w∗i
wi∗

σ1(1 + R∗
i )

α

(
–βw∗i∗ – δR∗

i i∗ – εw∗ + α – αw∗) – σ1i∗
R∗

i i
Rii∗

+
Rii

R∗
i i∗

(σ2 – σ1)R∗
i i∗ +

Riw
R∗

i w∗
σ2

δ

(
–βw∗i∗ – εw∗ + α – α

(
w∗ + i∗

))
. (18)

Since E∗ exists when σ1 > σ2, it follows that L′ ≤ 0 if β > α. Hence, E∗ is globally stable
in Ω . �

4 Numerical experiments
In this section, some numerical examples are conducted with the aid of MATLAB. In par-
ticular, we consider two different specifications for the parameters to substantiate the an-
alytical results in the previous section. All the simulations are based on a network size
of N = 100 computers and RN = 100 removable devices. Consequently, the results are ex-
pressed in terms of percentage of the total network size.

Example 1 (Virus-free equilibrium point) Let the parameters in model (3) be as follows:
ε = 0.2, α = 0.04, γ = 0.1, σ1 = 0.05, σ2 = 0.03, δ = 0.03, β = 0.02. Here, the threshold is
R0 = 0.1333, which is less than unity. Therefore, the system in (3) will approach the virus-
free equilibrium point E0 according to Theorem 1.
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Figure 2 Time variation of compartments in model (3) with different initial conditions for R0 < 1

Figure 2 shows the time evolution of the compartments in model (3) for different initial
conditions with parameters set as in Example 1. It can be seen that both the infected com-
puters and the infected removable devices eventually tend to extinction. However, weak
computers tend to an equilibrium level with time. Thus, the solution curves converge to
the virus-free equilibrium E0 = (0.1667, 0, 0). Hence, the numerical solution agrees with
the analytical result in Theorem 1.

Example 2 (Endemic equilibrium point) In this example, we set the parameters to differ-
ent values as follows: ε = 0.25, α = 0.3, γ = 0.1, σ1 = 0.4, σ2 = 0.3, δ = 0.5, β = 0.7. Cal-
culating the threshold, we obtain R0 = 11.818 > 1. Also, the condition σ1 > σ2 is satisfied,
thus, the endemic equilibrium E∗ exists. Moreover, the parameters fulfill the conditions:
γ < ε + α (Theorem 2) and β > α (Theorem 5), as a result, the system in (3) approximates
the endemic equilibrium E∗.

The time variation of the compartments in model (3) with parameters specified as in
Example 2 is displayed in Fig. 3. We see that, for different initial conditions, the infected
computers and removable devices eventually reach an equilibrium level that is higher than
the equilibrium level reached by weak computers. Consequently, the solution curves con-
verge to the endemic equilibrium E∗ = (0.0777, 0.6431, 0.7544). Hence, the simulations are
consistent with the qualitative analysis in Theorem 2.

4.1 Sensitivity analysis
The basic reproductive number R0 plays a very important role in the design of efficient
control strategies. Specifically, if R0 is less than unity, the virus outbreak dies out. Conse-
quently, a reduction in the numeric value of R0 will be the main goal of all control strate-
gies. Therefore, it is crucial to take various actions to control the system parameters so that
R0 is remarkably below one. To examine the sensitivity of R0 to the model’s parameters,
we vary R0 with respect to one parameter each time. Accordingly, we have the following
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Figure 3 Time variation of compartments in model (3) with different initial conditions for R0 > 1

variations of R0, taking into account that 0 < α, ε,γ , δ,β ,σ1,σ2 ≤ 1:

∂R0

∂β
=

α

γ (ε + α)
> 0,

∂R0

∂δ
=

σ1α

γσ2ε
> 0,

∂R0

∂σ1
=

δα

γ σ2ε
> 0,

∂R0

∂α
=

ε2βσ2 + σ1δ(ε + α)2

γ σ2ε(ε + α)2 > 0,

∂R0

∂γ
=

–[βασ2ε + σ1δα(ε + α)]
γ 2σ2ε(ε + α)

< 0,

∂R0

∂σ2
=

–σ1δα

εγ σ 2
2

< 0,

∂R0

∂ε
=

–[σ1δα(ε + α)(α + 1) + σ2αβε2]
γ σ2ε2(ε + α)2 < 0.

