
Safan Advances in Difference Equations        (2020) 2020:248 
https://doi.org/10.1186/s13662-020-02708-8

R E S E A R C H Open Access

Impact of reduction in contact time activity
of infected individuals on the dynamics
and control of directly transmitted
respiratory infections in SIR models
Muntaser Safan1,2*

*Correspondence:
muntaser_safan@yahoo.com;
msafan@mans.edu.eg
1Mathematics Department, Faculty
of Science, Mansoura University,
Mansoura, Egypt
2Department of Mathematical
Sciences, Faculty of Applied
Science, Umm Al-Qura University,
Makkah, Saudi Arabia

Abstract
This paper aims to study the impact of using an educational strategy on reducing the
efforts needed to control respiratory transmitted infections represented by SIR
models, taking into account heterogeneity in contacts between infected and
non-infected individuals. Therefore, a new incidence function, in which the difference
in contact time activity between infected and non-infected individuals is taken into
account, is formulated. Equilibrium and stability analyses of the model have been
carried out. The model has been extended to include the effect of herd immunity and
the analysis showed that the higher the percent reduction̂Pr in the contact-activity
time of infected individuals is, the lower the critical vaccination coverage level pc
required to eliminate the infection is, and therefore, the lower the infection’s
minimum elimination effort is. Another extension of the basic model to include a
control strategy based on treating infected individuals at rate α with a maximum
capacity treatment I has been considered. The equilibrium analysis showed the
existence of multiple subcritical and supercritical endemic equilibria, while the
stability analysis showed that the model exhibits a Hopf bifurcation. Simulations
showed that the higher the maximum treatment capacity I is, the lower the value of
the critical reduction in infected individuals’ time activity P�

r , at which a Hopf
bifurcation is generated, is. Simulations with parameter values corresponding to the
case of influenza A have been carried out.
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1 Introduction
Epidemiology is often considered the cornerstone of public health. It studies the factors
related to population health and helps to find the scientific basis upon which public health
decision makers put strategies to prevent and control infectious diseases. In this respect,
mathematical epidemiology plays a pivotal role through the formulation, analysis, and de-
ployment of mathematical models describing the spread of the disease of concern [1, 2, 25].
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Mathematical models have been extensively used to help extend our understanding of
the transmission dynamics and controllability of infectious diseases both on the micro-
and macro-scales [9, 10, 20, 24]. Infectious diseases are transmitted directly (e.g. influenza,
measles, smallpox, etc.) and/or indirectly (e.g. cholera, dengue, malaria, Leishminiasis,
etc.). An important term that is crucial while modeling the transmission dynamics of in-
fectious diseases is the incidence term. It describes the dynamics of interaction between
susceptible and infected individuals and accounts for the number of new infected cases
per unit time.

The literature shows the use of various forms of the incidence function, with general
mathematical form g(I, N)S, where S(I) denotes the number of susceptible (infected) in-
dividuals at time t. The term g(I, N) denotes the “force of infection” (i.e., the rate at which
susceptible individuals acquire the infection). The parameter N denotes the total popu-
lation size at time t. Sometimes, the “force of infection” is given by g(I, N) = βIp/(1 + aIq),
where p and q are positive integers and p ≥ q (see for example [15] and the references
therein). However, mostly, it takes the form g(I, N) = βC(N)I/N [10, 28], where β is the
transmission rate [10] and C(N) is the probability that an individual takes part in a contact
[29].

In some papers [1, 5], the incidence term is assumed bilinear (i.e., in mass-action form),
where C(N) = N , while in others [3, 10, 12], a standard incidence form (C(N) = 1) is used.
In other cases, the incidence term is assumed to be saturated (p = q = 1) [4, 19, 29] or
in a Holling-type form (e.g. p = 1 and q = 2) [26]. Other non-linear incidence forms are
also considered in the literature [15]. In this work, we focus on incidence functions of the
standard incidence form.

Our work is motivated basically by the potential attack of infectious diseases (repre-
sented by SIR models) for which neither vaccine nor treatment is basically in hand. There-
fore, self-isolation and self-quarantine are the fundamental strategies used to flatten the
curve or to contain the infection, like the case of the pandemic covid-19. The model has
then been extended to the case of herd immunity, assuming that a vaccine does exist. Fi-
nally, we considered the case of limited treatment supply. In all cases, the model has been
thoroughly analyzed and the conditions ensuring an effective control of the infection are
mostly obtained. The main difference between our modeling approach and the approaches
studied before [1, 3, 10, 22, 25] is the formulation of the incidence function.

Rather than assuming that all individuals have the same availability and desire to contact
with others in the same population, a heterogeneity between infected and non-infected in-
dividuals is taken into account. More precisely, it is assumed that infected individuals tend
to make fewer contacts per unit time than non-infected ones. Therefore, an SIR model
with modified standard incidence function in a demographically stationary population is
formulated and mathematically analyzed in Sect. 2. The introduced incidence form con-
tains a parameter Pr that accounts for the relative reduction in the availability of infected
(with respect to non-infected) individuals to make contacts with other ones. This could be
thought of as an educational way to reduce the burden of the infection with little cost. The
possibility to control the infection with a strategy based on vaccinating a proportion p of
newborns and the impact of increasing the reduction parameter Pr on reducing the crit-
ical vaccination coverage level pc (which is required to eliminate the infection) has been
studied in Sect. 3. Moreover, Sect. 4 is dedicated to study the possibility to contain the
infection with a strategy based on treating infected individuals with a maximum capacity
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treatment in the presence of the reduction parameter Pr . A summary and conclusion for
the results is in Sect. 5.

2 Model building and analysis
To hit the problem, we consider the classical SIR model for a demographically stationary
population

dS
dt

= μN – {New incidences} – μS,

dI
dt

= {New incidences} – (γ + μ)I, (1)

dR
dt

= γ I – μR,

where N is the total population size (assumed constant). The variables S(t), I(t) and R(t)
denote to the number of susceptible, infected and recovered individuals, respectively, at
time t. We have S(t) + I(t) + R(t) = N . In this setting, it is assumed that 1/μ is the average
life expectancy, while γ is the recovery rate of infected individuals. It is assumed further
that the population is homogeneously mixed so that every individual has the same chance
to make contacts with every other one in the population.

In epidemiology, the most interesting contacts are those occurring between suscepti-
ble and infected individuals, resulting in new incidences. The rate of their occurrence is
λ(t)S(t), where λ(t) is the “force of infection”. In the standard incidence setting, the “force of
infection” is given by λ(t) = βI/N , where β is the successful contact rate. This formulation
is implicitly based on the assumption that individuals are available to make contacts all the
time. However, if we consider the fact that individuals tend to stay far from contacts with
others for part of their time (e.g., by either staying indoor lonely, sleeping or any other way
so that they do not stay mingling), then this formulation of the new incidences could be
slightly modified.

