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Abstract
We use an analytical scheme to construct distinct novel solutions of two well-known
fractional complex models (the fractional Korteweg–de Vries equation (KdV) equation
and the fractional Zakharov–Kuznetsov–Benjamin–Bona–Mahony (ZKBBM) equation).
A new fractional definition is used to covert the fractional formula of these equations
into integer-order ordinary differential equations. We obtain solitons, rational
functions, the trigonometric functions, the hyperbolic functions, and many other
explicit wave solutions. We illustrate physical explanations of these solutions by
different types of sketches.
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1 Introduction
Fractional nonlinear evolution equation is one of the noticeable branches of science in
recent years. Fractional calculus has a great profound physical background able to formu-
late many various phenomena in distinct fields such as physics, mechanical engineering,
economics, chemistry, signal processing, food supplement, applied mathematics, quasi-
chaotic dynamical systems, hydrodynamics, system identification, statistics, finance, fluid
mechanics, solid-state biology, dynamical systems with chaotic dynamical behavior, opti-
cal fibers, electric control theory, economics, and diffusion problems. Mathematical mod-
eling of these phenomena contains fractional derivatives, which provide a great explana-
tion of the nonlocal property of these models since they depend on both historical and
current states of the problem in contrast to the classical calculus depending on the cur-
rent state only. Based on the importance of this kind of calculus, many definitions were de-
rived such as conformable fractional, fractional Riemann–Liouville, Caputo, and Caputo–
Fabrizio derivatives [7, 8, 23, 24, 41, 43, 50]. These definitions are employed to convert
fractional nonlinear partial differential equations to nonlinear integer-order ordinary dif-
ferential equations, and then computational and numerical schemes can be applied to
get various types of solutions for these models and examples of these schemes [3, 9, 11–
19, 21, 22, 25, 32, 35, 36, 39, 40, 42, 44, 45, 51–53, 57].
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Recently, the mK method is formulated and applied to distinct physical models such
as the complex Ginzburg–Landau model, the (2 + 1)-dimensional KD equation and KdV
equation, and the fractional (N + 1) sinh–Gordon, biological population, equal width,
modified equal width, Duffing equations, and so on [1, 2, 6, 27–31, 38, 48].

This method depends on a new auxiliary Riccati equation [47]. The auxiliary equation
of the mK method is given by

M′(ϕ) =
1

ln(Q)
[
δQM(ϕ) + �Q–M(ϕ) + χ

]
, (1)

where [δ,�,χ ,Q] are arbitrary constants such that [Q �= 0,Q �= 1], whereas the Riccati
equation is given by

R′(ϕ) = E0 + E1R(ϕ) + E2R2(ϕ), (2)

where [E0,E1,E2] are arbitrary constants. So Eqs. (1) and (2) coincide when [M(ϕ) =
R(ϕ),χ = E1,� = E0, δ = E2]. Using this technique leads to the mK auxiliary equation,
which includes many other analytical methods, but the mK method can obtain more so-
lutions than most of them. This shows the superiority, power, and productivity of the mK
method.

In this context, we employ the mK method to construct new formulas of solutions for
the fractional KdV and ZKBBM equations, which are given, respectively, by [20, 26, 37,
46, 49, 54, 55]

Dϑ
t K + KKx + λKxxx = 0, (3)

Dϑ
t Z + Zx – 2νZZx – μDϑ

t (Zxx) = 0, (4)

where [λ,ν,μ] are arbitrary constants.
The KdV model is one of the essential models in studying the shallow-water waves, and

it has a strong physical impact in describing the interaction of two long waves with various
dispersion relations. It is used only for the instant of time (local property); that is why the
solitary wave in the soliton solutions of it may behave not very well, whereas the fractional
KdV is used to estimate the effect of higher-order dispersion of the regular KdV equation
to increasing the amplitude of the soliton. On the other hand, the fractional ZKBBM equa-
tion is used to investigate the gravity water waves in the long-wave regime.

In this research, we use new fractional derivative operator defined as follows.

