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Abstract
Let u(t, x) be the solution to a stochastic heat equation

∂

∂ t
u =

1
2

∂2

∂x2
u +

∂2

∂ t ∂x
X(t, x), t ≥ 0, x ∈ R

with initial condition u(0, x) ≡ 0, where Ẋ is a space-time white noise. This paper is an
attempt to study stochastic analysis questions of the solution u(t, x). In fact, it is well
known that the solution is a Gaussian process such that the process t �→ u(t, x) is a
bi-fractional Brownian motion with Hurst indices H = K = 1

2 for every real number x.
However, the many properties of the process x �→ u(·, x) are unknown. In this paper
we consider the generalized quadratic covariations of the two processes
x �→ u(·, x), t �→ u(t, ·). We show that x �→ u(·, x) admits a nontrivial finite quadratic
variation and the forward integral of some adapted processes with respect to it
coincides with “Itô’s integral”, but it is not a semimartingale. Moreover, some
generalized Itô formulas and Bouleau–Yor identities are introduced.
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1 Introduction
Let u(t, x) denote the solution to the stochastic heat equation

∂

∂t
u =

1
2

∂2

∂x2 u +
∂2

∂t ∂x
X(t, x), t ≥ 0, x ∈R

d, (1.1)

with initial condition u(0, x) ≡ 0, where Ẋ is a space-time white noise on [0,∞) × R
d ,

which are generalized Gaussian processes with covariance given by

E
[
Ẋ(t, x)Ẋ(s, y)

]
= δ(t – s)δ(x – y).
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Clearly, we have

u(t, x) =
∫ t

0

∫

Rd
p(t – r, x – y)X(dr, dy),

where p(t, x) = 1√
2π t e– |x|2

2t is the heat kernel. Then the processes (t, x) �→ u(t, x), t �→ u(t, ·)
and x �→ u(·, x) are Gaussian. Mueller and Tribe [19] were first to find that

E
[[

u(t, x) – u(t, y)
]2] =

∫ t

0

∫

R

[
p(r, x – z) – p(r, y – z)

]2 dr dz

−→
∫ ∞

0

∫

R

[
p(r, x – z) – p(r, y – z)

]2 dr dz = C|x – y|

for all x, y ∈ R
d , as t tends to infinity, if the initial value u(0, x) = 0. By taking a special

initial value (a two-sided R
d-valued Brownian motion), the authors studied the stationary

pinned string and hitting probabilities of a random string. When d = 1 Swanson [30] has
showed that (see also Pospisil and Tribe [25])

E
[
u(t, x)u(s, x)

]
=

1√
2π

(
(t + s)1/2 – |t – s|1/2), t, s ≥ 0, (1.2)

and the process t �→ u(t, x) has a nontrivial quartic variation. This shows that, for every
x ∈ R, the process t �→ u(t, x) coincides with the bi-fractional Brownian motion and it
is not a semimartingale, so a stochastic integral with respect to the process t �→ u(t, x)
cannot be defined in the classical Itô sense. Some surveys and complete literature for bi-
fractional Brownian motion can be found in Houdré and Villa [13], Lei and Nualart [16],
Russo and Tudor [27], Tudor and Xiao [33] and Yan et al. [35], and the references therein.
Moreover, for more general parabolic SPDEs, many authors studied the regularity results
and stochastic calculus with respect to their solutions. We mention the work of Balan
and Kim [2], Da Prato et al. [4], Deya and Tindel [5], Gradinaru et al. [12], Lanconelli
[14, 15], León and Tindel et al. [17], Nualart and Vuillermot [21], Ouahhabi and Tudor
[22], Pardoux [23], Pospisil and Tribe [25], Torres et al. [31], Tudor [32], Tudor and Xiao
[34], Zambotti [38], and the references therein.

In this paper, as an attempt we study stochastic analysis questions of the solution process
u = {u(t, x), t ∈ [0, T], x ∈ R} of (1.1) with u(0, x) = 0 associated with quadratic variation.
We shall see (in Sect. 3) that the process x �→ u(·, x) admits a nontrivial finite quadratic
variation in any finite interval, and, moreover, we shall also see (in Sect. 4) that the for-
ward integral of some adapted processes with respect to x �→ u(·, x) coincides with “Itô’s
integral”. On the other hand, as a noise, the stochastic process u = {u(t, x), t ≥ 0, x ∈ R} is
very rough in time and it is not white in space. However, the process x �→ u(·, x) admits
some characteristics similar to Brownian motion. These results, together with the work
of Mueller and Tribe [19], Pospisil and Tribe [25], and Swanson [30] point out that the
process u = {u(t, x)} as a noise admits the next special structures:

• It is very rough in time and similar to fractional Brownian motion with Hurst index
H = 1

4 , but it has not stationary increments.
• It is not white in space, but its quadratic variation coincides with the classical

Brownian motion and it is not self-similar.
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• The process in space variable is not a semimartingale, but the forward integral of
some adapted processes with respect to the process in space variable coincides with
“Itô’s integral”.

• The process u = {u(t, x)} admits a simple representation via a Wiener integral with
respect to the Brownian sheet.

• Though the process u = {u(t, x)} is Gaussian, as a noise, its time and space parts are
farraginous. We cannot decompose its covariance as the product of two independent
parts. This is very different from fractional noise and white noise. In fact, we have

Eu(t, x)u(s, y) =
1√
2π

∫ s

0

1√
t + s – 2r

exp

{
–

(x – y)2

2(t + s – 2r)

}
dr

for all t ≥ s > 0 and x, y ∈R.
Therefore, it seems interesting to study the integrals

∫

R

f (x)u(t, dx),
∫ t

0
f (s)u(ds, x),

∫ t

0

∫

R

f (s, x)u(ds, dx),

and some related stochastic (partial) differential equations. For example, one can consider
the following “iterated” stochastic partial differential equations:

∂

∂t
uj =

1
2

∂2

∂x2 uj + f
(
uj) +

∂2

∂t ∂x
uj–1(t, x), t ≥ 0, x ∈R, j = 1, 2, . . . ,

where u0 is a space-time white noise. Of course, one can also consider some sample path
properties and singular integrals

∫

Ix

dx
∫ t

0

1
(u(s, x))1+α

+
d
√

s, α ≥ 0

with t ≥ 0 and Ix = [0, x] for x ≥ 0 and Ix = [x, 0] for x ≤ 0. We will carry out these projects
in some forthcoming work. In the present paper our objects are to study the quadratic
covariations of x �→ u(·, x) and t �→ u(t, ·), and introduce some generalized Itô formulas
associated with {u(·, x), x ∈ R} and {u(t, ·), t ≥ 0}, respectively, and moreover we also con-
sider their local times and Bouleau–Yor’s identities.

To expound our aim, let us start with a basic definition. Let u = {u(t, x), t ∈ [0, T], x ∈R}
be the solution process of (1.1) with u(0, x) = 0 and denote

�1(s, t) :=
√

2t +
√

2s + 2
√|t – s| – 2

√
t + s

and

�2(s, t, z) :=
∫ s∧t

0

2√
t + s – 2r

(
1 – exp

{
–

z2

2(t + s – 2r)

})
dr

for all t, s > 0 and z ≥ 0. An elementary calculation can show that

E
[(

u(t, x) – u(s, y)
)2] =

1√
2π

[
�1(s, t) + �2(s, t, x – y)

]
(1.3)
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for all t, s > 0 and x, y ∈R. This simple estimate inspires us to consider the following limits:

lim
ε→0

1
ε

E
[(

u(t, x + ε) – u(t, x)
)2] =

1√
π

lim
ε→0

1
ε

∫ t

0

1√
r
(
1 – e– ε2

4r
)

dr

=
2√
π

∫ ∞

0

1
s2

(
1 – e– s2

4
)

ds = 1 (1.4)

and

lim
ε→0

1√
ε

E
[(

u(t + ε, x) – u(t, x)
)2] =

√
2
π

(1.5)

for all t ≥ 0 and x ∈ R. That is,

lim
δ→0

lim
ε→0

1√
ε + δ

E
[(

u(t + ε, x + δ) – u(t, x)
)2] = 1,

lim
ε→0

lim
δ→0

1√
ε + δ

E
[(

u(t + ε, x + δ) – u(t, x)
)2] =

√
2
π

for all t ≥ 0 and x ∈ R. Thus, the next definition is natural.

Definition 1.1 Denote B := {Bt := u(t, ·), t ≥ 0} and W := {Wx := u(·, x), x ∈ R}. Let Ix =
[0, x] for x ≥ 0 and Ix = [x, 0] for x ≤ 0. Define the integrals

I1
δ (f , x, t) =

1
δ

∫

Ix

{
f (Wy+δ) – f (Wy)

}
(Wy+δ – Wy) dy,

I2
ε (f , x, t) =

1√
ε

∫ t

0

{
f (Bs+ε) – f (Bs)

}
(Bs+ε – Bs)

ds
2
√

s
,

for all t ≥ 0, x ∈ R, ε, δ > 0, where f is a measurable function on R. The limits limδ→0 I1
δ (f ,

t, x) and limε→0 I2
ε (f , t, x) are called the partial quadratic covariations (PQC, in short) in

space and in time, respectively, of f (u) and u, provided these limits exist in probability.
We denote them by [f (W ), W ](SQ)

x and [f (B), B](TQ)
t , respectively.

Clearly, we have (see Sect. 3)

[
f (W ), W

](SQ)
x =

∫

Ix

f ′(Wy) dy

and [W , W ](SQ)
x = |x| for all f ∈ C1(R), t > 0, x ∈R. We also have (see Sect. 6)

[
f (B), B

](TQ)
t =

∫ t

0
f ′(Bs)

ds√
2πs

and [B, B](TQ)
t =

√
2
π

t for all f ∈ C1(R), t ≥ 0, x ∈ R. These expressions say that the process
W = {Wx = u(·, x), x ∈R} admits a nontrivial finite quadratic variation in any finite interval
Ix. This is also a main motivation to study the solution of (1.1). More work for stochastic
calculus with respect to a continuous finite quadratic variation process can be found in
Errami and Russo [7] and Russo and Vallois [29].
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This paper is organized as follows. In Sect. 2, we establish some technical estimates as-
sociated with the solution of (1.1), and as some applications we introduce Wiener integrals
with respect to the two processes B = {Bt = u(t, ·), t ≥ 0} and W = {Wx = u(·, x), x ∈ R}, re-
spectively. In Sect. 3 we show that the quadratic variation [W , W ](SQ) exists in L2(Ω) and
equals |x| in every finite interval Ix. For a given t > 0, by estimating in L2

1
ε

∫

Ix

f (Wy+ε)(Wy+ε – Wy) dy (x ∈R)

and

1
ε

∫

Ix

f (Wy)(Wy+ε – Wy) dy (x ∈R)

for all ε > 0, respectively, we construct a Banach space Ht of measurable functions such
that the PQC [f (W ), W ](SQ) in space exists in L2(Ω) for all f ∈ Ht , and in particular we
have

[
f (W ), W

](SQ)
x =

∫

Ix

f ′(Wy) dy

provided f ∈ C1(R). In Sect. 4, as an application of Sect. 3, we show that the Itô’s formula

F(Wx) = F(W0) +
∫

Ix

f (Wy)δWy +
1
2
[
f (W ), W

](SQ)
x

holds for all t > 0, x ∈ R, where the integral
∫

Ix
f ′(Wy)δWy denotes the Skorohod integral,

F is an absolutely continuous function with the derivative F ′ = f ∈ Ht . In order to obtain
the above Itô formula, we first introduce a standard Itô type formula

F(Wx) = F(W0) +
∫

Ix

F ′(Wy)δWy +
1
2

∫

Ix

F ′′(Wy) dy (1.6)

for all F ∈ C2(R) satisfying some suitable conditions. It is important to note that the Gaus-
sian process W = {Wx = u(·, x), x ∈R} does not satisfy the condition in Alós et al. [1] since

E
[
u(t, x)2] =

√
t
π

,
d

dx
E
[
u(t, x)2] = 0

for all t ≥ 0 and x ∈R. We need to give the proof of Eq. (1.6). Moreover, we also show that
the forward integral (see Russo–Vallois [29])

∫

Ix

f (Wy) d–Wy := ucp lim
ε↓0

1
ε

∫

Ix

f (Wy)(Wy+ε – Wy) dy

coincides with the Skorohod integral
∫

Ix
f (Wy)δWy, if f satisfies the growth condition

∣∣f (y)
∣∣≤ Ceβy2

, y ∈R, (1.7)

with 0 ≤ β <
√

π

4
√

t , where the notation ucp lim denotes the uniform convergence in proba-
bility on each compact interval. This is very similar to Brownian motion, but the process
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W = {Wx = u(·, x), x ∈ R} is not a semimartingale. In Sect. 5 we consider some questions
associated with the local time

L t(x, a) =
∫ x

0
δ(Wy – a) dy

of the process W = {Wx = u(·, x), x ≥ 0}. In particular, we show that the Bouleau–Yor type
identity

[
f (W ), W

](SQ)
x = –

∫

R

f (v)L t(x, dv)

holds for all f ∈ Ht . In Sect. 6 we consider some analysis questions associated with the
quadratic covariation of the process B = {Bt = u(t, ·), t ≥ 0}.