Assume that p0 (p1) represents the probability that a non-infected (infected) individ-
ual stays at rest, in the sense that he/she does not make contacts with others. In fact, this
probability could be seen as the proportion of time during which an individual avoids
making contacts with others. Then q0 = 1 – p0 (q1 = 1 – p1) is the proportion of time
during which a non-infected (an infected) individual mingles with other individuals in
the population. Hence, the total number of susceptible individuals who are available to
make contacts at time t is q0S(t), while that of infected individuals is q1I(t). Hence, the
total number of individuals who are available, while a contact is occurring, at time t is
q0[S(t) + R(t)] + q1I(t) = q0N(t) – (q0 – q1)I(t). Thus, the probability that an infected makes
a contact with a susceptible individual at time t is q0S(t)/[q0N(t) + (q1 – q0)I(t)]. Thus, the
total number of incidences that occur per unit time, when q1I(t) infected individuals are
available to contact with susceptible individuals, is given by

New incidences = β × q1I(t) × q0S(t)
q0N(t) + (q1 – q0)I(t)

. (2)

Based on the fact that infections affect negatively on the contact activity of infected indi-
viduals and, therefore, they tend to stay lonely more time than non-infected individuals, we
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may assume that q1 ≤ q0. It is noteworthy that the difference (q0 –q1) represents the reduc-
tion in the proportion of mingling time due to acquiring the infection. Therefore, the per-
cent reduction in the mingling time proportion of infected individuals is ̂Pr = (100 × Pr),
where

Pr = (q0 – q1)/q0 = 1 – q1/q0. (3)

Hence,

New incidences = β × (1 – Pr)q0I(t) × S(t)
N(t) – PrI(t)

. (4)

Thus, our model reads

dS
dt

= μN –
(1 – Pr)q0βS(t)I(t)

N(t) – PrI(t)
– μS,

dI
dt

=
(1 – Pr)q0βS(t)I(t)

N(t) – PrI(t)
– (γ + μ)I, (5)

dR
dt

= γ I – μR,

with the initial conditions S(0), I(0), R(0) > 0 and S(0)+ I(0)+R(0) = N . Model (5) is defined
on the solution set

Ω =
{

(S, I, R) ∈ R3
+, 0 ≤ S ≤ N , 0 ≤ I ≤ N , 0 ≤ R ≤ N , S(t) + I(t) + R(t) = N

}

. (6)

It is worth noting that model (5) is applicable to all infections inducing permanent im-
munity. It could be modified by including infections-induced mortality to describe the
dynamics of lethal infections like smallpox, measles and other lethal diseases like coron-
aviruses, if the latent period is neglected. Also, some researchers use SIR models to de-
scribe the dynamics of single influenza A outbreaks. In the following we present a propo-
sition which summarizes results on the main properties of model (5). Its proof is deferred
to Appendix A.

Proposition 1 The set Ω is positively invariant and attracts all solutions in R3
+. Moreover,

for any nonnegative initial conditions (S(0), I(0), R(0)) ∈ Ω , the solution set (S(t), I(t), R(t))
of the system (5) remain positive for all t > 0. Also, model (5) has a unique solution.

2.1 Final size epidemic
One of the most important concepts is the final size epidemic, as it shows the proportion
of population that experience the infection and get recovered from it at the end of an
epidemic. In this concern, the parameters related to the vital dynamics of model (5) are
omitted and, therefore, we have

dS
dt

= –
(1 – Pr)q0βS(t)I(t)

N(t) – PrI(t)
,

dI
dt

=
(1 – Pr)q0βS(t)I(t)

N(t) – PrI(t)
– γ I,

dR
dt

= γ I,

(7)
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with the initial conditions S(0) = S0, I(0) = I0 and R(0) = 0. The analysis shows that the
proportion z∞ of individuals that experience the infection at the end of the epidemic is
the solution of the non-linear algebraic equation

z∞ =
(

(1 – Pr)2R0 + Pr
)(

(1 – z∞)– Pr
R0(1–Pr ) – 1

)

/
(

R0Pr(1 – Pr)
)

, (8)

where Pr ∈ [0, 1] and R0 = q0β/γ is the basic reproduction number for model (7) if the
reduction Pr = 0. Equation (8) could be reformulated as

z∞ = 1 –
(

Pr + (1 – Pr)2R0

Pr + (1 – Pr)2R0 + Pr(1 – Pr)R0z∞

)
(1–Pr )R0

Pr

= 1 –
(

1 +
Pr(1 – Pr)R0z∞
Pr + (1 – Pr)2R0

)– (1–Pr )R0
Pr

. (9)

It is easy to check that, in the limiting case Pr → 0, Eq. (9) is reduced to the popular and
well-known form

z̄∞ = 1 – exp(–R0z̄∞), (10)

where z̄∞ = limPr→0 z∞.

2.2 Rescaled endemic model
On putting x = S/N , y = I/N and z = R/N , we get

dx
dt

= μ –
(1 – Pr)q0βxy

1 – Pry
– μx,

dy
dt

=
(1 – Pr)q0βxy

1 – Pry
– (γ + μ)y, (11)

dz
dt

= γ y – μz,

where

x + y + z = 1.

If Pr = 0 and q0 = 1, the model is connected to the simple SIR model with proportions
and standard incidence “force of infection”. The time-dependent solutions of model (11)
are shown in Figs. 1 and 2.

2.3 Equilibrium analysis for the rescaled endemic model (11)
The equilibrium analysis of model (11) shows that it has the infection-free equilibrium
(IFE) E0 = (1, 0, 0)′, where the prime ′ denotes vector transpose. This trivial equilibrium is
locally asymptotically stable if and only if the control reproduction number Rc < 1, where

Rc =
(1 – Pr)q0β

γ + μ
= (1 – Pr)R♦, (12)
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Table 1 Physical meaning, value, dimension and references for model states and parameters. (Dim. =
Dimension, Ref. = References, Est. = Estimated, Arbit. = Arbitrary)

Symbol Description Value Dim. Ref.

S(t) Total number of susceptible individuals at time t. – – –
I(t) Total number of infected individuals at time t. – – –
R(t) Total number of recovered individuals at time t. – – –
μ Per-capita birth/death rate. 1/70 Year–1 [8, 20]
β Per-capita effective contact rate at which

susceptible individuals acquire the infection.
553.77 Year–1 Est.

γ Per-capita recovery rate for infected individuals. 365/3.38 Year–1 [20, 27]
α Per-capita treatment rate for infected individuals. 365/2 Year–1 Arbit.
R♦ The basic reproduction number for model (11). 1.525 – [20, 27]
p0 The proportion of time during which a

non-infected individual stays at rest.
0.2 – Arbit.

p1 The proportion of time during which an infected
individual stays at rest.

0.3 – Arbit.

q0 The proportion of time during which a
non-infected individual mingles with other
individuals in the total population.

0.8 – Arbit.

q1 The proportion of time during which an infected
individual mingles with other individuals in the
total population.

0.7 – Arbit.

̂Pr The percent reduction in the mingling
proportion of time due to acquiring the
infection.

12.5 – Arbit.

Figure 1 Time-dependent solutions for model (11) forRc = 0.9 and initial conditions x(0) = 0.6, y(0) = 0.3 and
z(0) = 0.1. Model parameter values are as shown in Table 1.

where

R♦ =
q0β

γ + μ
(13)

is the basic reproduction number for model (11) if the there is no behavioral change be-
tween infected and non-infected individuals (i.e., Pr = 0). The analysis shows further that
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Figure 2 Time-dependent solutions for model (11) forRc = 1.3 and initial conditions x(0) = 0.999,
y(0) = 0.001 and z(0) = 0.0. The prevalence of infection at equilibrium is ȳ = 0.0023. Model parameter values
are as shown in Table 1.

model (11) has a unique endemic equilibrium (UEE) E = (x̄, ȳ, z̄)′, where

x̄ =
γ + (1 – Pr)μ

(1 – Pr)(γ + μ)R♦ – Prμ
=

(

1 – Pr
DI

L0

)

/

(

(1 – Pr)R♦ – Pr
DI

L0

)

, (14)

ȳ =
μ[(1 – Pr)q0β – (γ + μ)]

(γ + μ)[(1 – Pr)q0β – Prμ]
=

DI(Rc – 1)
L0Rc – PrDI

=
DI

L0

(

(1 – Pr)R♦ – 1
)

/

(

(1 – Pr)R♦ – Pr
DI

L0

)

, (15)

z̄ =
γ

μ
ȳ =

(

1 –
DI

L0

)

(

(1 – Pr)R♦ – 1
)

/

(

(1 – Pr)R♦ – Pr
DI

L0

)

, (16)

and
• DI = 1/(γ + μ) is the duration of time spent in the infected state,
• L0 = 1/μ is the expected time of life at birth,
• DI/L0 is the proportion of life-time during which an individual is infected.

