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Abstract
This paper is devoted to studying some systems of quadratic differential and integral
equations with Hadamard-type fractional order integral operators. We concentrate on
general growth conditions for functions generating right-hand side of considered
systems, which leads to the study of Hadamard-type fractional operators on Orlicz
spaces. Thus we need to prove some properties of such type of operators. In contrast
to the case of Caputo or Riemann–Liouville type of fractional operators, it is not a
convolution-type operator, so we need to study some of their new properties. Some
more general problems than systems of quadratic integral equations are also studied,
and the results are new even in the context of a single integral equation with the
Hadamard fractional operator. The paper concludes with illustrative examples.
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1 Introduction
The study of quadratic differential and integral equations has a long history. They have
been investigated by many authors. Initial studies were started by Chandrasekhar (see,
e.g., [4, 13, 19, 28] and the references therein), and a beginning for this theory was mainly
made by astrophysicists. Then research was conducted by mathematicians. They found
some interesting open questions in this theory as well as many applications, for instance,
in the theory of radiative transfer, kinetic theory of gases, and in the traffic theory.

However, over the last years, the theory of quadratic integral equations with nonsingular
kernels has received a lot of attention (see, e.g., [17, 18, 21, 28, 29] and the references
therein). In most of the above-mentioned literature, the main results are realized with the
help of the technique associated with the measures of noncompactness and a fixed point
theorem of Darbo type. In this paper we study a singular problem, and we clarify that
earlier approach seems to be too restrictive in our case.

On the other hand, different equations containing fractional derivatives or integrals also
form a growing branch of mathematics and applied mathematics. In this paper we study
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some systems of quadratic fractional integral equations with fractional integrals taken in
the Hadamard sense. The counterpart of our results with fractional Riemann–Liouville
or Caputo was studied. We consider a more interesting case of the Hadamard fractional
integral, which is not of a convolution type, and such kind of operators should be investi-
gated independently of Riemann–Liouville operators. We wish to consider the most gen-
eral case, i.e., when Hadamard fractional integral operators are acting on Orlicz spaces
(instead of Lebesgue spaces), and we apply the obtained results for the study of systems of
quadratic equations of fractional order.

Note that the aim of this paper is two-fold. On the one hand, we discuss the properties
of Hadamard-type fractional integral operators acting on Orlicz spaces, which seems to
be interesting in itself. On the other hand, we apply those results in order to ensure the
existence of positive continuous solutions for the following coupled system of singular
quadratic integral equations of fractional type:

⎧
⎨

⎩

x1(t) = H1(t, x̄(t)) + x2(t)Jα1 f1(t, x̄(t)) η1(x̄(t))
ζ1(x̄(t)) , t ∈ [1, e],α1 > 0,

x2(t) = H2(t, x̄(t)) + x1(t)Jα2 f2(t, x̄(t)) η2(x̄(t))
ζ2(x̄(t)) , t ∈ [1, e],α2 > 0.

(1)

Here, Jα stands the Hadamard fractional integral operator, where x̄ = (x1, x2), fi is in an
appropriate Orlicz space. By “singularity” we mean the possibility that ζi(0, 0) = 0 and the
possibility that ηi(0, 0) being undefined are permitted. In fact, in our investigations, we
assume that ηi : (0, +∞)2 → [0, +∞) and ζi : [0, +∞)2 → [0, +∞), i = 1, 2, are nonlinear,
continuous, and nondecreasing functions. By placing appropriate conditions on Hi and fi,
we use a fixed point theorem to prove the existence of a continuous solution x̄ to problem
(1). The obtained results are new in the context of singularity of the system of quadratic
equations and of the Hadamard fractional operators with general growth conditions on
Orlicz spaces.

We emphasize that much work on fractional differential and integral problems involves
either Riemann–Liouville or Caputo type fractional differential equations. Another kind
of fractional derivatives that appears side by side to Riemann–Liouville and Caputo deriva-
tives in the literature is the fractional derivative due to Hadamard introduced in 1892 [23],
which differs from the preceding ones in the sense that the kernel of the integral (in the
definition of Hadamard derivative) contains logarithmic function of arbitrary exponent,
i.e., being natural extension for the Hadamard formula

∫ x

a

dt1

t1

∫ t1

a

dt2
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· · ·

∫ tn–1

a

dtn

tn
=

1
Γ (n)

∫ x
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log
x
t

)n–1 f (t)
t

dt

with n ∈ N replaced by α ∈R
+. One of its important advantages is that it is invariant with

respect to dilatation on the whole axis, but surprisingly this kind of fractional calculus is
still studied less than that of Riemann–Liouville.

It is worthwhile also to remark that the considered problem (1) has provoked some in-
terest in earlier papers such as [30] and [31], but for fractional operators taken in the sense
of Riemann–Liouville. However, the results of [30] and [31] cannot be applied in the case
investigated here (cf. the miscellaneous examples introduced at the end of this paper). In
our investigation, unlike, e.g., [17, 18, 21, 28, 29], no assumptions in terms of the mea-
sure of noncompactness were imposed on the nonlinearity of the given functions. For this
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reason, instead of the use of the technique associated with Darbo’s fixed point theorem,
we proceed in a different way by making use of the technique associated with Krasnose-
lskii’s fixed point theorem for mappings with expanded cones. As the operator is not a
contraction, we are unable to use the approach taken from [14].

Let us stress that our results are new even in the context of single quadratic fractional
integral equations, in particular with the Hadamard fractional integrals. For an approach
allowing to generalize growth conditions with the use of Orlicz spaces, see [14, Theo-
rem 4.16] or [15, Remark 2], or [13, Theorem 5.1], but only for the case of quadratic integral
equations with Riemann–Liouville integrals, or [16] for basics about Hadamard integral
operators on Orlicz spaces.

2 Preliminaries
Throughout this paper by C[a, b] we denote the space of continuous functions on the
interval [a, b], while Hλ[a, b] denotes the space of Hölder continuous functions of order
λ > 0. By Lp[a, b], 1 ≤ p ≤ ∞, we denote the Lebesgue space of real-valued measurable
functions f defined over [a, b] such that

∫ b
a |f (s)|ds < ∞, and by L∞[a, b] we denote the

Banach space of real-valued essentially bounded and measurable functions defined on
[a, b]. We say that the pair p, q ∈ [1,∞] is of “conjugate exponents” if p, q are connected by
the relation 1/p + 1/q = 1 for 1 < p < ∞ with the convention that 1/∞ = 0. Some additional
function spaces, such as Orlicz spaces, will be defined elsewhere.

Let us recall now some basics about cones and about our main tool, i.e., Krasnoselskii’s
fixed point theorem. The space C := C[a, b] × C[a, b] equipped with the norm ‖x̄‖R2 :=
max{‖x1‖,‖x2‖} forms a Banach space. As it is a topological product of Banach spaces,
by the Tychonoff theorem we are able to adapt the compactness criteria for C taken from
C([a, b]).

Recall that a cone Q is a proper subset of C such that if u, v ∈ Q and λ ∈ R
+, then u + v,

λu ∈ Q. Throughout this paper we consider closed convex Q and its interior Q◦. This cone
induces an order on C defined by

1. u ≤ v if v – u ∈ Q,
2. u < v if v – u ∈ Q◦.
A cone induces a partial order “≥” in C by x ≥ y if x – y ∈ Q. In addition, we say that

a function θ is nondecreasing on Q if θ (x) ≥ θ (y) for all x, y ∈ Q with x ≥ y. A complete
theory of fixed point theorems in ordered Banach spaces can be found in [10].

The following fixed point theorem on a cone expansion is due to Krasnoselskii (1960).

Theorem 1 ([37, Theorem 2.13]) Let Q be a cone and (C, Q) be an ordered Banach space.
Let Q1 and Q2 be open subsets of C with θ ∈ Q1 and Q̄1 ⊂ Q2.