2 Some basic estimates
In this section we will establish divergence integral and some technical estimates associ-
ated with the solution

u(t, x) =
∫ t

0

∫

R

p(t – r, x – y)X(dr, dy), t ≥ 0, x ∈R,

where p(t, x) = 1√
2π t e– x2

2t is the heat kernel. Recall that the temporal process B = {Bt =
u(t, ·), t ≥ 0} and spatial process W = {Wx = u(·, x), x ∈ R}. As mentioned earlier, the tem-
poral process B = {Bt} is neither a semimartingale nor a Markov process. Moreover, from
the next discussion we shall also see that the spatial process W = {Wx} is neither a semi-
martingale nor a Markov process. However, as two Gaussian processes, one can develop
the stochastic calculus of variations with respect to them. We refer to Alós et al. [1], Nu-
alart [20] and the references therein for more details of stochastic calculus of Gaussian
process.

As usual, we assume that H� and H� are the reproducing kernel Hilbert spaces asso-
ciated with W = {Wx = u(·, x), x ∈ [–M, M]} and B = {Bt = u(t, ·), t ∈ [0, T]}, respectively.
Then the Wiener integrals

W (ϕ) :=
∫ M

–M
ϕ(x) dWx, ϕ ∈H�,

and

B(ϕ) :=
∫ T

0
ψ(s) dBs, ψ ∈H�,

exist as two Gaussian random variables, and

E
(∫ M

–M
ϕ1(x) dWx

∫ M

–M
ϕ2(x) dWx

)
= 〈ϕ1,ϕ2〉H� ,

for ϕ1,ϕ2 ∈H� and

E
(∫ T

0
ψ1(s) dBs

∫ T

0
ψ2(s) dBs

)
= 〈ψ1,ψ2〉H�
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for ψ1,ψ2 ∈H�. Clearly, for t, s > 0 and x, y ∈R we have

〈1Ix , 1Iy〉H� = E(WxWy) =
1

2
√

π

∫ t

0

1√
r

exp

{
–

(x – y)2

4r

}
dr

and

〈1[0,t], 1[0,s]〉H� = E(BtBs) =
1√
2π

(
(t + s)1/2 – |t – s|1/2).

Denote by S� and S� the sets of smooth functionals of the form

F� = f
(
W (ϕ1), W (ϕ2), . . . , W (ϕn)

)

and

F� = f
(
B(ψ1), B(ψ2), . . . , B(ψn)

)
,

where f ∈ C∞
b (Rn) (f and all their derivatives are bounded), ϕi ∈ H� and ψi ∈ H�. The

derivative operators D� and D� (the Malliavin derivatives) of functionals Ft and F∗ of the
above forms are defined as

D�F� =
n∑

j=1

∂f
∂xj

(
W (ϕ1), W (ϕ2), . . . , W (ϕn)

)
ϕj

and

D�F� =
n∑

j=1

∂f
∂xj

(
B(ψ1), B(ψ2), . . . , B(ψn)

)
ψj,

respectively. These derivative operators D�, D� are then closable from L2(Ω) into L2(Ω ;
H�) and L2(Ω ;H∗), respectively. We denote by D�,1,2 and D

�,1,2 the closures of S� and S�
with respect to the norms

‖F�‖�,1,2 :=
√

E|F|2 + E
∥
∥D�F�

∥
∥2
H�

and

‖F�‖�,1,2 :=
√

E|F|2 + E
∥∥D�F�

∥∥2
H� ,

respectively. The divergence integrals δ� and δ� are the adjoint of derivative operators
D� and D�, respectively. We say that random variables v ∈ L2(Ω ;H�) and w ∈ L2(Ω ;H�)
belong to the domains of the divergence operators δ� and δ�, respectively, denoted by
Dom(δ�) and Dom(δ�) if

E
∣∣〈D�F�, v

〉
H�

∣∣≤ c‖F�‖L2(Ω), E
∣∣〈D�F�, w

〉
H∗
∣∣≤ c‖F�‖L2(Ω),
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respectively, for all F� ∈ S� and F� ∈ S�. In these cases δ�(v) and δ�(w) are defined by
the duality relationships

E
[
F�δ�(v)

]
= E

〈
D�F�, v

〉
H� , (2.1)

E
[
F�δ�(w)

]
= E

〈
D�F�, w

〉
H� , (2.2)

respectively, for any v ∈ D
�,1,2 and w ∈ D

�,1,2. We have D
�,1,2 ⊂ Dom(δ�) and D

�,1,2 ⊂
Dom(δ�). We will use the notations

δ�(v) =
∫

R

vyδWy, δ�(w) =
∫ T

0
wsδBs

to express the Skorohod integrals, and the indefinite Skorohod integrals are defined as

∫

Ix

vyδWy = δ�(v1Ix ),
∫ t

0
wsδBs = δ�(w1[0,t]),

respectively. It is important to note that we can localize the domains of the operators
D�, D�, δ� and δ� via the usual manner. If L is a class of random variables (or pro-
cesses) we denote by Lloc the set of random variables F such that there exists a sequence
{(Ωn, Fn), n ≥ 1} ⊂ F ×L with the following properties:

(i) Ωn ↑ Ω ,
(ii) F = Fn a.s. on Ωn.

Take the operators D� and δ� for instance. If F ∈ D
�,1,2
loc , and (Ωn, Fn) localizes F in D

�,1,2,
then D�F is defined without ambiguity by D�F = D�Fn on Ωn, n ≥ 1. Then, if v ∈ D

�,1,2
loc ,

the divergence δ�(v) is defined as a random variable determined by the conditions

δ�(v)|Ωn = δ�(vn)|Ωn for all n ≥ 1,

where (Ωn, vn) is a localizing sequence for v, but it may depend on the localizing sequence.
At the end of this section, we introduce some estimates for the spatial process W = {Wx =

u(·, x)} and temporal processes B = {Bt = u(t, ·)}. For simplicity throughout this paper we
let C stand for a positive constant depending only on the subscripts and its value may
be different at different places, and this assumption also holds true for c. Moreover, the
notation F � G means that there are positive constants c1 and c2 such that

c1G(x) ≤ F(x) ≤ c2G(x)

in the common domain of definition for F and G. We have

Rx,y(s, t) : = Eu(t, x)u(s, y) =
∫ s

0

∫

R

p(t – r, x – z)p(s – r, y – z) dz dr

=
1

2π

∫ s

0

∫

R

1√
(t – r)(s – r)

exp

{
–

(x – z)2

2(t – r)
–

(y – z)2

2(s – r)

}
dz dr

=
1√
2π

∫ s

0

1√
t + s – 2r

exp

{
–

(x – y)2

2(t + s – 2r)

}
dr
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for all t ≥ s > 0, x, y ∈R and

E
[(

u(t, x) – u(s, y)
)2] =

1√
2π

[�1(t, s) + �2(s, t, x – y)) (2.3)

for all t > s > 0 and x, y ∈R, where

�1(s, t) :=
√

2t +
√

2s + 2
√|t – s| – 2

√
t + s

and

�2(s, t, z) :=
∫ s∧t

0

2√
t + s – 2r

(
1 – exp

{
–

z2

2(t + s – 2r)

})
dr

for all t, s > 0 and z ≥ 0.

Lemma 2.1 For all t ≥ s > 0 and x, y ∈ R we have

E
[(

u(t, x) – u(s, y)
)2]≤ C

(√
t – s + |x – y|). (2.4)

By taking a special initial value (a two-sided R
d-valued Brownian motion), Mueller and

Tribe [19] showed that the above estimate is reversible. However, when the initial value
u(0, x) = 0, the above estimate is not reversible unless x = y. In fact, we have

lim
x↑1

√
2 +

√
2x + 2

√
1 – x – 2

√
1 + x√

1 – x
= 1,

which implies that

0 ≤ �1(t, s) = (
√

2t +
√

2s + 2
√

t – s – 2
√

t + s)

=
√

t(
√

2 +
√

2u + 2
√

1 – u – 2
√

1 + u) � √
t
√

1 – u =
√

t – s

with u = s
t by the continuity. On the other hand, we also have

�2(s, t, x – y) =
∫ s

0

2√
t + s – 2r

(
1 – exp

{
–

(x – y)2

2(t + s – 2r)

})
dr

= |x – y
∫ |x–y|√

t–s

|x–y|√
t+s

(
1 – e– r2

2
)dr

r2

≤ |x – y|
∫ +∞

0

(
1 – e– r2

2
)dr

r2 = |x – y|
√

π

2

for all t ≥ s > 0 and u ∈R. However, by the facts that

1 – e–x � x
1 + x

,
π

2
– arctan x � 1

1 + x
,

for all x ≥ 0, we have

�2(t, t, z) = z
∫ ∞

z√
2t

(
1 – e– r2

2
)dr

r2
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� z
(

π

2
– arctan

z√
2t

)
� z

√
t√

t + z
(2.5)

for all t > 0 and z ≥ 0, and

�2(s, t, z) = z
∫ z

t–s

z√
t+s

(
1 – e– r2

2
)dr

r2 � z
(

arctan
z√
t – s

– arctan
z√
t + s

)

for t > s ≥ 0 and z ≥ 0.

Corollary 2.1 For all t > 0 and x, y ∈R we have

E
[(

u(t, x) – u(t, y)
)2]� |x – y|√t√

t + |x – y| . (2.6)

Lemma 2.2 For all t, s, r > 0 and x ∈R we have

∣∣E
[
u(r, x)

(
u(t, x) – u(s, x)

)]∣∣≤ 3
√|t – s|.

Proof For all t, s, r > 0 and x ∈R, we have

∣
∣E
[
u(r, x)

(
u(t, x) – u(s, x)

)]∣∣ =
∣
∣Eu(r, x)u(t, x) – Eu(r, x)u(s, x)

∣
∣

=
∣∣Rx,x(r, t) – Rx,x(r, s)

∣∣

=
1√
2π

∣
∣√t + r –

√|t – r| –
√

s + r +
√|s – r|∣∣

≤ |√t + r –
√

s + r| +
∣∣
√|t – r| –

√|s – r|∣∣≤ 3
√|t – s|

for all t, s, r > 0 and x ∈R. �

Lemma 2.3 For all t > 0 and x, y, z ∈R we have

∣∣E
[
u(t, x)

(
u(t, y) – u(t, z)

)]∣∣≤ C|y – z|.

Proof For all t > 0 and x, y, z ∈R, we have

E
[
u(t, x)

(
u(t, y) – u(t, z)

)]

= Eu(t, x)u(t, y) – Eu(t, x)u(t, z)

= Rx,y(t, t) – Rx,z(t, t)

=
1

2
√

π

(∫ t

0

1√
t – r

exp

{
–

(x – y)2

4(t – r)

}
dr –

∫ t

0

1√
t – r

exp

{
–

(x – z)2

4(t – r)

}
dr
)

=
√

t
2
√

π

(
|x – y|

∫ +∞

|x–y|
1
s2 e– s2

4t ds – |x – z|
∫ +∞

|x–z|
1
s2 e– s2

4t ds
)

.

Consider the function f : R+ →R+ defined by

f (x) = x
∫ +∞

x

1
s2 e– s2

4t ds = e– x2
4t –

x
2t

∫ ∞

x
e– r2

4t dr.
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Then, by the mean value theorem, we have

∣∣f (u) – f (v)
∣∣ =

1
2t

|u – v|
∫ +∞

ξ

e– s2
4t ds

≤ 1
2t

|u – v|
∫ +∞

0
e– s2

4t ds ≤
√

π

2
√

t
|u – v|

for all u, v ≥ 0 and some ξ between u and v. It follows that

∣
∣E
[
u(t, x)

(
u(t, y) – u(t, z)

)]∣∣≤ 1
4
∣
∣|x – y| – |x – z|∣∣≤ 1

4
|y – z|

for all t > 0 and x, y, z ∈R. �

Lemma 2.4 For all t > s > t′ > s′ > 0 and x ∈R we have

∣
∣E
[(

u(t, x) – u(s, x)
)(

u
(
t′, x

)
– u
(
s′, x

))]∣∣≤ C(t′ – s′)
√

t – s√
ts(s – s′)(t – t′)

. (2.7)

Proof For all t > s > t′ > s′ > 0 and x ∈R we have

E
[(

u(t, x) – u(s, x)
)(

u
(
t′, x

)
– u
(
s′, x

))]

= Rx,x
(
t, t′) – Rx,x

(
s, t′) – Rx,x

(
t, s′) + Rx,x

(
s, s′)

=
1√
2π

(√
t + t′ –

√
t – t′ –

√
s + t′ +

√
s – t′

–
√

t + s′ +
√

t – s′ +
√

s + s′ –
√

s – s′).