Proposition 2 Model (11) has
• an IFE E0 = (1, 0, 0)′ which is locally asymptotically stable if and only if Rc ≤ 1 and is

unstable if Rc > 1;
• an endemic equilibrium (EE) E = (x̄, ȳ, z̄)′ that exists if and only if Rc > 1.

It is noteworthy that the UEE E exists if and only if the control reproduction number
Rc > 1. Moreover, one can check that

∂ ȳ
∂Rc

=
DI

L0

(

1 – Pr
DI

L0

)

/

(

Rc – Pr
DI

L0

)2

> 0. (17)

The relation (17) says that the proportion of infected individuals ȳ in the endemic situ-
ation increases with the increase of the control reproduction number Rc. Moreover ȳ = 0
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at Rc = 1, while

lim
Rc→∞

ȳ =
DI

L0
< 1. (18)

Hence, we show the following proposition.

Proposition 3 The endemic prevalence of infection ȳ increases monotonically with the in-
crease of the control reproduction number Rc and has a supremum sup ȳ = DI/L0.

On the other hand, Eq. (14) says that the proportion x̄ of susceptible individuals in the
endemic situation does not equal the inverse 1/Rc of the control reproduction number.
However, this property holds if and only if Pr = 0. The following proposition summarizes
the above result.

Proposition 4 The proportion of susceptible individuals in the endemic situation does not
equal the inverse of the effective reproduction number Rc but it is given by

x̄ =
(

1 – Pr
DI

L0

)

/

(

Rc – Pr
DI

L0

)

.

2.4 Cross-sectional analysis
If a cross-sectional survey has been applied to determine the proportions x̄, ȳ and z̄ of
subpopulations in the endemic situation, then we may solve the two equations (15) and
(16) together to get

DI

L0
=

ȳ
ȳ + z̄

=
ȳ

1 – x̄
. (19)

Now, we use (19) in (14) and solve in terms of R♦ to get

R♦ =
1 – Prȳ

(1 – Pr)x̄
.

Hence,

Rc = (1 – Pr)R♦ =
1 – Prȳ

x̄
<

1
x̄

. (20)

Equation (19) says that, if the life expectancy L0 is known, then a cross-sectional study may
help estimate the average length of the infectious period. However, Eq. (20) says that Rc

could be estimated from a cross-sectional study once x̄, ȳ and Pr are known. It says also
that the control reproduction number Rc decreases with the increase of Pr . Moreover,
since R♦ = Rc|Pr=0, then the percent reduction in Rc due to a ̂Pr percent reduction in
infected individuals time activity is ̂Rc where

̂Rc =
R♦ – Rc

R♦
= Pr =

̂Pr

100
(21)

and ̂Pr = (100 × Pr).
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2.5 Stability analysis
To establish the local stability analysis of the EE E = (x̄, ȳ, z̄)′, we linearize model (11)
around that equilibrium and compute the corresponding 3 × 3 Jacobian matrix J . This
matrix has an eigenvalue –μ, while its other two eigenvalues are those of the submatrix

Jsub =

(

–μ/x̄ –(γ + μ)ȳ/(x̄Rc)
μ(1 – x̄)/x̄ –(γ + μ)[1 + ȳ/(x̄Rc)]

)

. (22)

It is easy to check that the determinant of Jsub is

det(Jsub) =
μ(γ + μ)

x̄

(

1 –
ȳ
Rc

)

>
μ(γ + μ)

x̄

(

1 –
1
Rc

)

,

which is positive for values of Rc > 1. It can also be checked that its trace reads

Tr(Jsub) = –(γ + μ) –
μ

x̄

(

1 –
L0

DI
· ȳ
Rc

)

.

From (18), we have ȳ < DI/L0, which implies that L0ȳ/DI < 1. It induces, for Rc > 1, that

L0

DI
· ȳ
Rc

< 1.

Hence, the trace of the matrix Jsub is negative, for values of Rc > 1. Therefore, the eigenval-
ues of the Jacobian matrix J are all negative for Rc > 1 and we show the following propo-
sition.

Proposition 5 The EE E = (x̄, ȳ, z̄)′ is locally asymptotically stable if and only if Rc > 1.

Based on the above analysis, the infection does not persist if the control reproduction
number Rc < 1. This is equivalent to having

Pr > 1 –
1
R♦

. (23)

The condition (23) says that the infection could be eliminated from the population if con-
trol measures aiming at exceeding the percent reduction in the mingling time of infected
individuals compared to non-infected ones to slightly above 100(1 – 1/R♦). Other control
strategies may include vaccination of newborns or treating infected individuals, which are
going to be discussed below.

3 Herd immunity
If we assume that a proportion p of newborns gets vaccinated immediately after birth,
then the resulting rescaled model reads

dx
dt

= (1 – p)μ –
(1 – Pr)q0βxy

1 – Pry
– μx,

dy
dt

=
(1 – Pr)q0βxy

1 – Pry
– (γ + μ)y,

dz
dt

= pμ + γ y – μz.

(24)
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Model (24) has the IFE E0v = (1 – p, 0, p)′ in addition to the UEE Ev = (x̄v, ȳv, z̄v)′, where

x̄v =
(

1 – (1 – p)Pr
DI

L0

)

/

(

(1 – Pr)R♦ – Pr
DI

L0

)

,

ȳv =
DI

L0

(

(1 – p)(1 – Pr)R♦ – 1
)

/

(

(1 – Pr)R♦ – Pr
DI

L0

)

,

z̄v = p +
(

1 –
DI

L0

)

(

(1 – p)(1 – Pr)R♦ – 1
)

/

(

(1 – Pr)R♦ – Pr
DI

L0

)

.

This UEE exists if and only if the effective reproduction number in the presence of vacci-
nation

Rv = (1 – p)Rc = (1 – p)(1 – Pr)R♦ (25)

is bigger than one. In a similar way to the previous section, E0v could be proven locally
asymptotically stable if and only if Rv < 1, while Ev could be shown to be locally asymp-
totically stable whenever it exists. Therefore, we show the following proposition.

Proposition 6 If a proportion p of newborns is vaccinated immediately after birth, then
the resulting model (24) has an IFE that is locally asymptotically stable if and only if Rv < 1.
Moreover, model (24) has a UEE that exists and is locally asymptotically stable if and only
if Rv > 1.

The inequality Rv < 1 is equivalent to p > pc, where

pc = 1 –
1

(1 – Pr)R♦
= 1 –

100
(100 –̂Pr)R♦

(26)

is the critical vaccination coverage level required to eliminate the infection. It is clear that
pc > 0 if and only if Pr > 1 – 1/R♦. Also, it is noteworthy that p0 = (1 – 1/R♦) ≥ pc is the
critical vaccination coverage level required to eliminate the infection if infected individu-
als do not reduce their contact-activity time (i.e., ̂Pr = 0). Therefore,

p0 – pc =
̂Pr

(100 –̂Pr)R♦

represents the reduction in that critical vaccination coverage level due to âPr = (100 × Pr)
percent reduction in the contact time activity of infected individuals. Thus, the percent
reduction in that critical vaccination coverage level due to a ̂Pr percent reduction in the
contact time activity of infected individuals is ̂Pc = 100 × p̂c, where

p̂c =
p0 – pc

p0
=

̂Pr

(100 –̂Pr)(R♦ – 1)
. (27)

Therefore,

̂Pc =
100 ×̂Pr

(100 –̂Pr)(R♦ – 1)
. (28)
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Figure 3 The critical vaccination coverage level pc required to eliminate the infection as a function of the
percent reduction in the contact time activity of infected individualŝPr is shown in part (a), while the percent
reduction in the critical vaccination coverage level ̂Pc required to eliminate the infection as a function of the
percent reduction in the contact time activity of infected individualŝPr is shown in part (b), for different
values of the basic reproduction numberR♦

It is clear that ̂Pc = 100 when ̂Pr = 100(1 – 1/R♦). Moreover, it is easy to check that
∂ ̂Pc/∂R♦ < 0, while ∂ ̂Pc/∂̂Pr > 0. Hence, the higher the percent reduction in infected in-
dividuals time activity is, the higher the percent reduction in the critical vaccination cov-
erage level is. Figure 3 shows both pc and ̂Pc as functions of ̂Pr , for three different values
of the basic reproduction number R♦. Part (a) of the figure shows that pc decreases with
the increase of ̂Pr and increases with the increase of R♦. Thus, the higher the percent
reduction in infected individuals contact-activity time is, the lower the critical vaccina-
tion coverage required to eliminate the infection is. On the other hand, part (b) of Fig. 3
shows that ̂Pc increases with the increase of ̂Pr and decreases with the increase of R♦.
In epidemiological terms, we deduce that the higher the percent reduction in infected
individuals’ contact-activity time is, the higher the percent reduction in the critical vac-
cination coverage required to eliminate the infection is which in turn reduces the cost of
vaccination needed to protect the population from the infection.