Suppose that the operator T : Q ∩ (Q̄2 \ Q1) → Q is continuous and compact. Further,
suppose that it is a cone compression or expansion, i.e., either

1- ‖T(x)‖ ≤ ‖x‖ for x ∈ Q ∩ ∂Q1 and ‖T(x)‖ ≥ ‖x‖ for x ∈ Q ∩ ∂Q2, or
2- ‖T(x)‖ ≥ ‖x‖ for x ∈ Q ∩ ∂Q1 and ‖T(x)‖ ≤ ‖x‖ for x ∈ Q ∩ ∂Q2.

Then T has a fixed point in Q ∩ (Q̄2 \ Q1).

Let us mention here that if Q1 and Q1 denote the balls with radii r1 and r2 (say r1 < r2),
respectively, then the above condition reads as follows:

10 ‖T(x)‖ ≤ ‖x‖ for ‖x‖ = r1 and ‖T(x)‖ ≥ ‖x‖ for ‖x‖ = r2, or
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20 ‖T(x)‖ ≥ ‖x‖ for ‖x‖ = r1 and ‖T(x)‖ ≤ ‖x‖ for ‖x‖ = r2.
In such a case the fixed point x of T exists with r1 < ‖x‖ < r2. For our goals, this version is
sufficient. For a detailed theory of fixed points on abstract cones, see [22].

2.1 Hadamard-type operators
Now, we are in a position to introduce the definition of the Hadamard-type fractional
integral operator.

Definition 1 The Hadamard-type fractional integral of a given function f of order α > 0
with left-hand point a is defined by

J
α
a f (t) :=

1
Γ (α)

∫ t

a

(

log
t
s

)α–1 f (s)
s

ds, 0 < a < t,α > 0 (2)

provided that this integral exists. For complementation, we define Jα
a f (a) := 0. If it does

not cause misunderstanding, then let us simplify and write Jα
a = Jα .

If not stated otherwise, we will assume that α ∈ (0, 1). However, the above definition and
some other results are presented with the most general assumption about α.

One of the goals of the paper is to prove some useful properties of such operators. To do
this, let us first recall some motivations for the study of such kind of operators and their
known properties. Next, some new properties will be proved.

At least for the last 30 years, many authors have been carrying out research in develop-
ment of the field of Riemann–Liouville fractional calculus (see [2, 3, 20, 26, 29, 35] and the
references therein). However, as we mentioned earlier, it is not the only fractional calcu-
lus. Some basic properties of Hadamard fractional derivative and integral can be found in
[7, 8, 27] for instance. Although the Hadamard-type fractional calculus is an old topic, this
type of fractional calculus has not yet been well studied and there is still much to explore.
Let us only note some recent results in this direction ([1, 7, 8, 25, 36] or [24]). Related
work on such operators in abstract spaces can be found in [32]. For more results about the
fractional calculus in abstract spaces, we refer to [16, 34] and the references therein.

It is well known (see, e.g., [26, 35]) that the operator Jα
a is defined on the space Lp[a, b],

p ∈ [1,∞]. As a consequence of Hölder’s inequality, it can be easily shown that the operator
Jα

a maps Lp[a, b] continuously into Lp[a, b] for each p ∈ [1,∞].
Let us now investigate this operator on a larger class of spaces, namely on Orlicz spaces.

We need to recall some necessary notions.
A function M : [0, +∞) → [0, +∞) is called a Young function if it has the form

M(u) =
∫ u

0
a(s) du for u ≥ 0,

where a : [0, +∞) → [0, +∞) is an increasing, left-continuous function which is neither
identically zero nor identically infinite on [0, +∞). In particular, if M is finite-valued, where
limu→0

M(u)
u = 0, limu→∞ M(u)

u = ∞, and M(u) > 0 if x > 0 (M(u) = 0 ⇐⇒ u = 0), then M is
called an N-function.

The functions M and N are called complementary Young functions if

N(x) = sup
y≥0

(
xy – M(x)

)
.
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The Orlicz class, denoted by OP , consists of measurable functions x : I →R for which

ρ(x; M) =
∫

I
M

(
x(t)

)
dt < ∞.

We shall denote by LM(I) the Orlicz space of all measurable functions x : I →R for which

‖x‖M = inf
λ>0

{∫

I
M

(
x(s)
λ

)

ds ≤ 1
}

.

As the Young function M(u) = |u|p
p , 1 < p < ∞, leads to the classical Lebesgue space

Lp[a, b] with the norm mentioned before, we can treat an approach via Orlicz spaces as
more general than the previous ones. Moreover, we should mention that for Young func-
tions M and P the inclusion LM ⊂ LP holds if and only if there exist positive constants u0

and a such that P(u) ≤ aM(u) for u ≥ u0. The last comment indicates that, in contrast to
the case of Lebesgue spaces, we have no linearity of inclusions of spaces with respect to
generating functions, and we should be very careful by investigating the set of values of
operators.

We need to recall a deep result extending the known case of Lebesgue spaces, which is
the main tool in carrying out our investigations.

Lemma 1 ([16, Theorem 2]) If α ∈ (0, 1], for any Young function ψ with its complementary
function ψ̃ such that

∫ t

0
ψ̃

(
sα–1)ds < ∞, t ∈ [1, e], (3)

the operator Jα is continuous from the Orlicz space Lψ ([1, e]) into C[1, e].

Examples of such Young functions satisfying (3) are natural and can be found in [16,
Remark 1, Example 1]. In particular, under such conditions Jα : C[1, e] → C[1, e], let us
present an auxiliary important proposition.

Proposition 1 ([16, 33]) Let t > 0, α ∈ (0, 1). For any Young function ψ , the function Ψ :
[0,∞) → [0,∞) defined by

Ψ (t) :=
{

k > 0 :
∫ tk

1
1–α

0
ψ

(
sα–1)ds ≤ k

1
1–α

}

(4)

is increasing and continuous with Ψ (0) = 0.

Now a comment about quadratic operators. Let H be a quadratic-type fractional oper-
ator of the form H = F · Jα with the pointwise product of operators.

Lemma 2 If F : C[1, e] → C[1, e] is continuous and a Young function ψ satisfies (3) and
if F : C → C is continuous, then the operator H = F · Jα maps C[1, e] into itself and is
continuous.
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Proof In view of Lemma 1 we get the continuity of Jα when it acts between Lψ [1, e] and
C[1, e], so it is true also for Jα : C[1, e] → C[1, e] as this space is a Banach algebra with the
pointwise product and ‖H‖∞ ≤ ‖F‖∞ · ‖Jα‖∞ and we are done. �

It is a general result, parallel to that for weakly singular operators investigated in [14],
so it can be interesting in itself. Usually, the most interesting case is when F is the Nemyt-
skii superposition operator (see classical quadratic equations). Another interesting case is
when both operators are of fractional type. We will apply it (see Theorem 2 for instance)
for a special case F(x) = x.

We should note that a special case covered by the above lemma is the case of power
operators (cf. [9, Theorem 3.2, Remark 3] or [5]. Such operators decrease the norm for a
small argument and increase for a sufficiently big one, so they do not complicate too much
the idea of the proof for quadratic problems. For instance, such operators do not destroy
assumptions of Theorem 1 when we multiply them by fractional integral operators, as
| 1
γ (n–1) · xn| ≥ |x| for x ≥ γ > 0 and | 1

γ (n–1) · xn| ≤ |x| whenever x ≤ γ (see [9] for more
examples). We propose to study such “generalized quadratic” problems as corollaries of
the above lemmas together with quadratic ones.

More generally, for the case of integral equations, we should not investigate differen-
tiability properties of solutions, so they are expected outside of the space of continuous
functions (in Lp or Lϕ spaces for instance). However, in the case of quadratic problems it
causes problems. The key point is to ensure that the pointwise product is in the expected
space of solutions (see [12, 13, 15] for instance). Thus, by studying quadratic fractional
Hadamard-type integral equations in function spaces, we will need the following.

The most general result which is based on Lemma 1 can be formulated as follows.

Lemma 3 Let ψ be a Young function satisfying (3). Assume that a function space X ⊂
Lψ ([1, e]) is such that its space of pointwise multipliers Mp(X) contains the space C[1, e]
and that F : X → X is continuous. Then the operator H = F · Jα maps X into itself and is
continuous.