In the above calculations, we considered that all the variables of R0 are constant except
for one. We can see that R0 decreases with increasing γ , ε and σ2. On the other hand,
R0 has a proportional increase relationship with the parameters: β , α, σ1 and δ. Figure 4
demonstrates these results. Hence, from the sensitivity analysis, we conclude that the basic
parameters to control the outbreak of viruses are: ε, the rate of weak computers becoming
strong; γ , the recovery rate of infected computers; and σ2, the recovery rate of infected
removable devices. These parameters are primarily concerned with user awareness toward
immunizing computers and removable devices against viruses. Therefore, it is essential to
protect all computers with regularly updated anti-virus software that is scheduled to be
scanned every day. Also, we are to check each removable device against viruses before use.

Furthermore, Fig. 5 illustrates the impact of high user awareness on network security
through the key parameters: γ , ε and σ2. We see that the increase in these parameters
leads to a decrease in both i-node and Ri-node. Moreover, a further increase in the pa-
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Figure 4 The basic reproduction number R0 of model (3) versus the model’s parameters

Figure 5 Evolution of i and Ri for: (a) different values of ε with α = 0.56, γ = 0.3, σ1 = 0.1, σ2 = 0.3, δ = 0.2,
β = 0.4, (b) different values of σ2 with ε = 0.28, α = 0.56, γ = 0.3, σ1 = 0.1, δ = 0.33, β = 0.4, (c) different values
of γ with ε = 0.28, α = 0.56, σ1 = 0.1, σ2 = 0.3, δ = 0.2, β = 0.4

rameters yields the virus-free equilibrium. On the contrary, Fig. 6 demonstrates the effect
of low user awareness on network security. Actions such as plugging a removable device
into an infected computer and neglecting anti-virus updates are represented in the pa-
rameters: σ1 and α, that is, the infection rate of a removable device and the rate of strong
computers becoming weak. The figure shows that the increase in these parameters rises
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Figure 6 Evolution of i and Ri for: (a) different values of α with ε = 0.28, γ = 0.3, σ1 = 0.1, σ2 = 0.3, δ = 0.2,
β = 0.4, (b) different values of σ1 with ε = 0.28, α = 0.56, γ = 0.7, σ2 = 0.3, δ = 0.2, β = 0.4

Figure 7 Time variation of the removable device compartment, Ri(t), with different values of γ (recovery rate)

the proportion of infected computers and removable devices. Higher values of σ1 and α

lead to the endemic equilibrium. Finally, Fig. 7 depicts the effect of γ on the size of infected
removable devices. We see that when the recovery rate of infected computers increases, a
decrease in the percentage of infected removable devices results.

Based on the sensitivity analysis and simulation results, the following suggestions are
proposed to control the virus outbreak:

• Installing effective anti-virus software and updating it regularly. This reduces the
infectious rate β and the W -node conversion rate α. At the same time, it increases the
rate ε and the recovery rate γ .

• Filtering removable devices with anti-virus software and disconnecting them from the
computer whenever unused. This minimizes the infectious rates σ1 and δ, while
maximizing the recovery rate σ2.

5 Conclusion
In this paper, we extended the model of computer virus propagation in [6] by introduc-
ing two new compartments representing removable devices, because these devices play
a crucial role in transmitting viruses. The model consists of two populations: computers
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and removable media. We aimed to investigate the influence of diverse levels of protec-
tion on the spread of viruses. We assumed that infected computers and infected remov-
able devices posses infectivity. Up-to-date anti-virus software is powerful enough to keep
computers immune from viruses. The model was analyzed qualitatively using the stability
theory of nonlinear ordinary differential equations. As a result, two equilibrium points
were produced: virus-free and endemic equilibrium points. The stability of both equilib-
rium points was examined. We found that when R0 < 1, the virus-free equilibrium was
locally asymptotically stable, and when σ2 < σ1, it was globally asymptotically stable. On
the other hand, when R0 > 1, σ2 < σ1, and γ < (α + ε), then the endemic equilibrium was
locally asymptotically stable, and it is globally stable when β > α. Furthermore, we showed
that numerical simulations were consistent with the analytical results. In addition, a sen-
sitivity analysis was performed to understand the role of each parameter in dissipating
viruses. We found that an increase in the parameters γ , ε and σ2 leads to a virus-free
equilibrium, a state of high user awareness. However, the rise in the parameters σ1 and α

leads to an endemic equilibrium that represents a decrease in user awareness.
In conclusion, user awareness plays an essential role in limiting the spread of viruses.

Ongoing educational campaigns are recommended regarding the correct use of removable
devices and the protection of computers with updated antivirus software.
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