Equation (28) may help us determine the required reduction in infected individuals
contact-activity time if vaccination coverage is limited. For example, the value of ̂Pr cor-
responding to a 50% reduction in the critical vaccination coverage is given by

̂P50%
r =

100(R♦ – 1)
R♦ + 1

= 100
(

1 –
2

R♦ + 1

)

, (29)

which increases with the increase of the basic reproduction number R♦. Consequently,
we show the following proposition.

Proposition 7 The percent reduction in the critical vaccination coverage level required to
eliminate the infection due to âPr percent reduction in the contact-activity time of infected
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individuals is given by Eq. (28). Moreover, a 50% reduction in the cost of eliminating the
infection is attained by reducing the infected individuals’ contact-activity time by 100 ×
(R♦ – 1)/(R♦ + 1) percent.

4 Maximum capacity treatment
Assume that the infection is treatable and there is a maximum treatment capacity, in the
sense that at most a proportion Y = I/N > 0 could be treated with rate α. Hence, for I < I ,
the total number of infected individuals who get treated at time t is αI , while if I ≥ I it is
αI . In mathematical terms, the total number of treated individuals at time t is in stepwise
form and reads

T(I) =

{

αI if I < I ,
αI if I ≥ I .

(30)

Hence, model (11) with treatment reads

dx
dt

= μ –
(1 – Pr)q0βxy

1 – Pry
– μx,

dy
dt

=
(1 – Pr)q0βxy

1 – Pry
– (γ + μ)y – T(y), (31)

dz
dt

= γ y + T(y) – μz,

where

T(y) =

{

αy if y < Y ,
αY if y ≥ Y ,

(32)

represents the proportion of infected individuals who get treated per unit time.

4.1 Equilibrium and stability analyses for model (31)
The equilibrium analysis shows that model (31) has the IFE E0,T = (1, 0, 0)′ which could
easily be proven to be locally asymptotically stable if and only if the effective reproduction
number in the presence of treatment RT < 1, where

RT =
(1 – Pr)q0β

γ + μ + α
= (1 – Pr)RT

♦, (33)

where RT
♦ = q0β/(γ +μ+α) is the basic reproduction number of model (31) in the absence

of any behavioral change for infected individuals (i.e., Pr = 0). Moreover, the analysis shows
that model (31) has endemic equilibria for which two cases arise.

Case (1): I < I (i.e., y < Y).
In this case, there is a bifurcation point in the plane (β , y) at the point P0 = (β0, 0),

where

β0 =
γ + μ + α

q0(1 – Pr)
, (34)
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at which the bifurcation is forward (i.e., supercritical). The EE is E1 = (x1, y1, z1)′,
where

x1 =
γ + μ + α – Prμ

(1 – Pr)q0β – Prμ
=

1 – PrDT
I /L0

(1 – Pr)RT
♦ – PrDT

I /L0
=

1 – PrDT
I /L0

RT – PrDT
I /L0

,

y1 =
μ

γ + μ + α
× (1 – Pr)q0β – (γ + μ + α)

(1 – Pr)q0β – Prμ
,

=
DT

I
L0

× (1 – Pr)RT
♦ – 1

(1 – Pr)RT
♦ – PrDT

I /L0
=

DT
I

L0
× RT – 1

RT – PrDT
I /L0

, (35)

z1 =
(

1 –
μ

γ + μ + α

)

(1 – Pr)q0β – (γ + μ + α)
(1 – Pr)q0β – Prμ

=
(

1 –
DT

I
L0

) (1 – Pr)RT
♦ – 1

(1 – Pr)RT
♦ – PrDT

I /L0
=

(

1 –
DT

I
L0

) RT – 1
RT – PrDT

I /L0
,

and DT
I = 1/(γ + μ + α) is the time spent in the infected state in the presence of treat-

ment.
It is noteworthy that the EE E1 does exist if and only if

1
1 – Pr

< RT
♦ <

(1 – PrY)DT
I /L0

(1 – Pr)(DT
I /L0 – Y)

. (36)

The following proposition summarizes the above results.

Proposition 8 If y < Y , then model (31) has
• an IFE E0,T = (1, 0, 0)′ which is locally asymptotically stable if and only if RT < 1;
• a bifurcation point P0 = (β0, 0) in the plane (β , y) at which the bifurcation is

supercritical (forward);
• a UEE that exists if and only if the inequality (36) holds.

The stability analysis shows that the EE E1 is locally asymptotically stable whenever it
exists and, therefore, we show the following proposition whose proof is deferred to Ap-
pendix B.

Proposition 9 The EE E1 for model (31) is locally asymptotically stable whenever it exists.

Case (2): I ≥ I (i.e., y ≥ Y).
In this case, the mathematical computations show that the proportions of the three

subpopulations in the endemic situation satisfy the relations

x̃ =
(

1 –
α

μ
Y

)

–
γ + μ

μ
ỹ, (37)

z̃ =
γ

μ
ỹ +

α

μ
Y , (38)

and ỹ is the solution of the quadratic equation

F(β , ỹ) =
(

(1 – Pr)q0β – Prμ
)

(γ + μ)̃y2

+
(

μ(γ + μ) – PrμαY – (1 – Pr)(μ – αY)q0β
)

ỹ + μαY

= 0, (39)
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where Y ≤ ỹ < 1. Once a solution ỹ of (39) is obtained, we substitute in (37) and (38)
to get the other two proportions, x̃ and z̃. Therefore, there is a one-to-one correspon-
dence between the solution(s) of (39) and those of (37) and (38).

Now, it is easy to check from (35) that

∂y1

∂RT
♦

=
DT

I
L0

× (1 – Pr)(1 – PrDT
I /L0)

((1 – Pr)RT
♦ – PrDT

I /L0)2 > 0,

which means that y1 increases with the increase of RT
♦. Moreover, y1 reaches its max-

imum Y at

RT
♦ =

(1 – PrY)DT
I /L0

(1 – Pr)(DT
I /L0 – Y)

,

which is equivalent to having β = β1, where

β1 =
1 – PrY

q0(1 – Pr)(DT
I – YL0)

=
(1 – PrY)μ(γ + μ + α)

q0(1 – Pr)(μ – (γ + μ + α)Y)
. (40)

On the other hand, if we put ỹ = Y in (39) and solve with respect to β , we get β = β1.
Hence, Eq. (39) could be seen as a bifurcation equation and the point P1 = (β1,Y) is a
bifurcation point in the plane (β , y) for y ∈ [Y , 1]. It is worth noting that the bifurcation
point P1 does exist only if

Y <
μ

γ + μ + α
:= Y1. (41)

Therefore, we show the following proposition.

Proposition 10 If I ≥ I (i.e., y ≥ Y), then model (31) has a bifurcation point P1 = (β1,Y)
in the plane (β , ỹ), which exists if and only if Y < μ/(γ + μ + α).