The proof is straightforward, it suffices to apply the following multipliers property:
‖H‖X ≤ ‖F‖X · ‖Jα‖∞ (cf. [14]) and follow the lines of the proof of Lemma 1. Despite
the fact that the assumption seems to be not really restrictive and many function spaces
satisfy it, not every function space has the expected property (even for Banach algebras,
cf. the space of functions with bounded variation BV ([1, e]) for instance). We will show
how useful this version is, too.

Let ψ be a Young function with a complementary function ψ̃ satisfying (3). Let us fix
the following set of assumptions on f for the remaining part of the paper:

(1) f : [1, e] ×R
2 →R is a Carathéodory function on [1, e] ×R

2, i.e., for any x̄ ∈R
2, the

function f (·, x̄) is measurable on [1, e], and for almost every t ∈ [1, e], f (t, ·) is
continuous on R

2),
(2) For any γ > 0, there exists Mγ ∈ Lψ ([1, e]) with positive values such that

|f (t, x̄)| ≤ Mγ (t), t ∈ [1, e] and ‖x̄‖ ≤ γ .
It means that we are ready to investigate our quadratic problem under general growth

conditions on f . In fact, it allows us to investigate the Nemytskii superposition operator
generated by f as acting on C[1, e] with values in Lψ ([1, e]) and, in view of the above results,



Abdalla et al. Advances in Difference Equations        (2020) 2020:267 Page 7 of 23

the Hadamard fractional integral operator should have its values again in C[1, e]. It helps
us to study the problem under more general assumptions than in the earlier mentioned
papers. Let us state some immediate consequences of our assumptions.

Lemma 4 If f : [1, e] ×R→R satisfies assumptions (1)–(2), then
1. The function Mγ (t) satisfies Mγ (t) ≥ max‖x̄‖≤γ |f (t, x̄)|, γ > 0, t ∈ [1, e];
2. For any x̄ ∈ C[1, e], f (·, x̄(·)) ∈ Lψ ([1, e]);
3. The following inequality holds true: ‖f (·, x̄(·))‖ψ ≤ ‖Mγ ‖ψ .

Proof The first claim is immediate. For the second and third, let us observe that under
assumption (1) for any x̄ ∈ C the superposition Nf (x̄) = f (·, x̄(·)) is measurable and for any
fixed γ > 0 by (2) ‖Nf (x̄)‖ψ ≤ ‖Mγ ‖ψ , so we are done. �

3 System of Hadamard-type fractional integral equations
In this section, we employ some consequences of Lemma 1 in order to assure the existence
of positive continuous solutions for system (1). Recall that the singularity of equations is
allowed, so both ηi(0, 0) can be undefined and the possibility that ζi(0, 0) = 0 is allowed.

To facilitate our discussion, let us fix the following assumptions:
1. Assume that, for i = 1, 2, functions fi : [1, e] × [0,∞)2 → (0,∞) satisfy assumptions

(1)–(2).
2. For i = 1, 2, functions ηi : (0,∞)2 → [0,∞) are continuous and nondecreasing with

respect to the ordering in R
2, that is, ηi(x1, x2) ≤ ηi(y1, y2) whenever xj < yj , j = 1, 2.

3. For i = 1, 2, functions ζi : [0,∞)2 → [0,∞) are continuous and nondecreasing with
respect to the ordering in R

2 such that ζi(x1, x2) > 0 for all (x1, x2) = (0, 0).
4. For i = 1, 2, functions Hi : [1, e] × [0,∞)2 → (0,∞) are continuous and satisfy the

following conditions:
(a) 0 < μi < γi, i = 1, 2, exist so that

for any t ∈ [1, e],μi ≤ Hi(t, x̄) holds for every x̄ ≤ μ̄ and γi ≥ 2 max
t∈[1,e]

Hi(t, μ̄),

where x̄ = (x1, x2) and μ̄ = (μ1,μ2).
(b) For i = 1, 2, there exist a function b ∈ C[1, e] and nondecreasing functions

cij : [μi,∞) →R
+, j = 1, 2, such that

∣
∣Hi(t, x̄) – Hi(s, ȳ)

∣
∣ ≤ ci1(γi)

∣
∣b(t) – b(s)

∣
∣ + ci2(γi)‖x̄ – ȳ‖R2 (5)

for all x̄, ȳ ∈R
2, xi, yi ∈ [μi,γi], and t, s ∈ [1, e].

Now, we are prepared to formulate and prove the existence result of our quadratic prob-
lem in the space of continuous functions. The next theorem deals with some conditions
ensuring the existence of positive continuous bounded solutions for system (1).

Theorem 2 Let α1,α2 ∈ (0, 1]. Assume that Mi ∈ Lψ ([1, e], (0,∞)), i = 1, 2, where ψ is an
appropriate Young function with its complementary function ψ̃ satisfying

∫ t

0
ψ̃

(
sα–1)ds < ∞, t ∈ [1, e], where α := max

i
{αi}. (6)
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If assumptions (1.)–(4.) hold true along with

(

C2(γ ) +
2Ψ̃ (1) maxi ‖Mi‖ψ

Γ (α)
max

i

(
ηi(γ̄ )
ζi(μ̄)

))

≤ 1
2

, (7)

where γ := max{γ1,γ2}, β := min{α1,α2}, and C2(γ ) = max{c12(γ1), c22(γ2)}, then system (1)
possesses at least one solution x̄ ∈ C such that μ̄ ≤ x̄(t) ≤ γ̄ , t ∈ [1, e].

Proof To solve system (1), it is sufficient to find a fixed point of the operator T : C → C
defined by

Tx̄(t) :=
{

T1(x̄(t), T2(x̄)(t)
}

, Ti : C → C[1, e], i = 1, 2, (8)

where

T1(x̄)(t) := H1
(
t, x̄(t)

)
+

x2(t)
Γ (α1)

∫ t

1

(

log
t
s

)α1–1

f1
(
s, x̄(s)

)η�
1(x̄(s))

ζ �
1 (x̄(s))

ds
s

, t ∈ [1, e], (9)

and

T2(x̄)(t) := H2
(
t, x̄(t)

)
+

x1(t)
Γ (α2)

∫ t

1

(

log
t
s

)α2–1

f2
(
s, x̄(s)

)η�
2(x̄(s))

ζ �
2 (x̄(s))

ds
s

, t ∈ [1, e]. (10)

Here, η�
i : R2 → [ηi(μ̄),ηi(γ̄ )] and ζ �

i : R2 → [ζi(μ̄), ζi(γ̄ )] (i = 1, 2) are defined by

η�
i (x̄) :=

⎧
⎪⎪⎨

⎪⎪⎩

ηi(γ̄ ) x̄ ≥ γ̄ ,

ηi(x̄) μ̄ ≤ x̄ ≤ γ̄ ,

ηi(μ̄) x̄ ≤ μ̄

and ζ �
i (x̄) :=

⎧
⎪⎪⎨

⎪⎪⎩

ζi(γ̄ ) x̄ ≥ γ̄ ,

ζi(x̄) μ̄ ≤ x̄ ≤ γ̄ ,

ζi(μ̄) x̄ ≤ μ̄.

First we need to recall that T is well defined on C. Observe that, for each x̄ ∈ C, func-
tions η�

i (x̄(·))
ζ �

i (x̄(·)) , i = 1, 2, are continuous on [1, e] and for any x̄ ∈ C, fi(·, x̄(·)) = fi(·, x1(·), x2(·)) ∈
Lψ ([1, e]).

Since fi(·, x̄(·)) η�
i (x̄(·))

ζ �
i (x̄(·)) ∈ Lψ ([1, e]), by applying [16, Proposition 1] condition (6) holds true

for both α1, α2, and in view of Lemma 1 it follows that the operator T : C → C is well
defined.