Consider the function

f (x) =
√

t + x –
√

t – x –
√

s + x +
√

s – x

with x ∈ [0, s]. Then, by the mean value theorem, we have

∣
∣E
[(

u(t, x) – u(s, x)
)(

u
(
t′, x

)
– u
(
s′, x

))]∣∣

=
1√
2π

∣
∣f
(
t′) – f

(
s′)∣∣

=
1
2
(
t′ – s′)

∣
∣∣
∣

1√
t + ξ

–
1√

t – ξ
–

1√
s + ξ

+
1√

s – ξ

∣
∣∣
∣

≤ 1
2
(
t′ – s′)

(√
t + ξ –

√
s + ξ√

t + ξ
√

s + ξ
+

√
t – ξ –

√
s – ξ√

s – ξ
√

t – ξ

)

≤ C(t′ – s′)
√

t – s√
ts(s – s′)(t – t′)

for some s′ ≤ ξ ≤ t′ and the lemma follows. �

Lemma 2.5 For all t > 0 and x > y > x′ > y′ we have

∣∣E
[(

u(t, x) – u(t, y)
)(

u
(
t, x′) – u

(
t, y′))]∣∣≤ 1

4
√

tπ
(x – y)

(
x′ – y′)e– (y–x′)2

4t . (2.8)
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Proof Define the function f : R+ →R+ by

f (x) = x
∫ +∞

x

1
s2 e– s2

4t ds.

Then, similar to the proof of Lemma 2.3, we have

E
[(

u(t, x) – u(t, y)
)(

u
(
t, x′) – u

(
t, y′))]

= Rx,x′ (t, t) – Rx,y′ (t, t) – Ry,x′ (t, t) + Ry,y′ (t, t)

=
√

t
2
√

π

[
f
(
x – x′) – f

(
x – y′) – f

(
y – x′) + f

(
y – y′)]

for all t > 0 and x > y > x′ > y′. By mean value theorem it follows that

∣
∣E
[(

u(t, x) – u(t, y)
)(

u
(
t, x′) – u

(
t, y′))]∣∣

=
√

t
2
√

π
(x – y)

∣∣f ′(ξ – x′) – f ′(ξ – y′)∣∣

=
1

4
√

t
√

π
(x – y)

∣
∣∣∣

∫ +∞

ξ–x′
e– s2

4t ds –
∫ +∞

ξ–y′
e– s2

4t ds
∣
∣∣∣

=
1

2
√

π
(x – y)

∫ ξ–y′

ξ–x′

1
2
√

t
e– s2

4t ds ≤ 1
4
√

tπ
(x – y)

(
x′ – y′)

for some ξ ∈ [y, x]. This completes the proof. �

Lemma 2.6 For all t > s > 0 and x ∈ R denote σ 2
t,x = E[u(t, x)2], σ 2

s,x = E[u(s, x)2], μt,s,x =
E[u(t, x)u(s, x)]. Then we have

1
π

√
s(t – s) ≤ σ 2

t,xσ
2
s,x – μ2

t,s,x ≤ 3
π

√
s(t – s). (2.9)

Proof Given t > s > 0 and x ∈ R, we have

σ 2
t,xσ

2
s,x – μ2

t,s,x =
1

2π

(
2
√

ts –
(
(t + s)1/2 – (t – s)1/2)2)

=
1
π

(√
ts – t +

√
t2 – s2

)
=

t
π

(√
z +

√
1 – z2 – 1

)

with z = s
t . Elementary calculus can show that

√
z +

√
1 – z2 – 1 �√

z(1 – z)

for all 0 ≤ z ≤ 1. In fact, we have

√
z +

√
1 – z2 – 1 =

√
z(1 – z) +

(√
z +

√
1 – z2 – 1 –

√
z(1 – z)

)≥√
z(1 – z)

since
√

z +
√

1 – z2 – 1 –
√

z(1 – z) ≥ 0. Conversely, we have also

0 ≤ √
z +

√
1 – z – 1 =

√
z(1 – z) +

√
z +

(√
1 – z –

√
z(1 – z)

)
– 1
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=
√

z(1 – z) – (1 –
√

z)(1 –
√

1 – z) ≤√
z(1 – z),

which gives

√
z +

√
1 – z2 – 1 =

√
z +

√
1 – z + z – z2 – 1

≤ √
z +

√
1 – z – 1 +

√
z(1 – z) ≤ 2

√
z(1 – z).

This completes the proof. �

Lemma 2.7 For all t > 0 and x > y denote μt,x,y = E[u(t, x)u(t, y)]. Then, under the condi-
tions of Lemma 2.6, we have

σ 2
t,xσ

2
t,y – μ2

t,x,y � (x – y)t√
t + x – y

. (2.10)

In particular, we have

0 ≤ σ 2
t,z – μt,x,y � |x – y|t√

t + |x – y| (2.11)

for all t > 0 and x, y, z ∈R.

Proof Given t > 0 and x > y. We have

σ 2
t,xσ

2
t,y – μ2

t,x,y =
t
π

–
1

4π

(∫ t

0

1√
r

exp

{
–

(x – y)2

4r

}
dr
)2

=
1

4π

(
4t –

(∫ t

0

1√
r

exp

{
–

(x – y)2

4r

}
dr
)2)

=
1

4π

∫ t

0

dr√
r

(
1 – exp

{
–

(x – y)2

4r

})

×
∫ t

0

dr√
r

(
1 + exp

{
–

(x – y)2

4r

})

� √
t
∫ t

0

dr√
r

(
1 – exp

{
–

(x – y)2

4r

})

=
√

t(x – y)
∫ ∞

x–y√
t

(
1 – e– s2

4
)ds

s2 � (x – y)t√
t + x – y

by (2.5) and the lemma follows. �

3 The quadratic covariation of the spatial process W = {Wx , |x| ≤ M}
In this section, we study the existence of the PQC [f (W ), W ](SQ). We fix a time parameter
t > 0. Recall that

I2
ε (f , x, t) =

1
ε

∫

Ix

{
f (Wy+ε) – f (Wy)

}
(Wy+ε – Wy) dy
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for ε > 0 and x ∈R, and

[
f (W ), W

](SQ)
x = lim

ε↓0
I2
ε (f , x, t), (3.1)

provided the limit exists in probability. In [25], Pospisil and Tribe have showed that the
following convergence holds.

Lemma 3.1 Let x ∈R and let xn
j = jx

n ; j = 0, 1, . . . , n. Then we have

n∑

j=1

(Wxn
j

– Wxn
j–1

)2 −→ |x|, (3.2)

in L2(Ω), as n tends to infinity.

In this section we are not only to show that

[W , W ](SQ)
x = lim

ε↓0

1
ε

∫

Ix

(Wy+ε – Wy)2 dy = |x|

in L2, but also to find a Banach space of Borel functions such that

[
f (W ), W

](SQ)
x

exists in L2 for all Borel functions f belonging to the Banach space.

Proposition 3.1 We have

[
f (W ), W

](SQ)
x =

∫

Ix

f ′(Wy) dy (3.3)

for all f ∈ C1(R).

Proof of Proposition 3.1 From Russo and Vallois [29] we only need to show that

[W , W ](SQ)
x = |x|

almost surely. That is, for each t ≥ 0

∥∥W ε(x) – |x|∥∥2
L2 = O

(
εα
)

(3.4)

with some α > 0, as ε → 0, by the above lemma, where

W ε(x) =
1
ε

∫

Ix

(Wy+ε – Wy)2 dy.

We have

E
∣∣W ε(x) – |x|∣∣2 =

1
ε2

∫

Ix

∫

Ix

Bε(y, z) dy dz
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for x ∈R and ε > 0, where

Bε(y, z) := E
(
(Wy+ε – Wy)2 – ε

)(
(Wz+ε – Wz)2 – ε

)

= E(Wy+ε – Wy)2(Wz+ε – Wz)2 + ε2

– εE
(
(Wy+ε – Wy)2 + (Wz+ε – Wz)2).

Recall that

E
[
(Wy+ε – Wy)2] =

1√
π

∫ t

0

1√
t – r

(
1 – exp

{
–

ε2

4(t – r)

})
dr

=
1√
π

∫ t

0

1√
r
(
1 – e– ε2

4r
)

dr

=
√

2
π

ε

∫ ∞

ε√
2t

1
s2

(
1 – e– s2

2
)

ds ≡ φt,y(ε) + ε,

where

φt,y(ε) =
√

2
π

ε

∫ ∞

ε√
2t

1
s2

(
1 – e– s2

2
)

ds – ε.

Noting that

E
[
(Wy+ε – Wy)2(Wz+ε – Wz)2]

= E
[
(Wy+ε – Wy)2]E

[
(Wz+ε – Wz)2]

+ 2
(
E
[
(Wy+ε – Wy)(Wz+ε – Wz)

])2

for all ε > 0 and y, z ∈ Ix, we get

Bε(y, z) = φt,y(ε)φt,y(ε) + 2(μy,z)2,

where μy,z := E[(Wy+ε – Wy)(Wz+ε – Wz)].
Now, let us estimate the above function ε �→ φt,y(ε). We have

φt,y(ε) =
√

2
π

ε

(∫ ∞

ε√
2t

1
s2

(
1 – e– s2

2
)

ds –
√

π

2

)

=
√

2
π

ε

(∫ ∞

ε√
2t

1
s2

(
1 – e– s2

2
)

ds –
∫ ∞

0

1
s2

(
1 – e– s2

2
)

ds
)

= –
√

2
π

ε

∫ ε√
2t

0

1
s2

(
1 – e– s2

2
)

ds = O
(
ε2) (ε → 0),

which gives

1
ε2

∫

Ix

∫

Ix

∣∣φt,y(ε)φt,z(ε)
∣∣dy dz = O

(
ε2) (ε → 0).

Combining this with Lemma 2.5, we complete the proof. �
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Now, we discuss the existence of the PQC [f (W ), W ](SQ). Consider the decomposition

I1
ε (f , x, t) =

1
ε

∫

Ix

f (Wy+ε)(Wy+ε – Wy) dy –
1
ε

∫

Ix

f (Wy)(Wy+ε – Wy) dy

≡ I1,+
ε (f , x, t) – I1,–

ε (f , x, t) (3.5)

for ε > 0, and define the set

Ht =
{

f : Borel functions on R such that ‖f ‖Ht < ∞}
,

where

‖f ‖2
Ht : =

1
4√4π t

∫

R

∣∣f (z)
∣∣2(√t + z2)e–

√
πz2

2
√

t dz.

Then Ht = L2(R,μt(dz)) with

μt(dz) =
(

1
4√4π t

(√
t + z2)e–

√
πz2

2
√

t

)
dz

and μt(R) = C|x| < ∞, which implies that the set E of elementary functions of the form

f�(z) =
∑

i

fi1(xi–1,xi](z)

is dense in Ht , where fi ∈ R and {xi, 0 ≤ i ≤ l} is a finite sequence of real numbers such
that xi < xi+1. Moreover, Ht includes all Borel functions f satisfying the condition

∣∣f (z)
∣∣≤ Ceβz2

, z ∈ R, (3.6)

with 0 ≤ β <
√

π

4
√

t .

Theorem 3.1 Let f ∈ Ht . Then the PQC [f (W ), W ](SQ) exists in L2(Ω) and

E
∣∣[f (W ), W

](SQ)
x

∣∣2 ≤ CM‖f ‖2
Ht (3.7)

for all x ∈ [–M, M].

In order to prove the theorem it is enough to prove the following two statements with
f ∈ Ht :

(1) For any ε > 0 and x ∈ [–M, M], I1,±
ε (f , x, ·) ∈ L2(Ω). That is,

E
∣∣I1,–

ε (f , x, ·)∣∣2 ≤ CM‖f ‖2
Ht ,

E
∣∣I1,+

ε (f , x, ·)∣∣2 ≤ CM‖f ‖2
Ht .