At the point P1 we compute the direction of bifurcation. To this end, we make use of
the implicit function theorem [22, 25]. The mathematical computations show that

∂F
∂β

∣

∣

∣

∣

(β1,Y)
= –q0(1 – Pr)Y

(

μ – (γ + μ + α)Y
)

and

∂F
∂̃y

∣

∣

∣

∣

(β1,Y)
= (1 – Pr)q0β1

(

(γ + μ + α)Y – μ
)

+ (1 – Pr)q0β1(γ + μ)Y

– PrμY(γ + μ + α) – PrμY(γ + μ) + μ(γ + μ).

On making use of (40) and simplifying, we get

∂F
∂̃y

∣

∣

∣

∣

(β1,Y)
= (1 – Pr)q0β1Y(γ + μ) – μα – PrμY(γ + μ)

=
μ(γ + μ)(γ + μ + α)Y(1 – PrY)

μ – (γ + μ + α)Y –
(

μα + PrμY(γ + μ)
)
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=
μ(γ + μ)Y(γ + α + (1 – Pr)μ) – μα(μ – (γ + μ + α)Y)

μ – (γ + μ + α)Y .

Thus,

d̃y
dβ

∣

∣

∣

∣

(β1,Y)
= –

∂F
∂β

∣

∣

∣

∣

(β1,Y)

/∂F
∂̃y

∣

∣

∣

∣

(β1,Y)

=
q0(1 – Pr)Y(μ – (γ + μ + α)Y)2

μ(Y(γ + μ)(γ + α + (1 – Pr)μ) + α(γ + μ + α)Y – αμ)
. (42)

Thus, the direction of bifurcation depends on the sign of the denominator of (42). Ac-
cordingly, at the bifurcation point P1, the bifurcation is backward (subcritical) if and only
if

(

(γ + μ)
(

γ + α + (1 – Pr)μ
)

+ α(γ + α + μ)
)

Y – αμ < 0,

which is equivalent to

Y <
αμ

(γ + μ)(γ + α + (1 – Pr)μ) + α(γ + α + μ)
:= Y2. (43)

Consequently, we state the following proposition.

Proposition 11 If I ≥ I (i.e., y ≥ Y), then model (31) exhibits backward bifurcation at the
point P1 = (β1,Y) if and only if the inequality (43) holds.

The condition (43) is necessary to the existence of two feasible solutions to (39). The
two solutions are given by

y2 =
–B –

√
B2 – 4AC
2A

, y3 =
–B +

√
B2 – 4AC
2A

, (44)

where

A =
(

(1 – Pr)q0β – Prμ
)

(γ + μ),

B =
(

μ(γ + μ) – PrμαY – (1 – Pr)(μ – αY)q0β
)

, (45)

C = μαY .

These two solutions collide and mutually annihilate at β = β2 (see Appendix C for a com-
plete derivation of Eq. (46)), where

β2 =
μ(

√

μ(γ + μ) +
√

αY(γ + μ – Pr(μ – αY)))
2

q0(1 – Pr)(μ – αY)2 . (46)

Thus, both solutions shown in (44) do exist if and only if the two inequalities

β2 ≤ β ≤ β1 and Y < Y2 (47)
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Figure 4 Bifurcation diagram showing the endemic prevalence of infection as a function of the effective
reproduction number with treatmentRT , if condition (43) holds (i.e., Y <Y2). Solid curves correspond to
stable equilibria and broken curves correspond to unstable equilibria. Part (a) shows the case where β2 < β0

with Y = 0.3Y2, while part (b) shows the case β0 < β2 with Y = 0.6Y2. Simulations have been done with the
parameter values shown in Table 1.

do hold. The EE corresponding to ỹ = y2 is E2 = (x2, y2, z2)′ and that corresponding to ỹ =
y3 is E3 = (x3, y3, z3)′, where xi = x̃|̃y=yi and zi = z̃|̃y=yi for i = 2, 3. Therefore, we state the
following proposition.

Proposition 12 The endemic equilibria E2 and E3 coexist if and only if the condition (47)
holds.

Figure 4 shows the endemic prevalence of infection ỹ as a function of the effective repro-
duction number in the presence of treatment RT , for the case where Y < Y2. The figure
shows the three solutions y1, y2 and y3. The case Y2 ≤ Y < Y1 means a forward bifurcation
at the point P1 exists. The bifurcation program corresponding to this case is shown in
Fig. 5(a). If Y ≥ Y1, then the point P1 does not exist and Eq. (39) has no solution. There-
fore, the corresponding bifurcation diagram is drawn and shown in Fig. 5(b). It is worth
noting that at the points P1 and P2 a saddle-node bifurcation starts to appear, where two
equilibria collide and mutually annihilate.

The endemic prevalence of infection corresponding to the equilibrium E3 is given by

y3 =
–B +

√
B2 – 4AC
2A

=
–B
2A

+

√

(

B
2A

)2

–
C
A

.

It is worth noting that the two coefficients A and B are functions of the contact rate β .
Moreover, if we assume that all model parameters except β are fixed, then

∂y3

∂β
=

1

2
√

( B
2A )2 – C

A

((

B
A

– 2

√

(

B
2A

)2

–
C
A

)

∂

∂β

(

B
2A

)

+
C
A2

∂A
∂β

)

=
1

2A2
√

( B
2A )2 – C

A

((

–B
2A

+

√

(

B
2A

)2

–
C
A

)(

B
∂A
∂β

– A
∂B
∂β

)

+ C
∂A
∂β

)

=
1

2A2
√

( B
2A )2 – C

A

((

B
∂A
∂β

– A
∂B
∂β

)

y3 + C
∂A
∂β

)

. (48)
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Figure 5 Bifurcation diagram showing the endemic prevalence of infection as a function of the effective
reproduction number with treatmentRT for values of Y ≥Y2. Part (a) shows the case where Y2 <Y <Y1

(Y = 0.8Y1), while part (b) shows the case Y >Y1 (Y = 1.01Y1). The horizontal dotted straight line
correspond to ỹ =Y . Simulations have been done with the parameter values shown in Table 1.

On the other hand, we have

B =
(

μ(γ + μ) – PrμαY – (1 – Pr)(μ – αY)q0β
)

= μ
(

γ + μ – (1 – Pr)q0β
)

+ αY
(

(1 – Pr)q0β – Prμ
)

= μ
(

γ + μ – (1 – Pr)q0β
)

+
αY

γ + μ
A

and

∂A
∂β

= (1 – Pr)q0(γ + μ),
∂B
∂β

=
αY

γ + μ

∂A
∂β

– (1 – Pr)q0μ.

Hence,

B
∂A
∂β

– A
∂B
∂β

= (1 – Pr)q0μ(γ + μ)(γ + μ – Prμ).

Therefore,

∂y3

∂β
=

(1 – Pr)q0μ(γ + μ)((γ + μ – Prμ)y3 + αY)

2A2
√

( B
2A )2 – C

A

> 0.

Thus, we show the following proposition.

Proposition 13 The endemic prevalence of infection y3 corresponding to the equilibrium
E3 is monotonically increasing in the contact rate β .

It is easy to check that

lim
β→∞

B
2A

=
–(μ – αY)
2(γ + μ)

and lim
β→∞

C
A

= 0.
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Therefore,

lim
β→∞ y3 =

–B
2A

+
∣

∣

∣

∣

B
2A

∣

∣

∣

∣

=
(μ – αY)
2(γ + μ)

+
(μ – αY)
2(γ + μ)

=
μ – αY
γ + μ

.

Hence, we show the following proposition.

Proposition 14 The upper bound of the endemic prevalence of infection in the presence of
treatment is given by

ymax
3 =

μ – αY
γ + μ

. (49)

4.2 The critical contact rate β�

The critical contact rate [22–24], denoted by β�, is a threshold value of the contact rate
at which positive endemic states start to appear; i.e., it separates between non-existence
and existence of positive persistent solutions. If β < β�, then the infection dies out, while
if β ≥ β�, then the infection persists. Mathematically,

β� =

{

min(β0,β2) if 0 < Y < Y2,
β0 if otherwise.