Next, let us define the following subsets of the space C (as required in Krasnoselskii’s
fixed point theorem):

Q1 :=
{

x̄ ∈ C : ‖x̄‖R2 < μ := min{μ1,μ2}
}

and

Q2 :=
{

x̄ ∈ C : ‖x̄‖R2 < γ := max{γ1,γ2}
}

,

Q :=
{

x̄ ∈ C : xi(t) ≥ 0,
∥
∥x̄(t) – x̄(s)

∥
∥
R2 ≤

[
B(t, s) + KΨ̃ (|t – s|)

1 – K∗

]

, t, s ∈ [1, e]
}

,

where

B(t, s) := C1(γ )
∣
∣b(t) – b(s)

∣
∣ with C1(γ ) := max

{
c11(γ1), c21(γ2)

}
,

K :=
4γ maxi ‖Mi‖ψ

Γ (α)
max

i
·
{

ηi(γ̄ )
ζi(μ̄)

}

,
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and

K∗ :=
(

C2(γ ) +
2Ψ̃ (1) maxi ‖Mi‖ψ

Γ (α)
· max

i

{
ηi(γ̄ )
ζi(μ̄)

})

<
1
2

.

We divide our proof into five steps by proving some of important properties of T :
(Step 1): T : Q ∩ (Q̄2 \ Q1) → Q is well defined.
(Step 2): T : Q ∩ (Q̄2 \ Q1) → Q is continuous.
(Step 3): T : Q ∩ (Q̄2 \ Q1) → Q is compact.
(Step 4): T satisfies a Krasnoselskii cone expansion/compression condition.
(Step 5): Every fixed point of T solves system (1).
To prove the assertion of (Step 1), let x̄ ∈ Q ∩ (Q̄2 \ Q1) and t1, t2 ∈ [a, b]. With no loss

of generality, we may assume that t1 ≤ t2 and then, keeping our assumption in mind, we
have the following estimates:

∣
∣T1(x̄)(t2) – T1(x̄)(t1)

∣
∣

≤ ∣
∣H1

(
t2, x̄(t2)

)
– H1

(
t1, x̄(t1)

)∣
∣

+
∣
∣
∣
∣

x2(t2)
Γ (α1)

∫ t2

1

(

log
t2

s

)α1–1

f1
(
s, x̄(s)

)η�
1(x̄(s))

ζ �
1 (x̄(s))

ds
s

–
x2(t1)
Γ (α1)

∫ t1

1

(

log
t1

s

)α1–1

f1
(
s, x̄(s)

)η�
1(x̄(s))

ζ �
1 (x̄(s))

ds
s

∣
∣
∣
∣

≤ c11(γ )
∣
∣b(t2) – b(t1)

∣
∣ + c12(γ )

∥
∥x̄(t2) – x̄(t1)

∥
∥
R2

+
∣
∣
∣
∣

x2(t2)
Γ (α1)

∫ t2

1

(

log
t2

s

)α1–1

f1
(
s, x̄(s)

)η�
1(x̄(s))

ζ �
1 (x̄(s))

ds
s

–
x2(t1)
Γ (α1)

∫ t2

1

(

log
t2

s

)α1–1

f1
(
s, x̄(s)

)η�
1(x̄(s))

ζ �
1 (x̄(s))

ds
s

∣
∣
∣
∣

+
∣
∣
∣
∣

x2(t1)
Γ (α1)

∫ t2

1

(

log
t2

s

)α1–1

f1
(
s, x̄(s)

)η�
1(x̄(s))

ζ �
1 (x̄(s))

ds
s

–
x2(t1)
Γ (α1)

∫ t1

1

(

log
t1

s

)α1–1

f1
(
s, x̄(s)

)η�
1(x̄(s))

ζ �
1 (x̄(s))

ds
s

∣
∣
∣
∣

≤ c11(γ )
∣
∣b(t2) – b(t1)

∣
∣ + c12(γ )

∥
∥x̄(t2) – x̄(t1)

∥
∥
R2

+
|x2(t2) – x2(t1)|

Γ (α1)

(
η1(γ̄ )
ζ1(μ̄)

)∫ t2

1

(

log
t2

s

)α1–1∣
∣f1

(
s, x̄(s)

)∣
∣ds

s

+
|x2(t1)|
Γ (α1)

(
η1(γ̄ )
ζ1(μ̄)

)∫ t2

t1

(

log
t2

s

)α1–1∣
∣f1

(
s, x̄(s)

)∣
∣ds

s

+
|x2(t1)|
Γ (α1)

(
η1(γ̄ )
ζ1(μ̄)

)∫ t1

1

∣
∣
∣
∣

(

log
t2

s

)α1–1

–
(

log
t1

s

)α1–1∣∣
∣
∣

∣
∣f1

(
s, x̄(s)

)∣
∣ds

s

≤ c11(γ )
∣
∣b(t2) – b(t1)

∣
∣ + c12(γ )

∥
∥x̄(t2) – x̄(t1)

∥
∥
R2

+
|x2(t2) – x2(t1)|

Γ (α1)

(
η1(γ̄ )
ζ1(μ̄)

)∫ e

1
a1(s)

∣
∣M1(s)

∣
∣ds

+
|x2(t1)|
Γ (α1)

(
η1(γ̄ )
ζ1(μ̄)

)∫ e

1

[
a2(s) + a3(s)

]∣
∣M1(s)

∣
∣ds,
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where

a1(s) :=

⎧
⎨

⎩

(log t2
s )α–1

s s ∈ [1, t2],

0 otherwise
and a2(s) :=

⎧
⎨

⎩

(log t2
s )α–1

s s ∈ [t1, t2],

0 otherwise,

and

a3(s) :=

⎧
⎨

⎩

|(log t2
s )α–1–(log t1

s )α–1|
s s ∈ [1, t1],

0 otherwise.

Arguing as in the proof of [16, Theorem 1], we ensure that ai ∈ Lψ̃ (i = 1, 2, 3). Let us
omit the details as they are similar to argumentations in the proof of [16, Theorem 2] with
(small) necessary changes. In view of the Hölder inequality in Orlicz spaces, we conclude
that

∣
∣T1(x̄(t2) – T1(x̄)(t1)

∣
∣ ≤ c11(γ )

∣
∣b(t2) – b(t1)

∣
∣ + c12(γ )

∥
∥x̄(t2) – x̄(t1)

∥
∥
R2

+
|x2(t2) – x2(t1)|

Γ (α1)

(
η1(γ̄ )
ζ1(μ̄)

)

· 2‖a1‖ψ̃‖M1‖ψ

+
|x2(t1)|
Γ (α1)

(
f1(γ̄ )
g1(μ̄)

)

· 2
[‖a2‖ψ̃ + ‖a3‖ψ̃

]‖M1‖ψ

≤ c11(γ )
∣
∣b(t2) – b(t1)

∣
∣ + c12(γ )

∥
∥x̄(t2) – x̄(t1)

∥
∥
R2

+
|x2(t2) – x2(t1)|

Γ (α1)

(
η1(γ̄ )
ζ1(μ̄)

)

· 2Ψ̃ (log t2)‖M1‖ψ

+
|x2(t1)|
Γ (α1)

(
η1(γ̄ )
ζ1(μ̄)

)

· 4Ψ̃
(|t2 – t1|

)‖M1‖ψ

≤ C1(γ )
∣
∣b(t2) – b(t1)

∣
∣ + C2(γ )

∥
∥x̄(t2) – x̄(t1)

∥
∥
R2

+
‖x̄(t2) – x̄(t1)‖R2

Γ (α)
max

i

(
ηi(γ̄ )
ζi(μ̄)

)

· 2Ψ̃ (1) max
i

‖Mi‖ψ

+
4γ

Γ (α)
max

i

(
ηi(γ̄ )
ζi(μ̄)

)

· Ψ̃ (|t2 – t1|
)

max
i

‖Mi‖ψ .

Thus we conclude that T1(x̄) ∈ C[1, e]:

∣
∣T1(x̄)(t2) – T1(x̄)(t1)

∣
∣ ≤ B(t1, t2) + K∗∥∥x̄(t2) – x̄(t1)

∥
∥
R2 + KΨ̃

(|t2 – t1|
)
. (11)

Similarly, the continuity for T2(x̄) on [1, e] can be shown:

∣
∣T2(x̄)(t2) – T2(x̄)(t1)

∣
∣ ≤ B(t1, t2) + K∗∥∥x̄(t2) – x̄(t1)

∥
∥
R2 + KΨ̃

(|t2 – t1|
)
. (12)

Using the definition of Q, we get also the following estimation:

∣
∣Ti(x̄)(t2) – Ti(x̄)(t1)

∣
∣ ≤ B(t1, t2) + K∗

[
B(t, s) + KΨ̃ (|t – s|)

1 – K∗

]

+ KΨ̃
(|t2 – t1|

)
.