(2) I1,–
ε (f , x, t) and I1,+

ε (f , x, t) are two Cauchy sequences in L2(Ω) for all t > 0 and
x ∈ [–M, M]. That is,

E
∣∣I1,–

ε1 (f , x, t) – I1,–
ε2 (f , x, t)

∣∣2 −→ 0
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and

E
∣∣I1,+

ε1 (f , x, t) – I1,+
ε2 (f , x, t)

∣∣2 −→ 0

for all x ∈R, as ε1, ε2 ↓ 0.
We split the proof of the two statements into two parts.

Proof of statement (1) Let x ∈ [–M, M]. We have

E
∣∣I1,–

ε (f , x, ·)∣∣2 =
1
ε2

∫

Ix

∫

Ix

dy dy′E
[
f (Wy)f (Wy′ )(Wy+ε – Wy)(Wy′+ε – Wy′ )

]

for all ε > 0. Now, let us estimate the expression

Φε1,ε2

(
y, y′) := E

[
f (Wy)f (Wy′ )(Wy+ε1 – Wy)(Wy′+ε2 – Wy′ )

]

for all ε1, ε2 > 0 and y, y′ ∈ Ix. To estimate the above expression, it is enough to assume that
f ∈ E by denseness, and moreover, by approximating we can assume that f is an infinitely
differentiable function with compact support. It follows from the duality relationship (2.1)
that

Φε1,ε2

(
y, y′) = E

[
f (Wy)f (Wy′ )(Wy+ε1 – Wy)

∫ y′+ε2

y′
δWl

]

= E
[
Wy(Wy′+ε2 – Wy′ )

]
E
[
f ′(Wy)f (Wy′ )(Wy+ε1 – Wy)

]

+ E
[
Wy′ (Wy′+ε2 – Wy′ )

]
E
[
f (Wy)f ′(Wy′ )(Wy+ε1 – Wy)

]

+ E
[
(Wy+ε1 – Wy)(Wy′+ε2 – Wy′ )

]
E
[
f (Wy)f (Wy′ )

]

= E
[
Wy(Wy′+ε2 – Wy′ )

]
E
[
Wy(Wy+ε2 – Wy)

]
E
[
f ′′(Wy)f (Wy′ )

]

+ E
[
Wy(Wy′+ε2 – Wy′ )

]
E
[
Wy′ (Wy+ε2 – Wy)

]
E
[
f ′(Wy)f ′(Wy′ )

]

+ E
[
Wy′ (Wy′+ε2 – Wy′ )

]
E
[
Wy(Wy+ε1 – Wy)

]
E
[
f ′(Wy)f ′(Wy′ )

]

+ E
[
Wy′ (Wy′+ε2 – Wy′ )

]
E
[
Wy′ (Wy+ε1 – Wy)

]
E
[
f (Wy)f ′′(Wy′ )

]

+ E
[
(Wy+ε1 – Wy)(Wy′+ε2 – Wy′ )

]
E
[
f (Wy)f (Wy′ )

]

≡
5∑

j=1

Ψj
(
y, y′, ε1, ε2

)
(3.8)

for all y, y′ ∈ Ix and ε1, ε2 > 0. In order to end the proof we claim the

Λj :=
1
ε2

∫

Ix

∫

Ix

Ψj
(
y, y′, ε, ε

)
dy dy′, j = 1, 2, 3, 4, 5,

for all ε > 0 to be small enough.
For j = 5, from the fact

∣
∣E
[
(Wy+ε – Wy)(Wy′+ε – Wy′ )

]∣∣≤ ε
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for 0 < |y – y′| ≤ ε, we have

1
ε2

∫

|y–y′|≤ε

y,y′∈Ix

∣
∣Ψ5

(
y, y′, ε, ε

)∣∣dy dy′

≤ 1
ε

∫

|y–y′|≤ε

y,y′∈Ix

E|f (Wy)f (Wy′ )|dy dy′

≤ 1
2ε

∫

|y–y′|≤ε

y,y′∈Ix

E
[∣∣f (Wy)

∣∣2 +
∣∣f (Wy′ )

∣∣2]dy dy′

≤ 1
ε

∫

|y–y′|≤ε

y,y′∈Ix

E|f (Wy)|2 dy dy′

≤
∫

Ix

E|f (Wy)|2 dy = ‖f ‖2
Ht

for all ε > 0. Moreover, for |y – y′| > ε we have

∣
∣E
[
(Wy+ε – Wy)(Wy′+ε – Wy′ )

]∣∣≤ 1
4
√

tπ
ε2e– |y–y′–ε|2

4t

by (2.8), which implies that

1
ε2

∫

{|y–y′|>ε

y,y′∈Ix
}

∣∣Ψ5
(
y, y′, ε, ε

)∣∣dy dy′

≤ 1
4
√

tπ

∫

{|y–y′|>ε

y,y′∈Ix
}
E
∣
∣f (Wy)f (Wy′ )

∣
∣e– |y–y′–ε|2

4t dy dy′

≤ 1
8
√

tπ

∫

{|y–y′|>ε

y,y′∈Ix
}
E
[∣∣f (Wy)

∣
∣2 +

∣
∣f (Wy′ )

∣
∣2]e– |y–y′–ε|2

4t dy dy′

≤ 1
4
√

tπ

∫

{|y–y′|>ε

y,y′∈Ix
}
E
∣∣f (Wy)

∣∣2e– |y–y′–ε|2
4t dy dy′

≤ 1
2

∫

Ix

E
∣
∣f (Wy)

∣
∣2 dy

∫ ∞

–∞
1√

2π (2t)
e– |y–y′–ε|2

4t dy′

=
1
2

∫

Ix

E|f (Wy)|2 dy =
1
2
‖f ‖2

Ht

for all ε > 0. This shows that

Λ5 =
1
ε2

∣
∣∣
∣

∫

Ix

∫

Ix

Ψ5
(
y, y′, ε, ε

)
dy dy′

∣
∣∣
∣≤ ‖f ‖2

Ht

for all ε > 0.
Next, let us estimate

∑4
j=1 Λj. We have

E
[
f ′′(Wy)f (Wy′ )

]
=
∫

R2
f (x)f

(
x′) ∂2

∂x2 ϕ
(
x, x′)dx dx′

=
∫

R2
f (x)f

(
x′)
{

1
ρ4

(
σ 2

t,y′x – μt,y,y′x′)2 –
σ 2

t,y′

ρ2

}
ϕ
(
x, x′)dx dx′
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and

E
[
f ′(Wy)f ′(Wy′ )

]

=
∫

R2
f (x)f

(
x′) ∂2

∂x ∂x′ ϕ
(
x, x′)dx dx′

=
∫

R2
f (x)f

(
x′)
{

1
ρ4

(
σ 2

t,yx′ – μt,y,y′x
)(

σ 2
t,y′x – μt,y,y′x′) +

μt,y,y′

ρ2

}
ϕ
(
x, x′)dx dx′,

where ρ2 = σ 2
t,yσ

2
t,y′ – μ2

t,y,y′ and ϕ(x, y) is the density function of (Wy, Wy′ ), that is,

ϕ
(
x, x′) =

1
2πρ

exp

{
–

1
2ρ2

(
σ 2

t,y′x2 – 2μt,y,y′xx′ + σ 2
t,yx′2)

}
.

Combining this with the identity

(
σ 2

t,yx′ – μt,y,y′x
)(

σ 2
t,y′x – μt,y,y′x′)

= ρ2x′
(

x –
μt,y,y′

σ 2
t,y′

x′
)

– μt,y,y′σ 2
t,y′

(
x –

μt,y,y′

σ 2
t,y′

x′
)2

,

we get

E
[
f ′′(Wy)f (Wy′ )

]
+ E
[
f ′(Wy)f ′(Wy′ )

]

=
μt,y,y′ – σ 2

t,y′

ρ2

∫

R

∫

R

f (x)f
(
x′)ϕ

(
x, x′)dx dx′

+
1
ρ2

∫

R

∫

R

f (x)f
(
x′)x′

(
x –

μt,y,y′

σ 2
t,y′

x′
)

ϕ
(
x, x′)dx dx′

+
σ 2

t,y′

ρ4

(
σ 2

t,y′ – μt,y,y′
)∫

R

∫

R

f (x)f
(
x′)
(

x –
μt,y,y′

σ 2
t,y′

x′
)2

ϕ
(
x, x′)dx dx′

≡ Υ1 + Υ2 + Υ3.

A straightforward calculation shows that

∫

R

∫

R

∣∣f
(
x′)∣∣2

(
x –

μt,y,y′

σ 2
t,y′

x′
)2m

ϕ
(
x, x′)dx dx′

= Cm

(
ρ2

σ 2
t,y′

)m ∫

R

∣
∣f
(
x′)∣∣2 1√

2πσt,y′
e

– x′2
2σ2

t,y′ dx′

≤ Cm

(
ρ2
√

t

)m ∫

R

∣
∣f (x)

∣
∣2 1

4√t
e–

√
πx2

2
√

t dx

for all m ≥ 1 and

∫

R

∫

R

∣
∣f (x)x′∣∣2ϕ

(
x, x′)dx dx′
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=
∫

R

∣∣f (x)
∣∣2 1√

2πσt,y
e

– x2
2σ2

t,y dx
∫

R

∣∣x′∣∣2 σt,y√
2πρ

e
–

σ2
t,y

2ρ2 (x′–
μt,y,y′
σ2

t,y
x)2

dx′

=
∫

R

∣∣f (x)
∣∣2 1√

2πσt,y
e

– x2
2σ2

t,y dx
(

ρ2

σ 2
t,y

+
μ2

t,y,y′

σ 4
t,y

x2
)

≤ C
1

4√π t

∫

R

∣∣f (x)
∣∣2e–

√
πx2

2
√

t
(√

t + x2)dx

since σ 2
t,y = σ 2

t,y′ =
√

t
π

. It follows that

|Υ1| ≤ 1
ρ2

(∫

R2

∣
∣f (x)x′∣∣2ϕ

(
x, x′)dx dx′

∫

R2

∣
∣f
(
x′)∣∣2

∣∣
∣∣x –

μt,y,y′

σ 2
t,y′

x′
∣∣
∣∣

2

ϕ
(
x, x′)dx dx′

) 1
2

≤ C
1

ρ 4√t

∫

R

∣∣f (x)
∣∣2 1

4√t
e–

√
πx2

2
√

t
(√

t + x2)dx

and

|Υ3| ≤
σ 2

t,y′

ρ4

∣∣σ 2
t,y′ – μt,y,y′

∣∣

×
(∫

R2

∣
∣f (x)

∣
∣2ϕ
(
x, x′)dx dx′

∫

R2

∣
∣f
(
x′)∣∣2

(
x –

μt,y,y′

σ 2
t,y′

x′
)4

ϕ
(
x, x′)dx dx′

)1/2

≤ C|σ 2
t,y′ – μt,y,y′ |

ρ2

∫

R

∣∣f (x)
∣∣2 1

4√t
e–

√
πx2

2
√

t dx.

Thus, we get the estimate

∣
∣E
[
f ′′(Wy)f (Wy′ )

]
+ E
[
f ′(Wy)f ′(Wy′ )

]∣∣

≤ |Υ1| + |Υ2| + |Υ3|

≤
∫

R

∣∣f (x)
∣∣2 1

4√t
e–

√
πx2

2
√

t
(√

t + x2)dx (3.9)

and

∣
∣E
[
f ′′(Wy)f (Wy′ )

]∣∣≤ C
|y – y′|

∫

R

∣
∣f (x)

∣
∣2 1

4√t
e–

√
πx2

2
√

t dx (3.10)

by Lemma 2.7 and Lemma 2.3. Now, we can estimate
∑4

j=1 Λj. We have

4∑

j=1

Ψj
(
y, y′, ε, ε

)

= E
[
Wy(Wy′+ε – Wy′ )

]
E
[
(Wy – Wy′ )(Wy+ε – Wy)

]
E
[
f ′′(Wy)f (Wy′ )

]

+ E
[
Wy(Wy′+ε – Wy′ )

]
E
[
Wy′ (Wy+ε – Wy)

]

× (
E
[
f ′(Wy)f ′(Wy′ )

]
+ E
[
f ′′(Wy)f (Wy′ )

])
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+ E
[
Wy′ (Wy′+ε – Wy′ )

]
E
[
Wy(Wy+ε – Wy)

]

× (
E
[
f ′(Wy)f ′(Wy′ )

]
+ E
[
f (Wy)f ′′(Wy′ )

])

+ E
[
Wy′ (Wy′+ε – Wy′ )

]
E
[
(Wy′ – Wy)(Wy+ε – Wy)

]
E
[
f (Wy)f ′′(Wy′ )

]
.