(50)

The first branch of (50) represents the case where multiple endemic equilibria do exist. In
this case, there are two sub-cases: either β2 < β0 or β0 < β2.

Assume now that β2 < β0. Then

√

μ(γ + μ) +
√

αY
(

γ + μ – Pr(μ – αY)
)

<

√

(γ + μ + α)(μ – αY)2

μ
.

Hence,

αY
(

PrαY + γ + (1 – Pr)μ
)

<
(

(μ – αY)
√

γ + μ + α

μ
–

√

μ(γ + μ)
)2

.

That is,

A2(αY)2 – B2(αY) + C3 > 0, (51)

where

A2 = γ + α + (1 – Pr)μ,

B2 = μ
(

γ + α + (1 – Pr)μ + (
√

γ + μ + α –
√

γ + μ)2),

C2 = μ2(
√

γ + μ + α –
√

γ + μ)2.

The inequality (51) is equivalent to

(

Y –
μ

α

)(

Y –
μ

α
× (√γ + μ + α – √

γ + μ)2

γ + α + (1 – Pr)μ

)

> 0. (52)
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Figure 6 Bifurcation diagram in the plane (Y ,β ) showing the number of endemic equilibria for the different
levels of the contact rate β and the maximum treatment capacity Y . The numbers “0, 1, 2 and 3” shown on
the subregions denote the number of endemic equilibria in that region. The curve with pentagram represents
β = β� below which no endemic equilibria exist. Simulations have been done with the parameter values
shown in Table 1.

Since Y < Y2 < μ/(γ + μ + α), the condition (52) holds only if

Y <
μ

α
× (√γ + μ + α – √

γ + μ)2

γ + α + (1 – Pr)μ
:= Y3. (53)

Hence, we have the following:
• If 0 < Y < Y3, then β2 < β0 and, therefore, β� = β2. The bifurcation diagram looks like

that shown in Fig. 4(a) where the model exhibits the existence of multiple subcritical
endemic steady states. In other words, two endemic equilibria (E2 and E3) exist if
β2 ≤ β < β0, while three positive endemic equilibria (E1, E2 and E3) exist for
β0 ≤ β ≤ β1 and a UEE (E3) exists for β1 < β ; see Fig. 6.

• If Y3 ≤ Y < Y2, then β0 < β2 and, therefore, β� = β0, but the bifurcation diagram looks
like that shown in Fig. 4(b) where the model shows the existence of multiple
supercritical endemic steady states. In other words, no EE exists for β ≤ β0, a UEE
(E1) exists for β0 < β < β2, three endemic equilibria (E1, E2 and E3) exist for
β2 ≤ β ≤ β1, while a UEE (E3) exists for β1 < β ; see Fig. 6.

• If Y2 ≤ Y < Y1, then β2 does not exist and, therefore, β� = β0. The bifurcation diagram
looks like that shown in Fig. 5(a) where the model shows the existence of a UEE
(E1 for β0 < β < β1 and E3 for β1 ≤ β); see Fig. 6.

• If Y ≥ Y1, then β1 is not defined and the model has a UEE (E1) that exists for β > β0

(see Fig. 6) and, therefore, β� = β0. The bifurcation diagram looks like that shown in
Fig. 5(b).

Motivated by the above results, the following proposition is stated.

Proposition 15 The critical contact rate β� below which the infection does not persist is
given by

β� =

{

β2 if 0 < Y < Y3,
β0 if otherwise.

(54)
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Figure 7 The critical successful contact rate β� as a function of the maximum treatment capacity Y , for
different levels of percent reduction̂Pr . Below the curves, the infection does not persist, while above them the
infection persists. The dashed curve is produced with a 12.5% reduction, the dotted curve is produced with
25% reduction, while the solid curve is drawn with 50% reduction in infected individuals’ contact-activity
time. The values of the other parameters are as shown in Table 1. The critical contact rate β� increases with
the increase of̂Pr value.

It is easy to check that

∂β0

∂Pr
=

γ + μ + α

q0(1 – Pr)2 > 0,

∂β2

∂Pr
=

μ(
√

μ(γ + μ) +
√

αY(γ + μ – Pr(μ – αY)))
q0(μ – αY)2(1 – Pr)2

×
(

√

μ(γ + μ) +
αY(γ + αY)

√

αY(γ + μ – Pr(μ – αY))

)

> 0.

Hence, if all parameters except Pr have been kept fixed, then the critical contact rate β�

increases with the increase of the percent reduction proportion ̂Pr = 100 × Pr which in
turn extends the region of non-persistence of infection; see Fig. 7. Hence, we show the
following.

Proposition 16 The non-persistence of infection’s area extends with the increase of the
percent reduction proportion ̂Pr .

4.3 Stability analysis of the endemic equilibria E2 and E3 for model (31)
When ignoring the z-equation of model (31) and computing the Jacobian matrix for the
remaining system at a general equilibrium (̃x, ỹ) for the case y ≥ Y , where T(y) = αY =
constant, we get

J =

(

–μ – (1–Pr)q0β ỹ
1–Prỹ – (1–Pr)q0βx̃

(1–Prỹ)2
(1–Pr)q0β ỹ

1–Prỹ
(1–Pr)q0βx̃

(1–Prỹ)2 – (γ + μ)

)

. (55)
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Hence,

det J = (γ + μ)
(

μ +
(1 – Pr)q0β ỹ

1 – Prỹ

)

– μ
(1 – Pr)q0βx̃

(1 – Prỹ)2 .

From the equilibrium y-equation of model (31) we have

(1 – Pr)q0βx̃
1 – Prỹ

=
αY
ỹ

+ (γ + μ).

Hence,

det(J) = (γ + μ)
(

μ +
(1 – Pr)q0β ỹ

1 – Prỹ
–

μ

1 – Prỹ

)

–
μαY

ỹ(1 – Prỹ)

=
1

ỹ(1 – Prỹ)
(

(γ + μ)
(

(1 – Pr)q0β – μPr
)

ỹ2 – μαY
)

=
1

ỹ(1 – Prỹ)
(

Ãy2 – C
)

=
1

ỹ(1 – Prỹ)
(–B̃y – 2C)

=
–1

ỹ(1 – Prỹ)

(

B(–B ∓ √
B2 – 4AC)

2A
+ 2C

)

=
–1

2Ãy(1 – Prỹ)
(

–
(

B2 – 4AC
) ∓ √

B2 – 4AC
)

=
B2 – 4AC

2Ãy(1 – Prỹ)

(

1 ± B√
B2 – 4AC

)

.

Since B < 0 and |B|/√B2 – 4AC > 1,

1 +
B√

B2 – 4AC
< 0 and 1 –

B√
B2 – 4AC

> 0.

The first expression corresponds to y2 = (–B –
√

B2 – 4AC)/(2A), while the second expres-
sion corresponds to y3 = (–B +

√
B2 – 4AC)/(2A). Thus,

det(JE2 ) < 0, while det(JE3 ) > 0. (56)

It implies that the EE E2 is unstable. Hence, we show the following proposition.

Proposition 17 The EE E2 of model (31) is unstable whenever it exists.

To complete the stability investigation of the equilibrium E3, it remains to check the sign
of the trace of J computed at E3. From the equilibrium y-equation of (31) when T(y) = αY
we have

(1 – Pr)q0β x̃̃y
1 – Prỹ

= αY + (γ + μ)̃y. (57)
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Hence,

tr(J) = –(γ + 2μ) –
(1 – Pr)q0β ỹ

1 – Prỹ
+

(1 – Pr)q0βx̃
(1 – Prỹ)2

= –(γ + 2μ) – .
(1 – Pr)q0β ỹ

1 – Prỹ
+

αY + (γ + μ)̃y
ỹ(1 – Prỹ)

=
μαY – μ2̃y + μ(Pr(γ + 2μ) – (1 – Pr)q0β )̃y2

μ̃y(1 – Prỹ)
.