≤ 1
1 – K∗

[
B(t1, t2) + KΨ̃

(|t2 – t1|
)]

, (13)

which holds for every i ∈ {1, 2}. Therefore, we conclude that T(x̄) ∈ Q.
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As our assumptions imply that the values of T1, T2 are positive, i.e., Ti(x̄)(t) > 0, i =
1, 2, t ∈ [1, e], it follows that T(x̄) ∈ Q for every x̄ ∈ Q ∩ (Q̄2 \ Q1), which implies that
T : Q ∩ (Q̄2 \ Q1) → Q and is well defined.

Next, we proceed to proving the assertion of (Step 2). To achieve this goal, we let x̄n → x̄
in Q ∩ (Q̄2 \ Q1), then x̄n(t) = (x1,n(t), x2,n(t)) → x̄(t) = (x1(t), x2(t)) uniformly in C. In this
case, with some further efforts one can get

∣
∣T1(x̄n)(t) – T1(x̄n)(t)

∣
∣

≤ ∣
∣H1

(
t, x̄n(t)

)
– H1

(
t, x̄(t)

)∣
∣

+
∣
∣
∣
∣
x2,n(t)
Γ (α1)

∫ t

1

(

log
t
s

)α1–1

f1
(
s, x̄n(s)

)η�
1(x̄n(s))

ζ �
1 (x̄n(s))

ds
s

–
x2(t)
Γ (αi)

∫ t

1

(

log
t
s

)α1–1

f1
(
s, x̄(s)

)η�
1(x̄(s))

ζ �
1 (x̄(s))

ds
s

∣
∣
∣
∣

≤ c12(γ )
∥
∥x̄n(t) – x̄(t)

∥
∥
R2

+
∣
∣
∣
∣
x2,n(t)
Γ (α1)

∫ t

1

(

log
t
s

)α1–1

f1
(
s, x̄n(s)

)η�
1(x̄n(s))

ζ �
1 (x̄n(s))

ds
s

–
x2(t)
Γ (αi)

∫ t

1

(

log
t
s

)α1–1

f1
(
s, x̄n(s)

)η�
1(x̄n(s))

ζ �
1 (x̄n(s))

ds
s

∣
∣
∣
∣

+
∣
∣
∣
∣

x2(t)
Γ (α1)

∫ t

1

(

log
t
s

)α1–1

f1
(
s, x̄n(s)

)η�
1(x̄n(s))

ζ �
1 (x̄n(s))

ds
s

–
x2(t)
Γ (α1)

∫ t

1

(

log
t
s

)α1–1

f1
(
s, x̄(s)

)η�
1(x̄n(s))

ζ �
1 (x̄n(s))

ds
s

∣
∣
∣
∣

+
∣
∣
∣
∣

x2(t)
Γ (α1)

∫ t

1

(

log
t
s

)α1–1

f1
(
s, x̄(s)

)η�
1(x̄n(s))

ζ �
1 (x̄n(s))

ds
s

–
x2(t)
Γ (α1)

∫ t

1

(

log
t
s

)α1–1

f1
(
s, x̄(s)

)η�
1(x̄(s))

ζ �
1 (x̄(s))

ds
s

∣
∣
∣
∣

≤ c12(γ )
∥
∥x̄n(t) – x̄(t)

∥
∥
R2

+
|x2,n(t) – x2(t)|

Γ (α1)
η1(γ̄ )
ζ1(μ̄)

(

max
t∈[1,e]

∫ t

1

(

log
t
s

)α1–1

M1(s)
ds
s

)

+
|x2(t)|
Γ (α1)

η1(γ̄ )
ζ1(μ̄)

∫ t

1

(

log
t
s

)α1–1∣
∣f1

(
s, x̄n(s)

)
– f1

(
s, x̄(s)

)∣
∣ds

s

+
|x2(t)|
Γ (α1)

max
t∈[1,e]

∣
∣
∣
∣
η�

1(x̄n(t))
ζ �

1 (x̄n(t))
–

η�
1(x̄(t))

ζ �
1 (x̄(t))

∣
∣
∣
∣

(

max
t∈[a,b]

∫ t

a

(

log
t
s

)α1–1

M1(s)
)

ds
s

.

Again by applying the Hölder inequality, we obtain

∣
∣T1(x̄n)(t) – T1(x̄)(t)

∣
∣

≤ c12(γ )
∥
∥x̄n(t) – x̄(t)

∥
∥
R2

+
2Ψ̃ (1)‖M1‖ψ

Γ (α1)
η1(γ̄ )
ζ1(μ̄)

∥
∥x̄n(t) – x̄(t)

∥
∥
R2
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+
γ

Γ (α1)
η1(γ̄ )
ζ1(μ̄)

∫ t

1

(

log
t
s

)α1–1∣
∣f1

(
s, x̄n(s)

)
– f1

(
s, x̄(s)

)∣
∣ds

s

+
2γ Ψ̃ (1)‖M1‖ψ

Γ (α1)
max
t∈[1,e]

∣
∣
∣
∣
η�

1(x̄n(t))
ζ �

1 (x̄n(t))
–

η�
1(x̄(t))

ζ �
1 (x̄(t))

∣
∣
∣
∣.

≤ ∥
∥x̄n(t) – x̄(t)

∥
∥
R2

(

C2(γ ) +
2Ψ̃ (1) maxi ‖Mi‖ψ

Γ (α)
· max

i

{
ηi(γ̄ )
ζi(μ̄)

})

+
γ

Γ (α)
max

i

(
ηi(γ̄ )
ζi(μ̄)

∫ t

1

(

log
t
s

)α–1∣
∣fi

(
s, x̄n(s)

)
– fi

(
s, x̄(s)

)∣
∣ds

s

)

+
2γ Ψ̃ (1) maxi ‖Mi‖ψ

Γ (α)
max

i

(

max
t∈[1,e]

∣
∣
∣
∣
η�

i (x̄n(t))
ζ �

i (x̄n(t))
–

η�
i (x̄(t))

ζ �
i (x̄(t))

∣
∣
∣
∣

)

.

Similarly,

∣
∣T2(x̄n)(t) – T2(x̄)(t)

∣
∣ ≤ ∥

∥x̄n(t) – x̄(t)
∥
∥
R2

(

C2(γ ) +
2Ψ̃ (1) maxi ‖Mi‖ψ

Γ (α)
· max

i

{
ηi(γ̄ )
ζi(μ̄)

})

+
γ

Γ (α)
max

i

(
ηi(γ̄ )
ζi(μ̄)

∫ t

1

(

log
t
s

)α–1∣
∣fi

(
s, x̄n(s)

)
– fi

(
s, x̄(s)

)∣
∣ds

s

)

+
2γ Ψ̃ (1) maxi ‖Mi‖ψ

Γ (α)
max

i

(

max
t∈[1,e]

∣
∣
∣
∣
η�

i (x̄n(t))
ζ �

i (x̄n(t))
–

η�
i (x̄(t))

ζ �
i (x̄(t))

∣
∣
∣
∣

)

.

It is equivalent to the following estimate:

∥
∥T(x̄n) – T(x̄)

∥
∥
R2

= max
i

{
max
t∈[1,e]

∣
∣Ti(x̄n)(t) – Ti(x̄)(t)

∣
∣
}

≤ 1
2
∥
∥x̄n(t) – x̄(t)

∥
∥
R2

+
γ

Γ (α)
max

i

(
ηi(γ̄ )
ζi(μ̄)

∫ t

1

(

log
t
s

)α–1∣
∣fi

(
s, x̄n(s)

)
– fi

(
s, x̄(s)

)∣
∣ds

s

)

+
2γ Ψ̃ (1) maxi ‖Mi‖ψ

Γ (α)
max

i

(

max
t∈[1,e]

∣
∣
∣
∣
η�

i (x̄n(t))
ζ �

i (x̄n(t))
–

η�
i (x̄(t))

ζ �
i (x̄(t))

∣
∣
∣
∣

)

.