Definition 1.1 The ABR fractional operator is given by [4, 5, 10, 33, 34]

ABRDα
a+F (t) =

B(α)
1 – α

d
dt

∫ t

a
F (x)Eα

(
–α(t – α)α

1 – α

)
dx, (5)

where Eα is the Mittag-Leffler function define by

Eα

(
–α(t – α)α

1 – α

)
=

∞∑

n=0

( –α
1–α

)n(t – x)αn

Γ (αn + 1)
, (6)
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B(α) being a normalization function. Thus

ABRDα
a+F (x) =

B(α)
1 – α

∞∑

n=0

(
–α

1 – α

)n
RLIαn

a F (x). (7)

Applying this definition of ABR fractional operator to Eqs. (3) and (4), respectively,
with the wave transformation [K(x, t) = K(ϕ),Z(x, t) = Z(ϕ),ϕ = x+ c(1–α)t–αn

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) ],

where k, ω are arbitrary constants, leads to conversion of Eq. (3) and (4) into the corre-
sponding ODEs. Integration of the obtained ODEs with zero constant of integration gives

2cK + K2 + 2λK′′ = 0, (8)

(c + 1)Z – νZ2 – μcZ ′′ = 0. (9)

Calculating the homogeneous balance value in Eqs. (8) and (9) yields N = 1. Thus both
equations have the same general formula of solution given according to the mK method
by

K(ϕ) = Z(ϕ) =
n∑

i=1

aiQiM(ϕ) +
n∑

i=1

biQ–iM(ϕ) + a0

= a1QM(ϕ) + a2Q2M(ϕ) + a0 + b2Q–2M(ϕ) + b1Q–M(ϕ). (10)

The rest of the paper is organized as follows. In Sect. 2, we apply the mK method to the
nonlinear fractional Kdv and ZKBBM equations. Moreover, we give some sketches to show
more physical properties of both models. In Sect. 4, we discuss the obtained computational
results and compare them with those obtained in previous works. Moreover, we compare
the obtained numerical results. In Sect. 5, we give the conclusion of the whole research.

2 Abundant wave solutions of the fractional KdV and ZKBBM equations
In this section, we apply an analytical scheme to the nonlinear fractional KdV and ZKBBM
equations and show physical properties of the two models.

2.1 The fractional KdV equation
Applying the mK method with its auxiliary equation and the suggested general solutions of
the fractional KdV equation leads to a system of algebraic equations. Using Mathematica
11.2, we find the values of the parameters in this system, which lead to two families of
solutions.

Family I

[
a0 → –12δλ�, a1 → 0, a2 → 0, b1 → –12λχ�, b2 → –12λ�2, c → λ

(
4δ� – χ2)].

Consequently, the closed-form solutions for the fractional KdV models are given as fol-
lows.

When [χ2 – 4δ� < 0 & δ �= 0],

K1(x, t) =
12δλ�(χ2 – 4δ�) sec2( 1

2

√
4δ� – χ2(x – (α–1)λt–2α (4δ�–χ2)

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) ))

(χ –
√

4δ� – χ2 tan( 1
2

√
4δ� – χ2(x – (α–1)λt–2α (4δ�–χ2)

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) )))2

, (11)
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K2(x, t) =
12δλ�(χ2 – 4δ�) csc2( 1

2

√
4δ� – χ2(x – (α–1)λt–2α (4δ�–χ2)

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) ))

(χ –
√

4δ� – χ2 cot( 1
2

√
4δ� – χ2(x – (α–1)λt–2α (4δ�–χ2)

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) )))2

. (12)

When [χ2 – 4δ� > 0 & δ �= 0],

K3(x, t) =
12δλ�(χ2 – 4δ�)sech2( 1

2

√
χ2 – 4δ�(x – (α–1)λt–2α (4δ�–χ2)

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) ))

(
√

χ2 – 4δ� tanh( 1
2

√
χ2 – 4δ�(x – (α–1)λt–2α (4δ�–χ2)

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) )) + χ )2

, (13)

K4(x, t) = 12δλ�
(
4δ� – χ2)

/[(
χ sinh

(
1
2
√

χ2 – 4δ�

(
x –

(α – 1)λt–2α(4δ� – χ2)
B(α)

∑∞
n=0(– α

1–α
)nΓ (1 – αn)

))

+
√

χ2 – 4δ� cosh

(
1
2
√

χ2 – 4δ�

(
x –

(α – 1)λt–2α(4δ� – χ2)
B(α)

∑∞
n=0(– α

1–α
)nΓ (1 – αn)

)))2]
.