Combining this with (3.9), (3.10), Lemma 2.3 and Lemma 2.5, we get

∣
∣∣
∣∣

4∑

j=1

Λj

∣
∣∣
∣∣
≤ 1

ε2

∫

Ix

∫

Ix

∣
∣∣
∣∣

4∑

j=1

Ψj
(
y, y′, ε, ε

)
∣
∣∣
∣∣
dy dy′ ≤ CM‖f ‖2

Ht

for all ε > 0 and x ∈R. This shows that

E
∣
∣I1,–

ε (f , x, ·)∣∣2 ≤ CM‖f ‖2
Ht .

Similarly, one can show the estimate

E
∣
∣I1,+

ε (f , x, ·)∣∣2 ≤ CM‖f ‖2
Ht ,

and the first statement follows. �

Proof of statement (2) Given x ∈ [–M, M]. Without loss of generality we assume that
ε1 > ε2. We prove only the first convergence and similarly one can prove the second con-
vergence. We have

E
∣
∣I1,–

ε1 (f , x, t) – I1,–
ε2 (f , x, t)

∣
∣2

=
1
ε2

1

∫

Ix

∫

Ix

Ef (Wy)f (Wy′ )(Wy+ε1 – Wy)(Wy′+ε1 – Wy′ ) dy dy′

– 2
1

ε1ε2

∫

Ix

∫

Ix

Ef (Wy)f (Wy′ )(Wy+ε1 – Wy)(Wy′+ε2 – Wy′ ) dy dy′

+
1
ε2

2

∫

Ix

∫

Ix

Ef (Wy)f (Wy′ )(Wy+ε2 – Wy)(Wy′+ε2 – Wy′ ) dy dy′

≡ 1
ε2

1ε2

∫

Ix

∫

Ix

{
ε2Φy,y′ (1, ε1) – ε1Φy,y′ (2, ε1, ε2)

}
dy dy′

+
1

ε1ε
2
2

∫

Ix

∫

Ix

{
ε1Φy,y′ (1, ε2) – ε2Φy,y′ (2, ε1, ε2)

}
dy dy′,

for all ε1, ε2 > 0, where

Φy,y′ (1, ε) = E
[
f (Wy)f (Wy′ )(Wy+ε – Wy)(Wy′+ε – Wy′ )

]
,

and

Φy,y′ (2, ε1, ε2) = E
[
f (Wy)f (Wy′ )(Wy+ε1 – Wy)(Wy′+ε2 – Wy′ )

]
.

To end the proof, it is enough to assume that f ∈ E by denseness, and moreover, by ap-
proximating we can assume that f is an infinitely differentiable function with compact
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support. It follows from (3.8) that

Φy,y′ (1, ε) =
5∑

j=1

Ψj
(
y, y′, ε, ε

)
,Φy,y′ (2, ε1, ε2) =

5∑

j=1

Ψj
(
y, y′, ε1, ε2

)
,

which gives

εjΦy,y′ (1, εi) – εiΦy,y′ (2, ε1, ε2)

= Ay,y′ (1, εi, j)E
[
f ′′(Wy)f (Wy′ )

]
+ Ay,y′ (2 – 1, εi, j)E

[
f ′(Wy)f ′(Wy′ )

]

+ Ay,y′ (3, εi, j)E
[
f (Wy)f ′′(Wy′ )

]
+ Ay,y′ (2 – 2, εi, j)E

[
f ′(Wy)f ′(Wy′ )

]

+ Ay,y′ (4, ε, j)E
[
f (Wy)f (Wy′

]

with i, j ∈ {1, 2} and i �= j, where

Ay,y′ (1, ε, j)

:= εjE
[
Wy(Wy′+ε – Wy′ )

]
E
[
Wy(Wy+ε – Wy)

]

– εE
[
Wy(Wy′+ε2 – Wy′ )

]
E
[
Wy(Wy+ε1 – Wy)

]
,

Ay,y′ (2 – 1, ε, j)

:= εjE
[
Wy(Wy′+ε – Wy′ )

]
E
[
Wy′ (Wy+ε – Wy)

]

– εE
[
Wy(Wy′+ε2 – Wy′ )

]
E
[
Wy′ (Wy+ε1 – Wy)

]
,

Ay,y′ (2 – 2, ε, j)

:= εjE
[
Wy′ (Wy′+ε – Wy′ )

]
E
[
Wy(Wy+ε – Wy)

]

– εE
[
Wy′ (Wy′+ε2 – Wy′ )

]
E
[
Wy(Wy+ε1 – Wy)

]
,

Ay,y′ (3, ε, j)

:= εjE
[
Wy′ (Wy′+ε – Wy′ )

]
E
[
Wy′ (Wy+ε – Wy)

]

– εE
[
Wy′ (Wy′+ε2 – Wy′ )

]
E
[
Wy′ (Wy+ε1 – Wy)

]
,

Ay,y′ (4, ε, j)

:= εjE
[
(Wy+ε – Wy)(Wy′+ε – Wy′ )

]
– εE

[
(Wy+ε1 – Wy)(Wy′+ε2 – Wy′ )

]

for all ε1, ε2 > 0 and y, y′ ∈R. Now, we claim that the following convergences hold:

1
ε2

i εj

∫ t

0

∫ t

0

{
εjΦy,y′ (1, εi) – εiΦy,y′ (2, ε1, ε2)

}
ds dr −→ 0 (3.11)

with i, j ∈ {1, 2} and i �= j, as ε1, ε2 → 0. We decompose

εjΦy,y′ (1, εi) – εiΦy,y′ (2, ε1, ε2)

=
{

Ay,y′ (1, εi, j) – Ay,y′ (2 – 1, εi, j)
}

E
[
f ′′(Wy)f (Wy′ )

]

+ Ay,y′ (2 – 1, εi, j)
{

E
[
f ′(Wy)f ′(Wy′ )

]
+ E
[
f ′′(Wy)f (Wy′ )

]}
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+
{

Ay,y′ (3, εi, j) – Ay,y′ (2 – 2, εi, j)
}

E
[
f (Wy)f ′′(Wy′ )

]

+ Ay,y′ (2 – 2, εi, j)
{

E
[
f ′(Wy)f ′(Wy′ )

]
+ E
[
f (Wy)f ′′(Wy′ )

]}

+ Ay,y′ (4, ε, j)E
[
f (Wy)f (Wy′

]

with i, j ∈ {1, 2} and i �= j. By symmetry we only need to prove the convergence (3.11) with
i = 1 and j = 2.

Step I. The following convergence holds:

1
ε2

1ε2

∫

Ix

∫

Ix

Ay,y′ (4, ε1, 2)E
[
f (Wy)f (Wy′ )

]
dy dy′ −→ 0, (3.12)

as ε1, ε2 → 0. We have

Ay,y′ (4, ε1, 2)

= ε2E
[
(Wy+ε1 – Wy)(Wy′+ε1 – Wy′ )

]

– ε1E
[
(Wy+ε1 – Wy)(Wy′+ε2 – Wy′ )

]

= ε2{EWy+ε1 Wy′+ε1 – EWyWy′+ε1 – EWy+ε1 Wy′ + EWyWy′ }
– ε1{EWy+ε1 Wy′+ε2 – EWyWy′+ε2 – EWy+ε1 Wy′ + EWyWy′ }

=
1

2
√

π
ε2

(∫ t

0

2√
r

e– (y–y′)2
4r dr –

∫ t

0

1√
r

e– (y–y′–ε1)2
4r dr –

∫ t

0

1√
r

e– (y+ε1–y′)2
4r dr

)

–
1

2
√

π
ε1

(∫ t

0

1√
r

e– (y–y′+ε1–ε2)2
4r dr –

∫ t

0

1√
r

e– (y–y′–ε2)2
4r dr

–
∫ t

0

1√
r

e– (y+ε1–y′)2
4r dr +

∫ t

0

1√
r

e– (y–y′)2
4r dr

)
.

Consider the next function on R+ (see Sect. 2):

f (x) = x
∫ ∞

x

1
s2 e– s2

2 ds = e– x2
2 – x

∫ ∞

x
e– s2

2 ds.

Then we have

Ay,y′ (4, ε1, 2) =
√

t√
2π

ε2

(
2f
(

y – y′
√

2t

)
– f
(

y – y′ – ε1√
2t

)
– f
(

y + ε1 – y′
√

2t

))

–
√

t√
2π

ε1

(
f
(

y – y′ + ε1 – ε2√
2t

)
– f
(

y – y′ – ε2√
2t

)

– f
(

y + ε1 – y′
√

2t

)
+ f
(

y – y′
√

2t

))
.

Notice that, by Taylor’s expansion,

f (x) = 1 –
√

π

2
x +

1
2

x2 –
1
4!

x4 + o
(
x4).
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One gets

2f
(

y – y′
√

2t

)
– f
(

y – y′ – ε1√
2t

)
– f
(

y – y′ + ε1√
2t

)

=
1
4t
{

2
(
y – y′)2 –

(
y – y′ – ε1

)2 –
(
y – y′ + ε1

)2}

–
1

4 × 4!t2

{
2
(
y – y′)4 –

(
y – y′ – ε1

)4 –
(
y – y′ + ε1

)4} + α1

= –
1
4t

ε2
1 +

1
4 × 4!t2

(
12
(
y – y′)2

ε2
1 + 2ε4

1
)

+ α1

with α1 = 1
4t2 o(12(y – y′)2ε2

1 + 2ε4
1) and

f
(

y – y′ + ε1 – ε2√
2t

)
– f
(

y – y′ – ε2√
2t

)
– f
(

y – y′ + ε1√
2t

)
+ f
(

y – y′
√

2t

)

=
1
4t
{(

y – y′ + ε1 – ε2
)2 –

(
y – y′ – ε2

)2 –
(
y – y′ + ε1

)2 +
(
y – y′)2}

–
1

4 × 4!t2

{(
y – y′ + ε1 – ε2

)4 –
(
y – y′ – ε2

)4 –
(
y – y′ + ε1

)4 +
(
y – y′)4} + α2

= –
1
4t

ε1ε2 +
1

4 × 4!t2

{
12
(
y – y′)2

ε1ε2 + ε1ε2(ε1 – ε2)
(
12
(
y – y′) + 2ε1 – ε2

)}
+ α2

with α2 = 1
4t2 o(12(y – y′)2ε1ε2 + ε1ε2(ε1 – ε2)(12(y – y′) + 2ε1 – ε2)). It follows that

1
ε2

1ε2

∣∣Ay,y′ (4, ε1, 2)
∣∣≤ C

t3/2

(
ε1 +

o(ε1ε2)
ε1ε2

+
o(ε2

1)
ε2

1

)
(|x|2 + |x| + 1

)
.

for all 0 < ε2 < ε1 < 1 and y, y′ ∈ Ix, which shows that the convergence (3.11) holds since
f ∈ Ht .

Step II. The following convergence holds:

1
ε2

1ε2

∫

Ix

∫

Ix

{
Ay,y′ (1, ε1, 2) – Ay,y′ (2 – 1, ε1, 2)

}

× E
[
f ′′(Wy)f (Wy′ )

]
dy dy′ −→ 0, (3.13)

as ε1, ε2 → 0. Keeping the notations in Step I, we have

f
(

y – y′ – ε√
2t

)
– f
(

y – y′
√

2t

)

=
1√
π t

ε –
1
4t
(
2
(
y – y′) – ε

)
ε

–
1

4 × 4!t2

(
–4
(
y – y′)3 + 6ε

(
y – y′)2 – 4ε3(y – y′) + ε3)ε

for all ε and

�1 := ε2

(
f
(

y – y′ – ε1√
2t

)
– f
(

y – y′
√

2t

))
– ε1

(
f
(

y – y′ – ε2√
2t

)
– f
(

y – y′
√

2t

))
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= ε1ε2(ε1 – ε2)
{

1
4t

–
3(y – y′)2

2 × 4!t2 +
y – y′

×4!t2 (ε1 + ε2) –
1

4 × 4!t2

(
ε2

1 – ε1ε2 + ε2
2
)}

.