It implies, in view of the continuity of η�
i (·)

ζ �
i (·) , i = 1, 2, and fi(t, ·), t ∈ [1, e], i = 1, 2, that the

operator T : Q ∩ (Q̄2 \ Q1) → Q is continuous. The second claim is established.
Now we need to prove the assertion of (Step 3). Let M ⊂ Q∩ (Q̄2 \Q1) be bounded. Note

that, for any x̄ ∈ M, we have

∣
∣T1(x̄)(t)

∣
∣ ≤ ∣

∣H1
(
t, x̄(t)

)∣
∣ +

|x2(t)|
Γ (α1)

(
η1(γ̄ )
ζ1(μ̄)

)(

max
t∈[1,e]

∫ t

1

(

log
t
s

)α1–1

f1
(
s, x̄(s)

)ds
s

)

≤ ∣
∣H1

(
t, x̄(t)

)
– H1(t, μ̄) + H1(t, μ̄)

∣
∣

+
∣
∣x2(t)

∣
∣2Ψ̃ (1)‖M1‖ψ

Γ (α1)

(
η1(γ̄ )
ζ1(μ̄)

)

≤ ∣
∣H1

(
t, x̄(t)

)
– H1(t, μ̄)

∣
∣ +

∥
∥H1(·, μ̄)

∥
∥

+
∣
∣x2(t)

∣
∣2Ψ̃ (1)‖M1‖ψ

Γ (α1)

(
η1(γ̄ )
ζ1(μ̄)

)
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≤ C2(γ )
∥
∥x̄(t) – μ̄

∥
∥
R2 +

∥
∥H1(·, μ̄)

∥
∥

+ γ
2Ψ̃ (1) maxi ‖Mi‖ψ

Γ (α)
max

i

(
ηi(γ̄ )
ζi(μ̄)

)

.

As we have a simple estimation

∥
∥x̄(t) – μ̄

∥
∥
R2 = max

{
max
t∈[a,b]

∣
∣x1(t) – μ2

∣
∣, max

t∈[a,b]

∣
∣x2(t) – μ1

∣
∣
}

≤ |γ – μ| ≤ γ ,

then in view of inequality (7), we get

∣
∣T1(x̄)(t)

∣
∣ ≤ ∥

∥H1(·, μ̄)
∥
∥ + γ

1
2

≤ γ1

2
+

γ

2
.

Similarly,

∣
∣T2(x̄)(t)

∣
∣ ≤ γ2

2
+

γ

2
.

Since γ = max{γ1,γ2}, we conclude that ‖T(x̄)‖R2 = maxi∈{1,2}{‖T1(x̄)‖,‖T2(x̄)‖} < γ .
It implies the boundedness of the image T(M). Moreover, from (13), we conclude the
equicontinuity of the set T(M).

Finally, the continuous operator T maps bounded subsets of Q∩ (Q̄2 \Q1) into bounded
equicontinuous subsets of Q. In view of Tychonoff and Arzelà–Ascoli theorems, we obtain
compactness of the continuous operator T , as expected in the assertion of (Step 3).

To verify (Step 4), we need to evaluate the norm of T(x) on boundaries of ∂Q1 and ∂Q2.
As we already proved that for x̄ ∈ Q ∩ ∂Q2 we have ‖T(x̄)‖R2 < γ = ‖x̄‖R2 , we will verify
the remaining part of assumption [2-] in Theorem 1.

To do this, let us observe that 0 < xi(t) ≤ μ, t ∈ [1, e], i = 1, 2, for any x̄ = (x1, x2) ∈ Q ∩
∂Q1. In this case, by applying the monotonicity properties of ηi and ζi (i = 1, 2), we have

T1(x̄)(t) ≥ H1
(
t, x̄(t)

)
+

x2(t)
Γ (α1)

(
η�

1(0)
ζ �

1 (μ̄)

)(∫ t

a

(

log
t
s

)α1–1

fi
(
s, x̄(s)

)ds
s

)

for all t ∈ [1, e].
In view of assumption (4.)(a), for chosen x̄, we get H1(t, x̄(t)) ≥ μ1. Moreover, assump-

tions (2.) and (3.) imply that ( η�
1(0)

ζ �
1 (μ̄) ) > 0, and as the operator Jα

a has nonnegative val-
ues, we get ‖T1(x̄)‖ ≥ H1(t, x̄(t)) ≥ μ1. Similarly, ‖T2(x̄)‖ ≥ μ2. Consequently, ‖Tx̄‖R2 ≥
min{μ2,μ2} = μ ≥ ‖x̄‖R2 .

All the hypotheses of Krasnoselskii’s fixed point theorem are fulfilled. Therefore, we can
conclude that the operator T : Q ∩ (Q̄2 \ Q1) → Q has at least one fixed point x̄ = (x1, x2) ∈
Q ∩ (Q̄2 \ Q1), being continuous on [1, e]. Meaning that there would exist xi ∈ C[1, e], i =
1, 2, with the property that xi(t) ∈ (0,γ ], ∀t ∈ [1, e], i = 1, 2, for which we have

⎧
⎨

⎩

x1(t) = H1(t, x̄(t)) + x2(t)
Γ (α1)

∫ t
a (log t

s )α1–1f1(s, x̄(s)) η�
1(x̄(s))

ζ �
1 (x̄(s))

ds
s , t ∈ [1, e],

x2(t) = H2(t, x̄(t)) + x1(t)
Γ (α1)

∫ t
a (log t

s )α2–1f2(s, x̄(s)) η�
2(x̄(s))

ζ �
2 (x̄(s))

ds
s , t ∈ [1, e].

(14)

Finally, for (Step 5), looking at system (14), observe that

xi(t) ≥ Hi
(
t, x̄(t)

)
hold for all t ∈ [1, e], i = 1, 2.
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We conclude that x̄(t) ≥ (μ,μ), ∀t ∈ [1, e]. Otherwise, in view of our assumptions imposed
on H1, H2, we obtain that

μi ≥ μ > xi(t) ≥ Hi
(
t, x̄(t)

) ≥ μi, t ∈ [1, e] (i = 1, 2),

which, of course, would lead to contradiction. Consequently, since γ̄ ≥ x̄(t) ≥ μ̄, t ∈ [a, b],
it follows in view of (14) and by the definitions of η�

i and ζ �
i that x̄ ∈ Q ∩ (Q̄2 \ Q1) solves

system (1), which completes the proof. �

Remark 1 Now let us show an immediate consequence of the above theorem if we replace
Lemma 1 by more general Lemma 3. In particular, this extension is useful when we study
F(x1, x2) = (x2

2, x2
1), i.e., cubic equations (see [5] for instance) or F(x1, x2) = (xn–1

2 , xn–1
1 ), i.e.,

nth order ([9]) (both proved by a contraction method), but we are not restricted only to
those cases. Note that in earlier papers only the approach via contraction mappings was
used. It should be also stressed that the case of Hadamard fractional operators is more
complicated than that of the convolution-type operators.

Consider the following generalized system of Hadamard-type fractional integral equa-
tions:

⎧
⎨

⎩

x1(t) = H1(t, x̄(t)) + F1(x2)(t) · Jα1 f1(t, x̄(t)) η1(x̄(t))
ζ1(x̄(t)) , t ∈ [1, e],α1 > 0,

x2(t) = H2(t, x̄(t)) + F2(x1)(t) · Jα2 f2(t, x̄(t)) η2(x̄(t))
ζ2(x̄(t)) , t ∈ [1, e],α2 > 0.

(15)

For (x,ρ) ∈ C[1, e]× (0,∞), we denote by ω(x,ρ) the modulus of continuity of x ∈ C[1, e],
i.e.,

ω(x,ρ) = sup
{∣
∣x(t1) – x(t2)

∣
∣ : (t1, t2) ∈ [1, e] × [1, e], |t1 – t2| ≤ ρ

}
.

Further on, for any subset M of C[1, e], let us define (cf. [6])

ω(M,ρ) = sup
{
ω(x,ρ) : x ∈ M

}

and

ω(M) = lim
ρ→0

ω(M,ρ).