(14)

When [δ� > 0 & � �= 0 & δ �= 0 & χ = 0],

K5(x, t) = –12δλ� csc2
(√

δ�

(
x –

4(α – 1)δλ�t–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1 – αn)

))
, (15)

K6(x, t) = –12δλ� sec2
(√

δ�

(
x –

4(α – 1)δλ�t–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1 – αn)

))
. (16)

When [δ� < 0 & � �= 0 & δ �= 0 & χ = 0],

K7(x, t) = 12δλ�csch2
(√

–δ�

(
x –

4(α – 1)δλ�t–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1 – αn)

))
, (17)

K8(x, t) = –12δλ�sech2
(√

–δ�

(
x –

4(α – 1)δλ�t–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1 – αn)

))
. (18)

When [χ = 0 & � = –δ],

K9(x, t) = 12λ�2sech2
(

�

(
4(α – 1)λ�2t–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1 – αn)
+ x

))
. (19)

When [χ = �

2 = κ & δ = 0],

K10(x, t) = –
24κ2λ exp(κ( (α–1)κ2λt–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) + x))

(exp(κ( (α–1)κ2λt–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) + x)) – 2)2

. (20)

When [χ = 0 & � = δ],

K11(x, t) = –12λ�2 csc2
(

–
4(α – 1)λ�3t–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1 – αn)
+ C + x�

)
. (21)
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When [δ = 0 & χ �= 0 & � �= 0],

K12(x, t) = –
12λχ3� exp(χ ( (α–1)λχ2t–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) + x))

(� – χ exp(χ ( (α–1)λχ2t–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) + x)))2

. (22)

When [χ2 – 4δ� = 0],

K13(x, t) = 3λ

( (xB(α)t2α
∑∞

n=0(– α
1–α

)nΓ (1 – αn))2

B(α)2(χx + 2)2(
∑∞

n=0(– α
1–α

)nΓ (1 – αn))2 – 4δ� +
2χ3x
χx + 2

)
. (23)

Family II

[
a0 → –12δλ�, a1 → –12δλχ , a2 → –12δ2λ, b1 → 0, b2 → 0, c → λ

(
4δ� – χ2)].

Consequently, the closed-form solutions for the fractional KdV models are given as fol-
lows.

When [χ2 – 4δ� < 0 & δ �= 0],

K14(x, t) = 3λ
(
χ2 – 4δ�

)

× sec2
(

1
2
√

4δ� – χ2
(

x –
(α – 1)λt–2α(4δ� – χ2)

B(α)
∑∞

n=0(– α
1–α

)nΓ (1 – αn)

))
, (24)

K15(x, t) = 3λ
(
χ2 – 4δ�

)

× csc2
(

1
2
√

4δ� – χ2
(

x –
(α – 1)λt–2α(4δ� – χ2)

B(α)
∑∞

n=0(– α
1–α

)nΓ (1 – αn)

))
. (25)

When [χ2 – 4δ� > 0 & δ �= 0],

K16(x, t) = 3λ
(
χ2 – 4δ�

)

× sech2
(

1
2
√

χ2 – 4δ�

(
x –

(α – 1)λt–2α(4δ� – χ2)
B(α)

∑∞
n=0(– α

1–α
)nΓ (1 – αn)

))
, (26)

K17(x, t) = 3λ
(
4δ� – χ2)

× csch2
(

1
2
√

χ2 – 4δ�

(
x –

(α – 1)λt–2α(4δ� – χ2)
B(α)

∑∞
n=0(– α

1–α
)nΓ (1 – αn)

))
. (27)

When [δ� > 0 & � �= 0 & δ �= 0 & χ = 0],

K18(x, t) = –12δλ� sec2
(√

δ�

(
x –

4(α – 1)δλ�t–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1 – αn)

))
, (28)

K19(x, t) = –12δλ� csc2
(√

δ�

(
x –

4(α – 1)δλ�t–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1 – αn)

))
. (29)

When [δ� < 0 & � �= 0 & δ �= 0 & χ = 0],

K20(x, t) = –12δλ� sech2
(√

–δ�

(
x –

4(α – 1)δλ�t–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1 – αn)

))
, (30)
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K21(x, t) = 12δλ� csch2
(√

–δ�

(
x –

4(α – 1)δλ�t–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1 – αn)

))
. (31)

When [χ = 0 & � = –δ],

K22(x, t) = –12λ�2 csch2
(

�

(
4(α – 1)λ�2t–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1 – αn)
+ x

))
. (32)

When [χ = δ = κ & � = 0],

K23(x, t) = –3κ2λ csch2
(

1
2
κ

(
(α – 1)κ2λt–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1 – αn)
+ x

))
. (33)