It follows from (2.8) that

∣
∣Ay,y′ (1, ε1, 2) – Ay,y′ (2 – 1, ε1, 2)

∣
∣

=
∣
∣ε2E

[
Wy(Wy′+ε1 – Wy′ )

]
E
[
(Wy – Wy′ )(Wy+ε1 – Wy)

]

– ε1E
[
Wy(Wy′+ε2 – Wy′ )

]
E
[
(Wy – Wy′ )(Wy+ε1 – Wy)

]∣∣

=
∣
∣E
[
(Wy – Wy′ )(Wy+ε1 – Wy)

]∣∣

× ∣
∣ε2E

[
Wy(Wy′+ε1 – Wy′ )

]
– ε1E

[
Wy(Wy′+ε2 – Wy′ )

]∣∣

=
∣
∣E
[
(Wy – uy′ )(Wy+ε1 – Wy)

]∣∣|�1|

≤ C
∣∣y – y′∣∣ε2

1ε2(ε1 – ε2)
{

1
t

+
1
t2

(|x|2 + |x| + 1
)
}

for all 0 < ε2 < ε1 < 1 and y, y′ ∈ Ix, which implies that

1
ε2

1ε2

∫

Ix

∫

Ix

∣
∣Ay,y′ (1, ε1, 2) – Ay,y′ (2 – 1, ε1, 2)

∣
∣
∣
∣E
[
f ′′(Wy)f (Wy′ )

]∣∣dy dy′

≤ C(ε1 – ε2)
{

1
t

+
1
t2

(|x|2 + |x| + 1
)}∫

Ix

∫

Ix

∣∣y – y′∣∣∣∣E
[
f ′′(Wy)f (Wy′ )

]∣∣dy dy′

≤ C(ε1 – ε2)
{

1
t

+
1
t2

(|x|2 + |x| + 1
)
}
‖f ‖2

Ht −→ 0,

as ε1, ε2 → 0 since f ∈ Ht . Similarly, we can show the next convergence:

1
ε2

1ε2

∫

Ix

∫

Ix

{
Ay,y′ (3, ε1, 2) – Ay,y′ (2 – 2, ε1, 2)

}
E
[
f (Wy)f ′′(Wy′ )

]
dy dy′ −→ 0, (3.14)

as ε1, ε2 → 0.
Step III. The following convergence holds:

1
ε2

1ε2

∫

Ix

∫

Ix

Ay,y′ (2 – 1, ε1, 2)

× {
E
[
f ′(Wy)f ′(Wy′ )

]
+ E
[
f ′′(Wy)f (Wy′ )

]}
dy dy′ −→ 0, (3.15)

as ε1, ε2 → 0. By Step II and Lemma 2.3, we have

∣∣Ay,y′ (2 – 1, ε1, 2)
∣∣ =
∣∣E
[
Wy′ (Wy+ε1 – Wy)

]∣∣

× ∣∣ε2E
[
Wy(Wy′+ε1 – Wy′ )

]
– ε1E

[
Wy(Wy′+ε2 – Wy′ )

]∣∣

=
∣
∣E
[
Wy′ (Wy+ε1 – Wy)

]∣∣|�1|

≤ Cε2
1ε2(ε1 – ε2)

{
1
t

+
1
t2

(|x|2 + |x| + 1
)}

for all 0 < ε2 < ε1 < 1 and y, y′ ∈ Ix, which implies that

1
ε2

1ε2

∫

Ix

∫

Ix

∣∣Ay,y′ (2 – 1, ε1, 2)
∣∣∣∣E
[
f ′(Wy)f ′(Wy′ )

]
+ E
[
f ′′(Wy)f (Wy′ )

]∣∣dy dy′
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≤ C(ε1 – ε2)
{

1
t

+
1
t2

(|x|2 + |x| + 1
)}‖f ‖2

Ht −→ 0,

as ε1, ε2 → 0 by (3.9), since f ∈ Ht . Similarly, we can show that the next convergence:

1
ε2

1ε2

∫

Ix

∫

Ix

Ay,y′ (2 – 2, ε1, 2)

× {
E
[
f ′(Wy)f ′(Wy′ )

]
+ E
[
f (Wy)f ′′(Wy′ )

]}
dy dy′ −→ 0, (3.16)

as ε1, ε2 → 0. Thus, we have proved the second statement. �

Corollary 3.1 Let f , f1, f2, . . . ∈ Ht such that fn → f in Ht . Then the convergence

[
fn(W ), W

](SQ)
x −→ [

f (W ), W
](SQ)

x (3.17)

holds in L2(Ω) for all x ∈R.

4 The Itô formula for the spatial process
In this section, as an application of the previous section we discuss the Itô calculus for
the process W = {Wx, |x| ≤ M} and fix a time parameter t > 0. For a continuous process
X admitting a finite quadratic variation [X, X], Russo and Vallois [29] have introduced the
following Itô formula:

F(Xt) = F(X0) +
∫ t

0
F ′(Xs) d–Xs +

1
2

∫ t

0
F ′′(Xs) d[X, X]s

for all F ∈ C2(R), where

∫ t

0
F ′(Xs) d–Xs := ucp lim

ε↓0

1
ε

∫ t

0
F ′(Xs)(Xs+ε – Xs) ds

is called the forward integral, where the notation ucp lim denotes the uniform conver-
gence in probability on each compact interval. We refer to Russo and Vallois [29] and the
references therein for more details of stochastic calculus of continuous processes with fi-
nite quadratic variations. It follows from the previous section (the quadratic variation of
{Wx, x ∈R} is equal to |x| for all x ∈R) that

F(Wx) = F(W0) +
∫

Ix

F ′(Wy) d–Wy +
1
2

∫

Ix

F ′′(Wy) dy (4.1)

for all F ∈ C2(R). Thus, by smooth approximating, we have the next Itô type formula.

Theorem 4.1 Let f ∈ Ht be left continuous. If F is an absolutely continuous function with
the derivative F ′ = f , then the following Itô type formula holds:

F(Wx) = F(W0) +
∫

Ix

f (Wy) d–Wy +
1
2
[
f (W ), W

](SQ)
x . (4.2)
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Clearly, this is an analogue of Föllmer–Protter–Shiryayev’s formula. It is an improve-
ment in terms of the hypothesis on f and it is also quite interesting itself. Some details and
more work could be found in Eisenbaum [6], Feng–Zhao [8], Föllmer et al. [9], Moret–
Nualart [18], Peskir [24], Rogers–Walsh [26], Russo–Vallois [28, 29], Yan et al. [36, 37],
and the references therein. It is well known that when W is a semimartingale, the forward
integral coincides with the Itô integral. However, the following theorem points out that
the two integrals are coincident for the process W = {Wx, x ∈ R}. But W = {Wx, x ∈ R} is
not a semimartingale.

Proof of Theorem 4.1 If f ∈ C1(R), then this is Itô’s formula since

[
f (W ), W

](SQ)
x =

∫

Ix

f ′(Wy) dy.

For f /∈ C1(R), by a localization argument we may assume that the function f is uniformly
bounded. In fact, for any k ≥ 0 we may consider the set

Ωk =
{

sup
x∈R

|Wx| < k
}

and let f [k] be a measurable function such that f [k] = f on [–k, k] and such that f [k] vanishes
outside. Then f [k] is uniformly bounded and f [k] ∈ Ht for every k ≥ 0. Set d

dx F [k] = f [k] and
F [k] = F on [–k, k]. If the theorem is true for all uniformly bounded functions on Ht , then
we get the desired formula

F [k](Wx) = F [k](W0) +
∫

Ix

f [k](Wy) d–Wy +
1
2
[
f [k](W ), W

](SQ)
x

on the set Ωk . Letting k tend to infinity we deduce the Itô formula (4.1).
Let now F ′ = f ∈ Ht be uniformly bounded and left continuous. Consider the function

ζ on R by

ζ (x) :=

⎧
⎨

⎩
ce

1
(x–1)2–1 x ∈ (0, 2),

0 otherwise,
(4.3)

where c is a normalizing constant such that
∫
R

ζ (x) dx = 1. Define the mollifiers

ζn(x) := nζ (nx), n = 1, 2, . . . , (4.4)

and the sequence of smooth functions

Fn(x) :=
∫

R

F(x – y)ζn(y) dy, x ∈R.

Then Fn ∈ C∞(R) for all n ≥ 1 and the Itô formula

Fn(Wx) = Fn(W0) +
∫

Ix

fn(Wy) d–Wy +
1
2

∫ t

0
f ′
n(Wy) dy (4.5)
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holds for all n ≥ 1, where fn = F ′
n. Moreover, by using Lebesgue’s dominated convergence

theorem, one can prove that, as n → ∞, for each x,

Fn(x) −→ F(x), fn(x) −→ f (x),

and {fn} ⊂ Ht , fn → f in Ht . It follows that

1
2

∫ t

0
f ′
n(Wy) dy =

[
fn(W ), W

](SQ)
x −→ [

f (W ), W
](SQ)

x

and

fn(Wx) −→ f (Wx)

in L2(Ω) by Corollary 3.1, as n tends to infinity. It follows that

∫

Ix

fn(Wy) d–Wy = Fn(Wy) – Fn(W0) –
1
2
[
fn(W ), W

](SQ)
x

−→ F(Wy) – Fn(W0) –
1
2
[
f (W ), W

](SQ)
x

in L2(Ω), as n tends to infinity. This completes the proof since the integral is closed in
L2(Ω). �

Now, we consider the Itô formula including the Skorohod integral of the spatial process
W = {Wx}.

Theorem 4.2 Let f be left continuous. If F is an absolutely continuous function with the
derivative F ′ = f satisfying the condition

∣∣F(y)
∣∣,
∣∣f (y)

∣∣≤ Ceβy2
, y ∈R, (4.6)

with 0 ≤ β <
√

π

4
√

t , then the following Itô type formula holds:

F(Wx) = F(W0) +
∫

Ix

f (Wy)δWy +
1
2
[
f (W·), W·

](SQ)
x (4.7)

for all x ∈ [–M, M].

According to the two theorems above we get the next relationship:

∫

Ix

f (Wy)δWy =
∫

Ix

f (Wy) d–Wy, (4.8)

if f satisfies the growth condition (4.6). Similar to the proof of Theorem 4.1 one can intro-
duce Theorem 4.2. But we need to give the following standard Itô type formula:

F(Wx) = F(W0) +
∫

Ix

F ′(Wy)δWy +
1
2

∫

Ix

F ′′(Wy) dy (4.9)
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for all F ∈ C2(R) satisfying the condition

∣∣F(y)
∣∣,
∣∣F ′(y)

∣∣,
∣∣F ′′(y)

∣∣≤ Ceβy2
, y ∈R (4.10)

with 0 ≤ β <
√

π

4
√

t . It is important to note that one have given a standard Itô formula for a
large class of Gaussian processes in Alós et al. [1]. However, the process x �→ Wx does not
satisfy the condition in Alós et al. [1] since

E
[
u(t, x)2] =

√
t
π

,
d

dx
E
[
u(t, x)2] = 0

for all t ≥ 0 and x ∈ R. So, we need to give the proof of the formula (4.9).

Proof of (4.9) Let us fix x ∈ [–M, M] and let π ≡ {xn
j = jx

n ; j = 0, 1, . . . , n} be a partition of
[0, x]. Clearly, the growth condition (4.6) implies that

E
[
sup
x∈R

∣∣G(Wx)
∣∣p
]

≤ cpE
[
epβ supx∈R |Wx|] < ∞ (4.11)

for some constant c > 0 and all p <
√

π

2β
√

t , where G ∈ {F , F ′, F ′′}. In particular, the estimate
(4.11) holds for p = 2. Using the Taylor expansion, we have

F(Wx) = F(W0) +
n∑

j=1

F ′(Wxn
j–1

)(Wxn
j

– Wxn
j–1

)

+
1
2

n∑

j=1

F ′′(Wj(θj)
)
(Wxn

j
– Wxn

j–1
)2

≡ F(W0) + In + Jn, (4.12)

where Wj(θj) = Wxn
j–1

+ θj(Wxn
j

– Wxn
j–1

) with θj ∈ (0, 1) being a random variable. By the
duality relationship (2.1) we have

In =
n∑

j=1

F ′(Wxn
j–1

)
(
δt(1(xn

j–1,xn
j ])
)

= δt

( n∑

j=1

f ′(Wxn
j–1

)1(xn
j–1,xj](·)

)

+
n∑

j=1

F ′′(Wxn
j–1

)〈1(0,xn
j–1], 1(xn

j–1,xn
j ]〉H�

≡ In
1 + In

2 .