From (39) and (45) we have

μαY = C = –Ãy2 – B̃y.

Hence,

tr(J) =
1

μ̃y(1 – Prỹ)
(

–Ãy2 – B̃y – μ2̃y + μ
(

Pr(γ + 2μ) – (1 – Pr)q0β
)

ỹ2)

=
–1

μ(1 – Prỹ)
(

μ2 + B +
(

A + (1 – Pr)q0βμ – Prμ(γ + 2μ)
)

ỹ
)

.

At the equilibrium point E3 we have ỹ = ỹ3 with B = –2Aỹ3 +
√

B2 – 4AC. Hence,

tr(JE3 ) =
–1

μ(1 – Prỹ3)
(

μ2 + B +
(

A + (1 – Pr)q0βμ – Prμ(γ + 2μ)
)

ỹ3
)

=
–1

μ(1 – Prỹ3)
(

μ2 +
√

B2 – 4AC +
(

(1 – Pr)q0βμ – Prμ(γ + 2μ) – A
)

ỹ3
)

=
–1

μ(1 – Prỹ3)
(

μ2 +
√

B2 – 4AC –
(

(1 – Pr)q0βγ + Prμ
2)ỹ3

)

=
–1

μ(1 – Prỹ3)
(

μ2(1 – Prỹ3) +
√

B2 – 4AC – (1 – Pr)q0βγ ỹ3
)

. (58)

The expression μ2(1 – Prỹ3) +
√

B2 – 4AC – (1 – Pr)q0βγ ỹ3, as long as ỹ3 is defined, could
be negative. Therefore, tr(JE3 ) could be negative and could also be positive; see Fig. 8. As
long as tr(JE3 ) is negative, the EE E3 is locally stable. However, for a range of parameter
values, where tr(JE3 ) changes its sign to be positive, this EE loses its stability and a periodic
solution may appear/disappear locally, which means that a Hopf bifurcation (i.e., a pair of
complex conjugate eigenvalues crosses the imaginary axis) may exist.

4.4 Hopf bifurcation existence
A Hopf bifurcation, also known as Poincaré–Andronov–Hopf bifurcation, is a local bifur-
cation in which a limit cycle is born from an equilibrium point that loses its stability, as
a pair of complex conjugate eigenvalues, of the Jacobian matrix evaluated at that equilib-
rium, becomes purely imaginary when a model parameter crosses a critical value. For a
non-linear system of two first order ordinary differential equations, whose Jacobian matrix
computed at the equilibrium E is JE , the characteristic equation reads

ρ2 – tr(JE)ρ + det(JE) = 0 (59)
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Figure 8 The trace of the Jacobian matrix evaluated at the EE tr J(E3) given by (63) as a function of the
contact rate β for Pr = 0.15 (part (a)) and as a function Pr for β = 600 per year (part (b)) and for different values
of Y , while keeping the parameters q0, μ, α and γ as in Table 1.

where ρ is the eigenvalue. If det(JE) > 0, while tr(JE) switches its sign when some model
parameter (say b) crosses a critical level (say b�), then the surface of the Hopf bifurcation
is given by tr(JE) = 0. Thus, the necessary and sufficient conditions for the occurrence of
Hopf bifurcation are

tr(JE)
∣

∣

∣

∣

b=b�

= 0 and
d tr(JE)

db

∣

∣

∣

∣

b=b�


= 0. (60)

Consequently, the Hopf bifurcation surface of model (31) is given by tr(JE3 ) = 0. Hence,
with the help of (45) and (58), the Hopf bifurcation surface is given by

μ2 + B +
(

A + (1 – Pr)q0βμ – Prμ(γ + 2μ)
)

ỹ3 = 0. (61)

Now, we use (44) in (61) to get

0 = 2μ2A + B
(

A – (1 – Pr)q0βμ + Prμ(γ + 2μ)
)

+
(

A + (1 – Pr)q0βμ – Prμ(γ + 2μ)
)
√

B2 – 4AC. (62)

Now, we use (45) in (62) to get

0 =
(

μ(γ + 3μ – PrαY) – (1 – Pr)(μ – αY)q0β
)(

(1 – Pr)(γ + μ)q0β + Prμ
2)

– 2Prμ
3(γ + 2μ) +

(

(1 – Pr)q0β(γ + 2μ) – Prμ(2γ + 3μ)
)
√

B2 – 4AC, (63)

where

B2 – 4AC = (μ – αY)2(1 – Pr)2(q0β)2

– 2μ
(

(μ + αY)(γ + μ) – PrαY(μ – αY)
)

(1 – Pr)(q0β)

+ μ2(γ + μ + PrαY)2.
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If we assume that Pr is the bifurcation parameter, then, on keeping all other model pa-
rameters fixed and letting Pr change, a Hopf bifurcation occurs at a critical value of Pr

(say, P�
r ) at which tr(JE3 ) switches its sign; see Fig. 8(b). The figure shows that the critical

level P�
r decreases with the increase of the maximum treatment capacity Y . It is worth

noting that P�
r is the solution of the non-linear algebraic Eq. (63). On the other hand, if β

is considered a bifurcation parameter, while keeping Pr and the other parameters fixed,
then Fig. 8(a) shows that the critical level of the contact rate β at which a Hopf bifurcation
exists increases with the increase of the maximum capacity treatment Y . The following
proposition summarizes the above result.

Proposition 18 In the presence of a maximum capacity treatment, the SIR model (31)
exhibits Hopf bifurcation whose surface is determined through (63). Moreover, on consid-
ering the reduction proportion’s parameter Pr as a bifurcation parameter, then the critical
value of Pr at which Hopf bifurcation exists increases with the decrease of the maximum
treatment capacity Y .

5 Summary, conclusion and future work
Mathematical epidemic models have been extensively used to describe the transmission
dynamics of infectious diseases, especially on the population level [1, 2, 6, 7, 9, 10, 12, 20].
As directly transmitted infections transmit from infected to susceptible (irrespective of
the degree of susceptibility) individuals, it is important to model the interaction between
infected and non-infected individuals in the population. The term describing this inter-
action is called “incidence term”. In some models, this term has been assumed either in
mass-action [1, 5] or standard incidence form [3, 10, 12]. In other models, it is assumed in
a saturated incidence [4, 19, 29] or a Holling-type form [26]. Other non-linear incidence
forms are also considered in the literature [15]. Here, motivated by an SIR model for a
demographically stationary population, a new incidence function that takes into account
heterogeneity between infected and non-infected individuals has been introduced, differ-
entiating between the time activity of infected and non-infected individuals in the pop-
ulation. Equilibrium, stability and cross-sectional analyses of the model have been done.
Also, the possibility to contain an infection represented by the model with a strategy based
either on vaccinating a proportion p of newborns or on treating infected individuals has
been studied.

In the case of herd immunity, an exact formula for the critical vaccination coverage level
pc required to eliminate the infection has been computed in terms of the percent reduction
in contact time activity of infected individuals ̂P . Throughout the analysis, we concluded
that the higher the percent reduction in infected individuals contact-activity time is, the
lower the critical vaccination coverage required to eliminate the infection is (i.e., the higher
the percent reduction in the critical vaccination coverage required to eliminate the infec-
tion is) which in turn reduces the cost of vaccination needed to protect the population
from the infection.

As it is assumed that the infection is treatable, the model has been extended to include
the application of a control strategy based on treating infected individuals at rate α with
the assumption that it is possible to mostly treat a proportion Y of individuals. Equilib-
rium and stability analyses of the model have been carried out. Throughout its equilibrium
analysis, the model has been shown to exhibit the existence of multiple subcritical and su-
percritical endemic steady states for certain range of model parameters, which means that
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it is possible for the infection to persist even if the effective reproduction number (in the
presence of treatment RT ) has been reduced to slightly below one. Motivated by the work
in [23] and [24], an exact formula for the critical contact rate β� separating between non-
existence and existence of endemic infection has been computed. The analysis shows that
increasing the percent reduction proportion ̂Pr increases the value of the critical contact
rate β� which in turn extends the region of non-persistence of infection and therefore
reduces the infection’s minimum elimination effort R = β/β� [23].