When [� = 0 & χ �= 0 & δ �= 0],

K24(x, t) = –
24δλχ2 exp(χ ( (α–1)λχ2t–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) + x))

(δ exp(χ ( (α–1)λχ2t–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) + x)) – 2)2

. (34)

When [χ = 0 & � = δ],

K25(x, t) = –12λ�2 sec2
(

–
4(α – 1)λ�3t–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1 – αn)
+ C + x�

)
. (35)

When [χ2 – 4δ� = 0],

K26(x, t) = 12δλ�

(
–

4δ�B(α)2t4α(χx + 2)2(
∑∞

n=0(– α
1–α

)nΓ (1 – αn))2

χ4(–xB(α)t2α
∑∞

n=0(– α
1–α

)nΓ (1 – αn))2 +
4

χx
+ 1

)
. (36)

2.2 The fractional ZKBBM equation
Applying the mK method with its auxiliary equation and the suggested general solutions
for the fractional ZKBBM equation leads to a system of algebraic equations. Using Mathe-
matica 11.2, we find the values of the parameters in this system, which lead to the following
families of solutions.

Family I

[
a0 → –

3cμχ2 + c + 1
2ν

, a1 → 0, a2 → 0, b1 → –
6cμχ�

ν
, b2 → –

6cμ�2

ν
,

c → 1
4δμ� – μχ2 – 1

, where 4δμ� – μχ2 �= 1,ν �= 0
]

.

Consequently, the closed-form solutions for the fractional ZKBBM models are given as
follows.

When [χ2 – 4δ� < 0 & δ �= 0],

Z1(x, t) =
[

c
(

–
3μ(χ

√
4δ� – χ2 tan( 1

2

√
4δ� – χ2(x – (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) )) + 4δ� – χ2)2

(χ –
√

4δ� – χ2 tan( 1
2

√
4δ� – χ2(x – (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) )))2

– 1
)

– 1
]

× 1
2ν

, (37)
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Z2(x, t) =
[

c
(

–
3μ(χ

√
4δ� – χ2 cot( 1

2

√
4δ� – χ2(x – (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) )) + 4δ� – χ2)2

(χ –
√

4δ� – χ2 cot( 1
2

√
4δ� – χ2(x – (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) )))2

– 1
)

– 1
]

× 1
2ν

. (38)

When [χ2 – 4δ� > 0 & δ �= 0],

Z3(x, t) =

c(–
3μ(χ

√
χ2–4δ� tanh( 1

2
√

χ2–4δ�(x– (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1–αn) ))–4δ�+χ2)2

(
√

χ2–4δ� tanh( 1
2
√

χ2–4δ�(x– (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1–αn) ))+χ )2
– 1) – 1

2ν
, (39)

Z4(x, t) =

c(–
3μ(χ

√
χ2–4δ� coth( 1

2
√

χ2–4δ�(x– (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1–αn) ))–4δ�+χ2)2

(
√

χ2–4δ� coth( 1
2
√

χ2–4δ�(x– (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1–αn) ))+χ )2
– 1) – 1

2ν
. (40)

When [δ� > 0 & � �= 0 & δ �= 0 & χ = 0],

Z5(x, t) = –
12cδμ� cot2(

√
δ�(x – (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) )) + c + 1

2ν
, (41)

Z6(x, t) = –
12cδμ� tan2(

√
δ�(x – (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) )) + c + 1

2ν
. (42)

When [δ� < 0 & � �= 0 & δ �= 0 & χ = 0],

Z7(x, t) = –
12cδμ� coth2(

√
–δ�(x – (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) )) + c + 1

2ν
, (43)

Z8(x, t) = –
12cδμ� tanh2(

√
–δ�(x – (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) )) + c + 1

2ν
. (44)

When [χ = 0 & � = –δ],

Z9(x, t) =
1

2ν

[
c
(

12μ�2
(

1 –
4

(exp(2�(x – (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) )) + 1)2

)
– 1

)

– 24cμ�2 tanh

(
�

(
x –

(α – 1)ct–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1 – αn)

))
– 1

]
. (45)

When [χ = �

2 = κ & δ = 0],

Z10(x, t) =

c(–
3κ2μ(exp(κ(x– (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1–αn) ))+2)2

(exp(κ(x– (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1–αn) ))–2)2
– 1) – 1

2ν
. (46)