So, a function x admits ω as a modulus of continuity if and only if |x(t) – x(s)| ≤ ω(x, |t – s|).
Moreover, for any continuous function X, this modulus is continuous at zero: ω(x, r) → 0
as r → 0.

Recall that, as we consider continuous functions on compact interval, they are uniformly
continuous. A function turns out to be uniformly continuous if and only if it admits a
modulus of continuity. For the case of quadratic problems, it is worthwhile to note that if
x and y are bounded real-valued functions with moduli respectively ω1 and ω2, then the
pointwise product x · y has the modulus of continuity ‖y‖∞ · ω1 + ‖x‖∞ · ω2. We are ready
to prove an extension for Theorem 2, which will be then illustrated in Example 3.1.
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Proposition 2 Let α1,α2 ∈ (0, 1]. Assume that Mi ∈ Lψ ([1, e], (0,∞)), i = 1, 2, where ψ is
an appropriate Young function with its complementary function ψ̃ satisfying

∫ t

0
ψ̃

(
sα–1)ds < ∞, t ∈ [1, e], where α := max

i
{αi}. (16)

Assume that, for bounded and continuous mapping F(x1, x2) = (F1(x2), F2(x1)) : C → C,
there exists a constant ML such that, for any subset M in Bγ and any r > 0, we have

max
{
ω

(
F1(M), r

)
,ω

(
F2(M), r

)} ≤ ML · ω(M, r). (17)

If assumptions (1.)–(4.) hold true along with

(

C2(γ ) +
2 · Ψ̃ (1) maxi ‖Mi‖ψ

Γ (α)
max

i

(
ηi(γ̄ )
ζi(μ̄)

))

≤ 1
2 · ML

, (18)

where γ := max{γ1,γ2}, β := min{α1,α2}, and C2(γ ) = max{c12(γ1), c22(γ2)}, then system (1)
possesses at least one solution x̄ ∈ C such that μ̄ ≤ x̄(t) ≤ γ̄ , t ∈ [1, e].

Proof The proof follows the lines of the preceding theorem with some necessary changes.
It will be rewritten in such a way to facilitate possible future extensions. Namely, in this
case let us briefly describe some necessary changes. Fix any x̄ = (x1, x2) ∈ C. Operator T is
defined as follows:

T1(x̄)(t) := H1
(
t, x̄(t)

)
+

F1(x2)(t)
Γ (α1)

∫ t

1

(

log
t
s

)α1–1

f1
(
s, x̄(s)

)η�
1(x̄(s))

ζ �
1 (x̄(s))

ds
s

, t ∈ [1, e], (19)

and

T2(x̄)(t) := H2
(
t, x̄(t)

)
+

F2(x1)(t)
Γ (α2)

∫ t

1

(

log
t
s

)α2–1

f2
(
s, x̄(s)

)η�
2(x̄(s))

ζ �
2 (x̄(s))

ds
s

, t ∈ [1, e], (20)

so we define the set Q as a subset of C[1, e] consisting of positive functions having, for any
r > 0, the following modulus of equicontinuity estimated by

ω(Q, r) = C2(γ ) · ω(b, r) +
Ψ̃ (|t – s|)

1 – K∗ ,

but where a constant K∗ is defined as

K∗ :=
(

C2(γ ) · ML +
2 · ML · Ψ̃ (1) maxi ‖Mi‖ψ

Γ (α)
· max

i

{
ηi(γ̄ )
ζi(μ̄)

})

<
1
2

.

Let us recall that in the proof of Theorem 2 we had ω(Q, |t – s|) = [ B(t,s)+KΨ̃ (|t–s|)
1–K∗ ].

To show that T : Q → Q, we need to infer that the modulus of continuity ω(Q) is pre-
served by T . Recall that if x and y are functions with moduli respectively ω1 and ω2, then
any linear combination ax + by has the modulus of continuity |a|ω1 + |b|ω2. Then, with no
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essential changes in (Step 1), by applying Proposition 2, for any i = 1, 2, we get an estima-
tion:

∣
∣Ti(xi)(t2) – Ti(xi)(t1)

∣
∣ ≤ C1(γ )

∣
∣b(t2) – b(t1)

∣
∣ + C2(γ ) · ML · ω(

Q, |t2 – t1|
)

+
ML · ω(Q, |t2 – t1|)

Γ (α)
max

i

(
ηi(γ̄ )
ζi(μ̄)

)

· 2Ψ̃ (1) max
i

‖Mi‖ψ

+
4γ

Γ (α)
max

i

(
ηi(γ̄ )
ζi(μ̄)

)

· Ψ̃ (|t2 – t1|
)

max
i

‖Mi‖ψ ,

and then

∣
∣Ti(xi)(t2) – Ti(xi)(t1)

∣
∣ ≤ ω

(
Q, |t2 – t1|

)
,

so T : Q → Q.
In (Step 2) we follow the lines of the proof of Theorem 2, with only minor changes,

together with Proposition 2. For any sequence x̄n → x̄ in Q ∩ (Q̄2 \ Q1), i.e., x̄n(t) =
(x1,n(t), x2,n(t)) → x̄(t) = (x1(t), x2(t)) uniformly in C, we get

∣
∣Ti(x̄n)(t) – Ti(x̄)(t)

∣
∣ ≤ C2(γ ) · ∥∥x̄n(t) – x̄(t)

∥
∥
R2

+
∣
∣Fi(x̄n)(t) – Fi(x̄)(t)

∣
∣ · 2Ψ̃ (1) maxi ‖Mi‖ψ

Γ (α)
· max

i

{
ηi(γ̄ )
ζi(μ̄)

}

+
γ

Γ (α)
max

i

(
ηi(γ̄ )
ζi(μ̄)

∫ t

1

(

log
t
s

)α–1∣
∣fi

(
s, x̄n(s)

)
– fi

(
s, x̄(s)

)∣
∣ds

s

)

+
2γ Ψ̃ (1) maxi ‖Mi‖ψ

Γ (α)
max

i

(

max
t∈[1,e]

∣
∣
∣
∣
η�

i (x̄n(t))
ζ �

i (x̄n(t))
–

η�
i (x̄(t))

ζ �
i (x̄(t))

∣
∣
∣
∣

)

.

Thus we obtain the continuity of T (some changes are results of the presence of constant
ML, so please let us omit the details).

We should note that in (Step 3) of Theorem 2 we proved two facts that T maps bounded
and equicontinuous sets into the same family of sets with T : Q → Q. Thus we need to
prove the same property here (see the new definition of Q). The boundedness of T(Q) is
proved in the same manner. Note that the last steps of the proof need not be modified. �

We need to mention that the case of Lipschitz mappings forms the simplest case in which
(17) holds true.

Remark 2 Let us indicate one more version of our result, which can be useful for some
spaces other than C[1, e], i.e., with discontinuous solutions. A typical one is the space of
regulated functions X = G([1, e]), i.e., the Banach space of functions having finite one-side
limits at every point (but possibly discontinuous) equipped with the sup-norm or the space
of left (or: right) continuous functions (see [11] for more details about this space and some
quadratic problems in this space). For example, it means that our results could be used for
impulsive or other problems having discontinuous solutions, too.

Proposition 3 Let ψ be a Young function satisfying (3). Assume that a function space
X ⊂ Lψ ([1, e]) is such that its space of pointwise multipliers Mp(X) contains the space
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C[1, e] and that F(x1, x2) = (F1(x2), F2(x1)) : X × X → X × X with the norm ‖(x1, x2)‖C =
max{‖x1‖X ,‖x2‖X} is bounded and continuous. If the space X is equipped with the sup-
norm ‖x‖X = supt∈[1,e] |x(t)|, then under the assumptions of Theorem 2, system (1) possesses
at least one solution x̄ ∈ X such that μ̄ ≤ x̄(t) ≤ γ̄ , t ∈ [1, e].

As X ⊂ Lψ ([1, e]), then applying Lemma 1 in its generality, we ensure that the fractional
operator is well defined on X. The remaining part of the proof runs as in the main theorem.
Clearly, in this case instead of continuity of H , it suffices to assume that H(·, x̄(·)) ∈ X.