In analyzing the stability of equilibria for the model with treatment, it has been shown
that the EE with higher prevalence of endemic infection (denoted by E3) loses its local
stability when the trace of its Jacobian matrix switches its sign if a set of model param-
eters satisfy certain condition. This condition defines the Hopf bifurcation surface. On
considering the parameter Pr (which denotes the time-activity reduction proportion) as a
bifurcation parameter and keeping all other model parameters fixed, the model has been
shown to exhibit a Hopf bifurcation when Pr crosses a certain (critical) level (denoted P�

r ).
Numerical simulations show that the higher the maximum treatment capacity (Y) is, the
lower the value of the critical P�

r is.
Our approach could be used to formulate a more biologically meaningful model to other

respiratory infectious diseases, including (but not limited to) tuberculosis, pertussis and
coronaviruses. For example, if some biological factors like the inclusion of exposed and
asymptomatic epidemiological states are taken into account, then a suitable model to the
case of covid-19 that spreads globally in the mean time [21] could be formulated, ana-
lyzed and be deployed to have insights on the transmission dynamics and controllability
of the infection. Moreover, these models could be extended to consider fractional order
formulation; see for example Refs. [13, 14, 16–18].

Appendix A: Properties of model (5) (proof of Proposition 1)
It is easy to check that the set Ω is positively invariant and attracts all solutions in R3

+, as
dN
dt = dS

dt + dI
dt + dR

dt = 0. Thus, N(t) is constant. Now, to show that, for any nonnegative initial
conditions (S(0), I(0), R(0)) ∈ Ω , the solution set (S(t), I(t), R(t)) of the system (5) remain
positive for all t > 0, we consider the equation

dS
dt

= μN –
(1 – Pr)q0βS(t)I(t)

N – PrI(t)
– μS ≥ –

(

(1 – Pr)q0βI(t)
N – PrI(t)

+ μ

)

S.

On separating the variables and integrating from 0 to t we get

S(t) ≥ S(0)e–
∫ t

0 ( (1–Pr )q0βI(u)
N–PrI(u) +μ) du ≥ 0.

Similarly, with the use of I and R equations of model (5) , we have

dI
dt

≥ –(γ + μ)I and
dR
dt

≥ –μR.

Hence,

I(t) ≥ I(0)e–(γ +μ)t ≥ 0 and R(t) ≥ R(0)e–μt ≥ 0.
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Thus, by comparison theorem S(t), I(t) and R(t) are nonnegative for all s(0), I(0), R(0) ≥ 0.
Hence, given (S(0), I(0), R(0)) ∈ Ω , the solution set (S(t), I(t), R(t)) of the system (5) remain
nonnegative for all t > 0.

Now, assume that

f1(S, I, R) = μN –
(1 – Pr)q0βS(t)I(t)

N(t) – PrI(t)
– μS,

f2(S, I, R) =
(1 – Pr)q0βS(t)I(t)

N(t) – PrI(t)
– (γ + μ)I,

f3(S, I, R) = γ I – μR.

Since N is constant and N – PrI(t) > 0, it is easy to check that fi(S, I, R) is continuously
differentiable with respect to S, I , R and that | ∂fi

∂xj
| < ∞, for all i, j ∈ {1, 2, 3} and x1 = S,

x2 = I and x3 = R. Hence, the right hand side of (5) is locally Lipschitz. Therefore, there
exists a unique local solution S(t), I(t), R(t) to (5) with the initial data S(0), I(0), R(0) on a
maximum forward interval of existence [8, 11].

Appendix B: Local stability analysis of the endemic equilibrium E1

for model (31)
To establish the local stability analysis for the endemic equilibrium E1, we ignore the z-
equation in model (31) and compute the Jacobian matrix for the remaining system at E1 as

JE1 =

(

–μ – (1–Pr)q0βy1
1–Pry1

– (1–Pr)q0βx1
(1–Pry1)2

(1–Pr)q0βy1
1–Pry1

(1–Pr)q0βx1
(1–Pry1)2 – (γ + μ + α)

)

. (64)

Hence,

det(JE1 ) = (γ + μ + α)
(

μ +
(1 – Pr)q0βy1

1 – Pry1

)

– μ × (1 – Pr)q0βx1

(1 – Pry1)2 .

Using Eqs. (35), we get

det(JE1 ) = (γ + μ + α)
(

μ +
(1 – Pr)q0βy1

1 – Pry1
–

μ

1 – Pry1

)

=
γ + μ + α

1 – Pry1
× (

(1 – Pr)q0β – μPr
)

y1

=
γ + μ + α

1 – Pry1
× μ

γ + μ + α
× (

(1 – Pr)q0β – (γ + μ + α)
)

=
μ(γ + μ + α)

1 – Pry1
× (RT – 1).

Similarly, we use Eqs. (35) to get

tr(JE1 ) = –μ – (γ + μ + α) –
(1 – Pr)q0βy1

1 – Pry1
+

(1 – Pr)q0βx1

(1 – Pry1)2

= –μ – (γ + μ + α) –
(1 – Pr)q0βy1

1 – Pry1
+

γ + μ + α

1 – Pry1

= –μ – (γ + μ + α) –
(1 – Pr)q0βy1 – (γ + μ + α)

1 – Pry1
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= –μ –
((1 – Pr)q0β – Pr(γ + μ + α))y1

1 – Pry1

= –μ –
(γ + μ + α)y1

1 – Pry1
×

(

(1 – Pr)q0β

γ + μ + α
– Pr

)

< –μ –
(γ + μ + α)y1

1 – Pry1
×

(

(1 – Pr)q0β

γ + μ + α
– 1

)

< –μ –
(γ + μ + α)y1

1 – Pry1
× (RT – 1).

From (36) E1 exists if and only if

1 < RT <
1 – PrYDT

I /L0

1 – Y .

Hence, det(JE1 ) > 0 and tr(JE1 ) < 0. Therefore, the endemic equilibrium E1 for model (31)
is locally asymptotically stable whenever it exists.

Appendix C: Derivation of Eq. (46) for β2

β2 is the minimum value of β for which the discriminant D = B2 – 4AC is nonnegative,
where A, B, C are defined in (45). Therefore, 0 ≤ B2 – 4AC. That is,

0 ≤ (μ – αY)2(1 – Pr)2(q0β)2

– 2μ
(

(μ + αY)(γ + μ) – PrαY(μ – αY)
)

(1 – Pr)(q0β) + μ2(γ + μ + PrαY)2. (65)

With some computations, one may show that

μ2((μ + αY)(γ + μ) – PrαY(μ – αY)
)2 – μ2(μ – αY)2(γ + μ + PrαY)2

= 4μ3αY(γ + μ)
(

γ + μ + Pr(αY – μ)
)

= 4μ2(μ(γ + μ)
)(

αY
(

γ + μ – Pr(μ – αY)
))

. (66)

On the other hand,

(μ + αY)(γ + μ) – PrαY(μ – αY) = μ(γ + μ) + αY
(

γ + μ – Pr(μ – αY)
)

. (67)

Using (66) and (67), the inequality (65) could be rewritten as

(

β – β–)(

β – β+)

> 0,

where β– < β+ and

β– =
μ(

√

μ(γ + μ) –
√

αY(γ + μ – Pr(μ – αY)))
2

q0(1 – Pr)(μ – αY)2 ,

β+ =
μ(

√

μ(γ + μ) +
√

αY(γ + μ – Pr(μ – αY)))
2

q0(1 – Pr)(μ – αY)2 = β2.

Therefore, B2 – 4AC ≥ 0 if and only if β ≥ β2 and the proof is complete.
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