When [χ = δ = 0 & � �= 0],

Z11(x, t) = –
12cμB(α)2t4α (

∑∞
n=0(– α

1–α )nΓ (1–αn))2

(xB(α)t2α (
∑∞

n=0(– α
1–α )nΓ (1–αn))–αc+c)2 + c + 1

2ν
. (47)
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When [χ = 0 & � = δ],

Z12(x, t) = –
12cμ�2 cot2(– (α–1)c�t–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) + C + x�) + c + 1

2ν
. (48)

When [δ = 0 & χ �= 0 & � �= 0],

Z13(x, t) =

c(–
3μχ2(χ exp(χ (x– (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1–αn) ))+�)2

(�–χ exp(χ (x– (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1–αn) )))2
– 1) – 1

2ν
. (49)

When [χ2 – 4δ� = 0],

Z14(x, t) = –
1

2ν

[ 3cμχ4(xB(α)t2α(
∑∞

n=0(– α
1–α

)nΓ (1 – αn)) – αc + c)2

((α – 1)cχ – B(α)t2α(χx + 2)
∑∞

n=0(– α
1–α

)nΓ (1 – αn))2

+
6μχ3x

2–2α

xB(α)t2α (
∑∞

n=0(– α
1–α )nΓ (1–αn))–αc+c – χx+2

c

+ 3cμχ2 + c + 1
]

. (50)

Family II

[
a0 → –

3cμχ2 + c + 1
2ν

, a1 → –
6cδμχ

ν
, a2 → –

6cδ2μ

ν
, b1 → 0, b2 → 0,

c → 1
4δμ� – μχ2 – 1

, where 4δμ� – μχ2 �= 1,ν �= 0
]

.

Consequently, the closed-form solutions for the fractional ZKBBM models are given as
follows.

When [χ2 – 4δ� < 0 & δ �= 0],

Z15(x, t) = –
3cμ(4δ� – χ2) tan2( 1

2

√
4δ� – χ2(x – (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) )) + c + 1

2ν
, (51)

Z16(x, t) = –
3cμ(4δ� – χ2) cot2( 1

2

√
4δ� – χ2(x – (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) )) + c + 1

2ν
. (52)

When [χ2 – 4δ� > 0 & δ �= 0],

Z17(x, t) = –
3cμ(χ2 – 4δ�) tanh2( 1

2

√
χ2 – 4δ�(x – (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) )) + c + 1

2ν
, (53)

Z18(x, t) = –
3cμ(χ2 – 4δ�) coth2( 1

2

√
χ2 – 4δ�(x – (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) )) + c + 1

2ν
. (54)

When [δ� > 0 & � �= 0 & δ �= 0 & χ = 0],

Z19(x, t) = –
12cδμ� tan2(

√
δ�(x – (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) )) + c + 1

2ν
, (55)

Z20(x, t) = –
12cδμ� cot2(

√
δ�(x – (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) )) + c + 1

2ν
. (56)
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When [δ� < 0 & � �= 0 & δ �= 0 & χ = 0],

Z21(x, t) = –
12cδμ� tanh2(

√
–δ�(x – (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) )) + c + 1

2ν
, (57)

Z22(x, t) = –
12cδμ� coth2(

√
–δ�(x – (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) )) + c + 1

2ν
. (58)

When [χ = 0 & � = –δ],

Z23(x, t) = –
12cμ�2csch2(�(x – (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) )) + 12cμ�2 + c + 1

2ν
. (59)

When [χ = δ = κ & � = 0],

Z24(x, t) = –
3cκ2μ coth2( 1

2κ(x – (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) )) + c + 1

2ν
. (60)

When [� = 0 & χ �= 0 & δ �= 0],

Z25(x, t) = –

c(
3μχ2(δ exp(χ (x– (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1–αn) ))+2)2

(δ exp(χ (x– (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α

)nΓ (1–αn) ))–2)2
+ 1) + 1

2ν
. (61)

When [χ = � = 0 & δ �= 0],

Z26(x, t) = –
12cμB(α)2t4α (

∑∞
n=0(– α

1–α )nΓ (1–αn))2

(xB(α)t2α (
∑∞

n=0(– α
1–α )nΓ (1–αn))–αc+c)2 + c + 1

2ν
. (62)

When [χ = 0 & � = δ],

Z27(x, t) = –
12cμ�2 tan2(– (α–1)c�t–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) + C + x�) + c + 1

2ν
. (63)