Now, in order to end the proof we claim that the following convergences in L2 hold:

In
2 −→ –

1
2

∫ t

0
F ′′(Wy) dy, (4.13)

In
1 −→

∫

Ix

F ′(Wy)δWy, (4.14)
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Jn −→
∫ t

0
F ′′(Wy) dy, (4.15)

as n tends to infinity.
To prove the first convergence, it is enough to establish that

Λn := E

∣∣
∣∣
∣
In

2 +
1
2

n∑

j=1

F ′′(Wxn
j
)
(
xn

j – xn
j–1
)
∣∣
∣∣
∣

2

−→ 0,

as n tends to infinity. By the -Minkowski inequality we have

√
Λn =

(

E

∣∣∣
∣∣

n∑

j=1

F ′′(Wxn
j–1

)
{
〈1(0,xn

j–1], 1(xn
j–1,xn

j ]〉H� +
1
2
(
xn

j – xn
j–1
)
}∣∣∣
∣∣

2)1/2

≤ C
n∑

j=1

∣∣
∣∣〈1(0,xn

j–1], 1(xn
j–1,xn

j ]〉H� +
1
2
(
xn

j – xn
j–1
)
∣∣
∣∣

= C
n∑

j=1

∣
∣∣
∣

1
2
√

π

∫ t

0

1√
r
(
1 – e– 1

4r (xn
j –xn

j–1)2)
dr –

1
2
(
xn

j – xn
j–1
)
∣
∣∣
∣

= C
n∑

j=1

∣∣xn
j – xn

j–1
∣∣
∣
∣∣∣

1√
2π

∫ ∞
xn

j –xn
j–1√

2t

1
s2

(
1 – e– s2

2
)

ds –
1
2

∣
∣∣∣

= C
n∑

j=1

∣∣xn
j – xn

j–1
∣∣
∣
∣∣∣

1√
2π

∫ xn
j –xn

j–1√
2t

0

1
s2

(
1 – e– s2

2
)

ds
∣
∣∣∣

= C|x| 1√
2π

∫ |x|
n
√

2t

0

1
s2

(
1 – e– s2

2
)

ds −→ 0 (n → ∞).

Now, we prove the third convergence. We have

Λn(2) := E
∣∣
∣∣J

n –
∫

Ix

F ′′(Wy) dy
∣∣
∣∣

= E

∣
∣∣
∣∣
1
2

n∑

j=1

F ′′(Wj(θj)
)
(Wxn

j
– Wxn

j–1
)2 –

∫

Ix

F ′′(Wy) dy

∣
∣∣
∣∣
.

Suppose that n ≥ m, and for any j = 1, . . . , n we denote by xm(n)
j the point of the mth parti-

tion that is closer to xn
j from the left hand. Then we obtain

Λn(2) ≤ 1
2

E

∣∣∣
∣∣

n∑

j=1

(
F ′′(Wj(θj)

)
– F ′′(Wxm(n)

j
)
)
(Wxn

j
– Wxn

j–1
)2

∣∣∣
∣∣

+
1
2

E

∣∣∣
∣∣

m∑

k=1

F ′′(Wxm(n)
j

)
∑

{j:xm(n)
k–1 ≤xm(n)

j–1 <xm(n)
k }

(
(Wxn

j
– Wxn

j–1
)2 –

(
xn

j – xn
j–1
))
∣∣∣
∣∣

+ E

∣∣
∣∣
∣

m∑

k=1

∫ xn
k

xn
k–1

(
F ′′(Wxm(n)

j
) – F ′′(Wy)

)
dy

∣∣
∣∣
∣
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≡ 1
2
Λn(2, 1) +

1
2
Λn(2, 2) + Λn(2, 3).

Clearly, we have Λn(2, 2) → 0 (n, m → ∞) by Lemma 3.1 and the estimate (4.11),

Λn(2, 3) ≤ |x|E sup
|z–y|≤ |x|

m

∣
∣F ′′(Wz) – F ′′(Wy)

∣
∣−→ 0 (m → ∞)

and

Λn(2, 1) = E

∣
∣∣
∣∣

n∑

j=1

(
F ′′(Wj(θj)

)
– F ′′(Wxm(n)

j
)
)
(Wxj – Wxj–1 )2

∣
∣∣
∣∣

≤ CE

{

sup
|z–y|≤ |x|

n

∣∣F ′′(Wz) – F ′′(Wy)
∣∣

n∑

j=1

(Wxn
j

– Wxn
j–1

)2

}

≤ C

{

E sup
|z–y|≤ |x|

n

∣∣F ′′(Wz) – F ′′(Wy)
∣∣2E

( n∑

j=1

(Wxn
j

– Wxn
j–1

)2

)2}1/2

≤ C|x|
{

E sup
|z–y|≤ |x|

n

∣∣F ′′(Wz) – F ′′(Wy)
∣∣2
}1/2 −→ 0 (n → ∞)

by (2.4), the estimate (4.11) and Minkowski’s inequality. Thus, we obtain the third conver-
gence, i.e., Jn → ∫ t

0 F ′′(Wy) dy in L1.
Finally, to end the proof we address the second convergence:

In
1 = δ�

( n∑

j=1

F ′(Wxn
j–1

)1(xn
j–1,xn

j ](·)
)

−→
∫

Ix

F ′(Wy)δWy (n → ∞).

We need to show that

An :=
n∑

j=1

F ′(Wxn
j–1

)1(xn
j–1,xn

j ](·) −→ F ′(W·)1Ix (·)

in L2(Ω ;H�), as n tends to infinity. We have

E
∥∥An – F ′(W·)1Ix (·)∥∥2

H�

= E

∥∥
∥∥
∥

n∑

j=1

(
F ′(Wxj–1 ) – F ′(W·)

)
1(xn

j–1,xn
j ](·)

∥∥
∥∥
∥

2

H�

≤ E
(

sup
|u–v|≤ |x|

n

∣∣F ′(Wu) – F ′(Wv)
∣∣2
)
∥
∥∥
∥∥

n∑

j=1

1(xn
j–1,xn

j ](·)
∥
∥∥
∥∥

2

H�

, (4.16)

for all n ≥ 1 and x ∈R. Notice that

∥∥
∥∥
∥

n∑

j=1

1(xn
j–1,xn

j ](·)
∥∥
∥∥
∥

2

H�
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=

〈 n∑

j=1

1(xn
j–1,xn

j ](·),
n∑

j=1

1(xn
j–1,xn

j ](·)
〉

H�

=
n∑

j=1

〈
1(xn

j–1,xn
j ](·), 1(xn

j–1,xn
j ](·)

〉
H� + 2

∑

1≤i<j≤n

〈
1(xn

j–1,xn
j ](·), 1(xn

i–1,xn
i ](·)

〉
H�

= 2
n∑

j=1

E
[(

u
(
t, xn

j
)

– u
(
t, xn

j–1
))2]

+ 2
∑

1≤i<j≤n

E
[(

u
(
t, xn

j
)

– u
(
t, xn

j–1
))(

u
(
t, xn

i
)

– u
(
t, xn

i–1
))]

≤ Ct

n∑

j=1

∣
∣xn

j – xn
j–1
∣
∣ + Ct

∑

1≤i<j≤n

∣
∣(xn

j – xn
j–1
)(

xn
i – xn

i–1
)∣∣≤ Ct|x|

by (2.6) and (2.8). Combining this with (4.16) and the estimate (4.11), we get

An :=
n∑

j=1

F ′(Wxn
j–1

)1(xn
j–1,xn

j ](·) −→ F ′(W·)1Ix (·)

in L2(Ω ;H�), as n tends to infinity. It follows that

In
1 = F(Wx) – F(W0) – In

2 – Jn −→ F(Wx) – F(W0) –
1
2

∫

Ix

F ′′(Wy) dy

in L2(Ω), as n tends to infinity. This completes the proof since the integral
∫ ·

0 usδWs is
closed in L2(Ω). �

5 The Bouleau–Yor identity for the spatial process
In this section, we consider the local time of the process W = {Wx, x ∈ [0, M]}. Our main
object is to prove that the integral

∫

R

g(a)L �(x, da)

is well-defined and that the identity

∫

R

g(a)L �(x, da) = –
[
g
(
u(t, ·)), u(t, ·)](SQ)

x (5.1)

holds for all g ∈ Ht and t > 0, where

L �(x, a) =
∫

Ix

δ
(
u(t, y) – a

)
dy.

is the local time of W = {Wx, x ∈ [0, M]}. The identity (5.1) is called the Bouleau–Yor iden-
tity. More work on this subject can be found in Bouleau–Yor [3], Eisenbaum [6], Föllmer
et al. [9], Feng–Zhao [8], Peskir [24], Rogers–Walsh [26], Yan et al. [36, 37], and the refer-
ences therein.
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Recall that, for any closed interval I ⊂R+ and for any a ∈R, the local time L(a, I) of u is
defined as the density of the occupation measure μI defined by

μI(A) =
∫

I
1A(Wx) dx.

It can be shown (see Geman and Horowitz [10], Theorem 6.4) that the following occupa-
tion density formula holds:

∫

I
g(Wx, x) dx =

∫

R

da
∫

I
g(a, x)L(a, dx)

for every Borel function g(a, x) ≥ 0 on I × R. Thus, some estimates in Sect. 2 and Theo-
rem 21.9 in Geman–Horowitz [10] together imply that the following result holds.

Corollary 5.1 The local time L �(a, x) := L(a, [0, x]) of W = {Wx, |x| ≤ M} exists and L t ∈
L2(λ × P) for all x ∈ [0, M] and (a, x) �→ L �(a, x) is jointly continuous, where λ denotes
Lebesgue measure. Moreover, the occupation formula

∫ t

0
ψ(Wx, x) dx =

∫

R

da
∫ t

0
ψ(a, x)L �(a, dx) (5.2)

holds for every continuous and bounded function ψ(a, x) : R×R+ →R and any x ∈ [0, M].

Lemma 5.1 For any f� =
∑

j fj1(aj–1,aj] ∈ E , we define

∫

R

f�(y)L �(dy, x) :=
∑

j

fj
[
L t(aj, x) – L �(aj–1, x)

]
.

Then the integral is well-defined and

∫

R

f�(y)L �(dy, x) = –
[
f�(W ), W

](SQ)
x (5.3)

almost surely, for all x ∈ [0, M].

Proof For the function f�(y) = 1(a,b](y) we define the sequence of smooth functions fn, n =
1, 2, . . . , by

fn(y) =
∫

R

f�(y – z)ζn(z) dz =
∫ b

a
ζn(y – z) dz (5.4)

for all y ∈R, where ζn, n ≥ 1 are the so-called mollifiers given in (4.4). Then {fn} ⊂ C∞(R)∩
Ht and fn converges to f� in Ht , as n tends to infinity. It follows from the occupation
formula that

[
fn(W ), W

](SQ)
x =

∫ x

0
f ′
n(Wy) dy

=
∫

R

f ′
n(y)L �(y, x) dy =

∫

R

(∫ b

a
ζ ′

n(y – z) dz
)
L �(y, x) dy
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= –
∫

R

L t(y, x)
(
ζn(y – b) – ζn(y – a)

)
dy

=
∫

R

L �(y, x)ζn(y – a) dy –
∫

R

L �(y, x)ζn(y – b) dy

−→ L �(a, x) – L �(b, x)

almost surely, as n → ∞, by the continuity of y �→ L �(y, x). On the other hand, we see
also that there exists a subsequence {fnk } such that

[
fnk (W ), W

](SQ)
x −→ [

1(a,b](W ), W
](SQ)

x

for all x ≥ 0, almost surely, as k → ∞ since fn converges to f� in Ht . It follows that

[
1(a,b](W ), W

](SQ)
x =

(
L �(a, x) – L �(b, x)

)

for all x ≥ 0, almost surely. Thus, the identity

∑

j

fj
[
L �(aj, x) – L �(aj–1, x)

]
= –

[
f�(W ), W

](SQ)
x

follows from the linearity property, and the lemma follows. �

As a direct consequence of the above lemma, for every f ∈ Ht if

lim
n→∞ f�,n(y) = lim

n→∞ g�,n(x) = f (y)

in Ht , where {f�,n}, {g�,n} ⊂ E , we then have

lim
n→∞

∫

R

f�,n(y)L �(y, x) dy

= – lim
n→∞

[
f�,n(W ), W

](SQ)
x = –

[
f (W ), W

](SQ)
x

= – lim
n→∞

[
g�,n(W ), W

](SQ)
x = lim

n→∞

∫

R

g�,n(y)L �(y, x) dy

in L2(Ω). Thus, by the denseness of E in Ht we can define

∫

R

f (y)L �(dy, x) := lim
n→∞

∫

R

f�,n(y)L �(dy, x)

for any f ∈ Ht , where {f�,n} ⊂ E and

lim
n→∞ f�,n = f

in Ht . The considerations are enough to prove the following theorem.