When [χ2 – 4δ� = 0],

Z28(x, t) = –
1

2ν

[48cδ2μ�2((α – 1)cχ – B(α)t2α(χx + 2)
∑∞

n=0(– α
1–α

)nΓ (1 – αn))2

χ4(xB(α)t2α(
∑∞

n=0(– α
1–α

)nΓ (1 – αn)) – αc + c)2

–
48cδμ�

χ (x – (α–1)ct–2α

B(α)
∑∞

n=0(– α
1–α )nΓ (1–αn) )

– 24cδμ� + 3cμχ2 + c + 1
]

. (64)

3 Interpretation of figures
In this section, we give a physical interpretation of the shown figures. All our obtained
solutions are considered as traveling wave solutions. We further give a physical interpre-
tation of the shown figures:

1. Fig. 1 shows the bright cone wave solution (13) in the three-dimensional plot (a) to
explain the perspective view of the solution, the two-dimensional plot (b) to explain
the wave propagation pattern of the wave along the x-axis, and the contour plot (c)
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Figure 1 Numerical simulation of Eq. (13) in three distinct types of plots

Figure 2 Numerical simulation of Eq. (14) in three distinct types of plots

Figure 3 Numerical simulation of Eq. (40) in three distinct types of plots

to explain the overhead view of the solution when
[α = 1

2 , δ = 6,λ = 3, m = 1, n = 1,χ = 5,� = 1].
2. Fig. 2 shows the dark cone wave solution (14) in the three-dimensional plot (a) to

explain the perspective view of the solution, the two-dimensional plot (b) to explain
the wave propagation pattern of the wave along the x-axis, and the contour plot (c)
to explain the overhead view of the solution when
[α = 1

2 , δ = 6,λ = 3, m = 1, n = 1,χ = 5,� = 1].
3. Fig. 3 shows the periodic bright cone-wave solution (40) in the three-dimensional

plot (a) to explain the perspective view of the solution, the two-dimensional plot (b)
to explain the wave propagation pattern of the wave along the x-axis, and the
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Figure 4 Numerical simulation of Eq. (43) in three distinct types of plots

contour plot (c) to explain the overhead view of the solution when
[α = 1

2 , δ = 6,λ = 3, m = 1, n = 1,χ = 5,� = 1].
4. Fig. 4 shows the cone-wave solution (43) in the three-dimensional plot (a) to

explain the perspective view of the solution, the two-dimensional plot (b) to explain
the wave propagation pattern of the wave along the x-axis, and the contour plot (c)
to explain the overhead view of the solution when
[α = 1

2 , δ = –9,λ = 3, m = 1, n = 1,χ = 0,� = 1].

4 Results and discussion
This section is divided into two main parts. In the first part, we studyg the obtained com-
putational solutions for the two fractional suggested models. whereas in the second part,
we compare them with the other obtained results in previous works.

1. The shown solutions in our paper.
• In this paper, we investigate the fractional KdV and ZKBBM equation by the

employment of the mK method and a new fractional definition (ABR).
Abundant explicit closed-form solutions are obtained for each fractional
model. Receptive twenty-six and twenty-eight solutions are obtained for each
mentioned fractional model.

2. The solutions obtained in previous works.
• In [56], two analytical methods are applied to three different models involving

two our models. However, they use two schemes, but a very few special
solutions are obtained.

• Two analytical schemes in [56] are just particular cases of the mK method when
[QM(ϕ) = ( G′

G ),� = –μ,χ = –λ, δ = 1].
• Eq. (27) is equal to Eq. (3.9) in [56] when

[e0 = –12δ(μ + d(d – λ)), –3(λ2 – 4μ) = δλ�].
• Eq. (43) is equal to Eq. (3.30) in [56] when

[B = 0, a = v, c = 2bvλ2 – 8bVμ + V , bV (λ2 – 4μ) = –4cδμ�].
• All other solutions obtained in this paper are new when compared with those

obtained in [56].

5 Conclusion
In our paper, we solved the flaws and disadvantages of the ( G′

G )-expansion method that is
used by Ali Akbar et al. [56] because, as shown in the previous section, it is just a par-
ticular case of our method. Moreover, we use a new definition of fractional derivative,
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which successfully converts the fractional-order differential equations from our models
to integer-order ordinary differential equations. Abundant new solutions for both models
were obtained, and to further clarify the physical meaning of these solutions, some plots
are sketched in three- and two-dimensional and contour plots (Figs. 1, 2, 3, 4).
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