Theorem 5.1 For any f ∈ Ht , the integral

∫

R

f (y)L �(dy, x)
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is well-defined in L2(Ω) and the Bouleau–Yor type identity

[
f (W ), W

](SQ)
x = –

∫

R

f (y)L �(dy, x) (5.5)

holds, almost surely, for all x ∈ [0, M].

Corollary 5.2 (Tanaka formula) For any a ∈R we have

(Wx – a)+ = (W0 – a)+ +
∫ x

0
1{Wy>a} d–Wy +

1
2
L �(a, x),

(Wx – a)– = (W0 – a)– –
∫ x

0
1{Wy<a} d–Wy +

1
2
L �(a, x),

|Wx – a| = |W0 – a| +
∫ x

0
sign(Wx – a) d–Wy + L �(a, x).

Proof Take F(y) = (y – x)+. Then F is absolutely continuous and

F(x) =
∫ y

–∞
1(x,∞)(y) dy.

It follows from the identity (5.3) and Itô’s formula (4.2) that

L �(a, x) =
[
1(a,+∞)(W ), W

](SQ)
x

= 2(Wx – a)+ – 2(–a)+ – 2
∫ x

0
1{Wy>a} d–Wy

for all x ≥ 0, which gives the first identity. In the same way one can obtain the second iden-
tity, and by subtracting the last identity from the previous one, we get the third identity. �

According to Theorem 5.1, we get an analogue of the Itô formula (Bouleau–Yor type
formula).

Corollary 5.3 Let f ∈ Ht be a left continuous function with right limits. If F is an absolutely
continuous function with F ′ = f , then the Itô type formula

F(Wx) = F(W0) +
∫ x

0
f (Wy) d–Wy –

1
2

∫

R

f (y)L �(dy, x) (5.6)

holds for all x ≥ 0.

Recall that, if F is the difference of two convex functions, then F is an absolutely contin-
uous function with derivative of bounded variation. Thus, the Itô–Tanaka formula

F(Wx) = F(0) +
∫ x

0
F ′(Wy) d–Wy +

1
2

∫

R

L �(y, x)F ′′(dy)

≡ F(0) +
∫ x

0
F ′(Wy) d–Wy –

1
2

∫

R

F ′(y)L �(dy, x)

holds.
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6 The quadratic covariation of process B = {Bt, t ≥ 0}
In this section, we study the existence of the PQC [f (B), B](TQ). Recall that

I2
ε (f , x, t) =

1√
ε

∫ t

0

{
f
(
u(s + ε, x)

)
– f
(
u(s, x)

)}(
u(s + ε, x) – u(s, x)

) ds
2
√

s

for ε > 0, t ≥ 0 and x ∈ R, and

[
f
(
u(·, x)

)
, u(·, x)

](TQ)
t = lim

ε↓0
I2
ε (f , x, t), (6.1)

provided the limit exists in probability. In this section, we study some analysis questions of
the process {u(t, ·), t ≥ 0} associated with the quadratic covariation [f (u(·, x)), u(·, x)](TQ),
and the research includes the existence of the PQC [f (u(·, x)), u(·, x)](TQ), the Itô and
Tanaka formulas. Recall that Bt = u(t, ·) (t ∈ [0, T]) and

E
[
B2

t
]

=
√

t
π

for all t ≥ 0 and x ∈ R. It follows from Alós et al. [1] that the Itô formula holds,

f (Bt) = f (0) +
∫ t

0
f ′(Bs)δBs +

1
2
√

2

∫ t

0
f ′′(Bs)

ds√
2πs

(6.2)

for all t ∈ [0, T] and f ∈ C2(R) satisfying the condition

∣∣f (x)
∣∣,
∣∣f ′(x)

∣∣,
∣∣f ′′(x)

∣∣≤ Ceβx2
, x ∈R, (6.3)

with 0 ≤ β <
√

π

4
√

T
.

Recall that the local Hölder index γ0 of a continuous paths process {Xt : t ≥ 0} is the
supremum of the exponents γ verifying, for any T > 0,

P
({

ω : ∃L(ω) > 0,∀s, t ∈ [0, T],
∣
∣Xt(ω) – Xs(ω)

∣
∣≤ L(ω)|t – s|γ }) = 1.

Lemma 6.1 (Gradinaru–Nourdin [11]) Let g : R →R be a function satisfying

∣∣g(x) – g(y)
∣∣≤ C|x – y|a(1 + x2 + y2)b, (C > 0, 0 < a ≤ 1, b > 0), (6.4)

for all x, y ∈R and let X be a locally Hölder continuous paths process with index γ ∈ (0, 1).
Assume that V is a bounded variation continuous paths process. Set

Xg
ε (t) =

∫ t

0
g
(

Xs+ε – Xs

εγ

)
ds

for t ≥ 0, ε > 0. If for each t ≥ 0, as ε → 0,

∥∥Xg
ε (t) – Vt

∥∥2
L2 = O

(
εα
)

(6.5)
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with α > 0, then limε→0 Xg
ε (t) = Vt almost surely, for any t ≥ 0, and if g is non-negative, for

any continuous stochastic process {Yt : t ≥ 0},

lim
ε→0

∫ t

0
Ysg
(

Xs+ε – Xs

εγ

)
ds −→

∫ t

0
Ys dVs, (6.6)

almost surely, uniformly in t on each compact interval.

Proposition 6.1 Let f ∈ C1(R). We have

[
f (B), B

](TQ)
t =

∫ t

0
f ′(Bs)

ds√
2πs

(6.7)

and, in particular, we have

[B, B](TQ)
t =

√
2t
π

for all t ≥ 0.

Proof By Lemma 6.1 and the Hölder continuity of the solution u(t, x), it is enough to show
that the estimate

∥∥
∥∥Bε

t –
√

2t
π

∥∥
∥∥

2

L2
= O

(
εα
)

(6.8)

holds, for each t ≥ 0, with some α > 0, as ε → 0, where

Bε
t =

1√
ε

∫ t

0
(Bs+ε – Bs)2 d

√
s.

We have

E
∣
∣∣
∣B

ε
t –
√

2t
π

∣
∣∣
∣

2

=
1
ε

∫ t

0

∫ t

0
Aε(s, r) d

√
s d

√
r

for t ≥ 0 and ε > 0, where

Aε(s, r) := E
(

(Bs+ε – Bs)2 –
√

2ε

π

)(
(Br+ε – Br)2 –

√
2ε

π

)

= E(Bs+ε – Bs)2(Br+ε – Br)2 +
2ε

π

–
√

2ε

π
E
(
(Bs+ε – Bs)2 + (Br+ε – Br)2).

Define the function φs : R+ →R+ by

φs(x) =
1√
2π

(√
2(s + x) – 2

√
2s + x +

√
2s
)
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for every s > 0. Then we have

E
[
(Bs+ε – Bs)2] =

1√
2π

(√
2(s + ε) – 2

√
2s + ε + 2

√
ε +

√
2s
)

= φs(ε) +
√

2ε

π

for all s > 0. Noting that

E
[
(Bs+ε – Bs)2(Br+ε – Br)2]

= E
[
(Bs+ε – Bs)2]E

[
(Br+ε – Br)2] + 2

(
E
[
(Bs+ε – Bs)(Br+ε – Br)

])2

for all r, s ≥ 0 and ε > 0, we get

Aε(s, r) = φs(ε)φr(ε) + 2(μs,r)2,

where μs,r := E[(Bs+ε – Bs)(Br+ε – Br)]. Now, let us estimate the function

φs(ε) =
1√
2π

(√
2(s + ε) – 2

√
2s + ε +

√
2s
)
.

Clearly, one can see that

lim
x→0

1 – 2
√

1 – x/2 +
√

1 – x
x2 = –

1
16

and the continuity of the function x �→ 1 – 2
√

1 – x/2 +
√

1 – x implies that

∣∣φs(ε)
∣∣ =
√

2(s + ε)|1 – 2
√

1 – x/2 +
√

1 – x| ≤ C
ε2

(s + ε)3/2 ≤ C
ε

1
2 +β

(s + ε)β

with x = ε
s+ε

and 0 < β < 1
2 , which gives

1
ε

∫ t

0

∫ t

0

∣∣φs(ε)φr(ε)
∣∣d

√
s d

√
r ≤ Ct1–2βε2β .

It follows from Lemma 2.4 that there is a constant α > 0 such that

lim
ε↓0

1
ε1+α

∫ t

0

∫ t

0
Aε(s, r) d

√
s d

√
r = 0

for all t > 0, which gives the desired estimate

∥∥
∥∥Bε

t –
√

2t
π

∥∥
∥∥

2

L2
= O

(
εα
)

(ε → 0)

for each t ≥ 0 and some α > 0. This completes the proof. �

Consider the decomposition

I2
ε (f , x, t) =

1√
ε

∫ t

0
f (Bs+ε)(Bs+ε – Bs)

ds
2
√

s
–

1√
ε

∫ t

0
f (Bs)(Bs+ε – Bs)

ds
2
√

s
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≡ I2,+
ε (f , x, t) – I2,–

ε (f , x, t) (6.9)

for ε > 0, and by estimating the two terms in the right hand side above in L2(Ω) one can
structure the next Banach space:

H∗ =
{

f : Borel functions on R such that ‖f ‖H∗ < ∞}
,

where

‖f ‖2
H∗ :=

1
4√4π

∫ T

0

∫

R

∣∣f (z)
∣∣2e– z2√

π

2
√

s
dz ds
s3/4 ≡

∫ T

0
E
∣∣f (Bs)

∣∣2 ds
2
√

s
.

Clearly, H∗ = L2(R,μ(dz)) with

μ(dz) =
(

1
4√4π

∫ T

0
e– z2√

π

2
√

s
ds
s3/4

)
dz,

and H∗ includes all functions f satisfying the condition

∣
∣f (x)

∣
∣≤ Ceβx2 , x ∈R

with 0 ≤ β <
√

π

4
√

T
. In the same way as proving Theorem 3.1 and by smooth approximation

one can introduce the following result.

Theorem 6.1 The PQC [f (B), B](TQ) exists and

E
∣
∣[f (B), B

](TQ)
t

∣
∣2 ≤ C‖f ‖2

H∗ (6.10)

for all f ∈ H∗ and t ∈ [0, T]. Moreover, if F is an absolutely continuous function such that

∣∣F(x)
∣∣,
∣∣F ′(x)

∣∣≤ Ceβx2
, x ∈ R,

with 0 ≤ β <
√

π

4
√

T
, then the following Itô type formula holds:

F(Bt) = F(0) +
∫ t

0
F ′(Bs)δBs +

1
2
√

2
[
F ′(B), B

](TQ)
t (6.11)

for all t ∈ [0, T].

Recall that Russo and Tudor [27] have showed that B = {Bt = u(t, ·), t ≥ 0} admits a local
time L(t, a) ∈ L2(λ × P) such that (a, t) �→ L(a, t) is jointly continuous, where λ denotes
the Lebesgue measure, since B = {Bt = u(t, ·), t ≥ 0} is a bi-fractional Brownian motion for
every x ∈R. Define the weighted local time L of B = {Bt = u(t, ·), t ≥ 0} by

L (x, t) =
∫ t

0

1
2
√

πs
dsL(s, x) ≡

∫ t

0
δ(Bs – x)

ds
2
√

πs
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for t ≥ 0 and x ∈R, where δ is the Dirac delta function. Then the occupation formula

∫ t

0
ψ(Bs, s)

ds
2
√

πs
=
∫

R

da
∫ t

0
ψ(a, s)L (a, ds) (6.12)

holds for every continuous and bounded function ψ : R × R+ → R and any x ≥ 0. As in
Sect. 5, we can show that the integral

∫

R

f�(x)L (dx, t) :=
∑

j

fj
[
L (aj, t) – L (aj–1, t)

]
.

is well-defined and
∫

R

f�(x)L (dx, t) = –
1√
2
[
f�(B), B

](TQ)
t (6.13)

almost surely, for all f� =
∑

j fj1(aj–1,aj] ∈ E . By the denseness of E in H∗ one can define

∫

R

f (x)L (dx, t) := lim
n→∞

∫

R

f�,n(x)L (dx, t)

for any f ∈ H∗, where {f�,n} ⊂ E and

lim
n→∞ f�,n = f

in H . Moreover, the Bouleau–Yor type formula

[
f (B), B

](TQ)
t = –

√
2
∫

R

f (x)L (dx, t) (6.14)

holds, almost surely, for all f ∈ H∗.

Corollary 6.1 (Tanaka formula) For any x ∈R we have

|Bt – x| = |x| +
∫ t

0
sign(Bs – x)δBs + L (x, t).
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