Corollary 1 Under the assumptions of Theorem 2 with C([1, e]) respectively replaced by
G([1, e]), system (1) possesses at least one regulated positive solution x̄ ∈ G([1, e])×G([1, e])
such that μ̄ ≤ x̄(t) ≤ γ̄ , t ∈ [1, e].

We close this section by introducing the following examples, which illustrate the results
proved in Theorem 2 and Proposition 2 (cf. also [9]). We start with the following one.

Example 3.1 Consider the singular system of cubic equations of type (15), i.e., for Propo-
sition 2:

x1(t) =
1 + t
20

+ log t
x2

2(t)
8

+
x2

2(t)
Γ (1/2)

∫ t

1

(

log
t
s

)–1/2[ (x1(s) + x2(s))x1(s)+x2(s)

e20(x1(s)+x2(s)) – 1

]

log
(
s – 1 +

∣
∣x2(s)

∣
∣
)ds

s
,

t ∈ [1, e],

x2(t) =
t

10
+ (t – 1)

(x1(t) + x2(t))
15

+
x2

1(t)
6Γ (1/2)

∫ t

1

(

log
t
s

)–1/2[ log(0.1 + x1(s) + x2(s))√
x1(s) + x2(s)

]

log

(
e – 1
e – s

)

e
x1
16

ds
s

,

t ∈ [1, e].

(21)

Observe that (21) is a special case of (15) if we put α1 = α2 = 1
2 , F(x1, x2) = (x2

2, x2
1) and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H1(t, x̄) = 1+t
20 + x2

2
8 log t,

f1(t, x̄) = log(t – 1 + |x2|),
η1(x̄) = (x1 + x2)x1+x2 ,

ζ1(x̄) = e20(x1+x2) – 1

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H2(t, x̄) = t
10 + (x1+x2)

15 (t – 1),

f2(t, x̄) = e
x1
16 log( e–1

e–t ),

η2(x̄) = log(0.1 + x1 + x2),

ζ2(x̄) = 6√x1 + x2.

In what follows, we show that the functions involved in system (21) satisfy inequality (18)
from Theorem 2. To do this, choose μ̄ = (0.1, 0.1) and γ̄ = (0.4, 0.6). Then, for every x̄ ≤
(0.1, 0.1) and every t ∈ [1, e], we have

H1(t, x) > 0.1, H2(t, x) > 0.1 and then 2H1(t, 0.1) < 0.4, 2H2(t, 0.1) < 0.6.

On the other hand, for every t, s ∈ [1, e] and x̄, ȳ ∈R
2, we have

∣
∣H1(t, x̄) – H1(s, ȳ)

∣
∣ ≤ 1

20
|t – s| +

log t
8

∣
∣x2

2 – y2
2
∣
∣ +

y2
2

8
| log t – log s|.
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By using the classical mean value theorem, we have

∣
∣H1(t, x̄) – H1(s, ȳ)

∣
∣ ≤ 1

20
|t – s| +

log t|x2 + y2|
8

|x2 – y2| +
γ 2

2
8ς

|t – s|

≤
(

1
20

+
γ 2

2
8

)

|t – s| +
2γ2

8
‖x̄ – ȳ‖R2 , ς ∈ (1, e).

Obviously, H1 satisfies modified assumption (4.) from Proposition 2 with μ1 = 0.1, γ1 =
0.4, b(t) = t, t ∈ [1, e], c12(γ ) = 0.15, η1(γ̄ ) = (γ1 +γ2)γ1+γ2 = 1, η1(μ̄) = e20(μ1+μ2) – 1) = e4 – 1,
and f1(t, x̄) = log(t – 1 + |x2|).

Note that, for any r > 0, we have ω(F(x̄), r) = ω(x̄2, r) = 2‖x̄‖R2 · ω(x̄, r) ≤ 2γω(x̄, r). Thus
ω(F(Bγ )) ≤ 2γω(Bγ ). It implies that T maps equicontinuous subsets of Q ∩ (Q̄2 \ Q1) into
the sets with the same property, so the assertion of (Step 3) in the proof of both Theorem 2
and Proposition 2 is satisfied (assumption (17) holds true with ML = 2γ ).

Put ψ(u) = e|u| – |u| – 1. Let us recall, as claimed in [16, Example 1], that it is an example
of Young functions satisfying (3) for any α ∈ (0, 1).

Hence M1(t) = max{log(t – 1 + γ2), – log(t – 1)}) and ‖M1‖ψ ≤ 2.2. Owing to this, the
definition of Ψ̃ (1) ≤ 3 holds for any α ∈ (0, 1). Similarly, we have

∣
∣H2(t, x̄) – H2(s, ȳ)

∣
∣ ≤ 1

10
|t – s| +

(t – 1)
15

‖x̄ – ȳ‖R2 +
y1 + y2

15
|t – s|

≤
(

1
10

+
γ1 + γ2

15

)

|t – s| +
e – 1
15

‖x̄ – ȳ‖R2 .

Thus H2 satisfies assumption (4.) with μ2 = 0.1, γ2 = 0.6, b(t) = t, t ∈ [1, e], c22(γ ) =
0.11, η2(γ̄ ) = log(0.1 + γ1 + γ2) = log 1.1 and ζ2(μ̄) = 6√

μ1 + μ2 = 6
√

0.2. and f2(t, x̄) =
e

x1(t)
16 log( e–1

e–t ) (hence M2(t) = e
γ1
16 log( e–1

e–t )).
By [16, Example 1], we get ‖M2‖ψ ≤ 2e

γ2
16 . Therefore,

2
(

C2(γ ) +
4 · γ · Ψ̃ (1)‖Mi‖ψ

Γ (1/2)
log 1.1
6
√

0.2

)

≤ 1.

Thus, the hypotheses of Theorem 2 and Proposition 2 are satisfied, hence we conclude that
problem (21) has at least one continuous solution x̄ such that 0.1 ≤ ‖x̄‖R2 ≤ 0.6, t ∈ [1, e].

We give an example showing that inequality (18) is necessary for the proof of Theorem 2.
In other words, the following example is useful in proving that the hypothesis involved in
inequality (18) is really essential for the existence of continuous solutions and cannot be
eliminated.

Example 3.2 Consider the system

x1(t) = 1 +
x2(t)

Γ (0.5)

∫ t

1

(

log
t
s

)–0.5 ds
s

, t ∈ [1, e],

x2(t) = 1 +
x1(t)

Γ (0.5)

∫ t

1

(

log
t
s

)–0.5 ds
s

, t ∈ [1, e].

(22)

Observe that system (22) is a particular case of (1) if we put [a, b] = [1, e], α1 = α2 = 1
2 ,

and fi(t, x̄) = Hi(t, x̄) = ηi(x̄) = ζi(x̄) = 1, i = 1, 2. In this case, we deduce that C2(γ ) = 0 and
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‖Mi‖ψ3 = 3
√

e–1
3 , where ψ3 = |u|3

3 (by the definition of ψ , we get Ψ̃ (1) ≈ 1.9). In what follows,
we show that our choice of the functions involved in system (22) does not satisfy inequality
(18). Meanwhile, we will show that system (22) admits no positive continuous solutions
on [1, e]. Evidently, on the one hand, we have

(

C2(γ ) +
2Ψ̃ (1) maxi ‖Mi‖ψ

Γ (α)
max

i

(
ηi(γ̄ )
ζi(μ̄)

))

� 3.8√
π

3

√
e – 1

3
>

1
2

.

From which, it can be easily seen that there are no positive constants μ̄ ≤ (1, 1) and
γ̄ ≥ (2, 2) such that inequality (18) holds.

On the other hand, system (22) has no positive continuous solutions on [1, e]. To see
this, we note that (22) is equivalent to the following estimate:

x1(t) = 1 +
x2(t)

Γ (1.5)
(log t)0.5,

x2(t) = 1 +
x1(t)

Γ (1.5)
(log t)0.5, t ∈ [1, e].

Thus, the unique solution of (22) would be given by

xi(t) =
1

1 – (log t)0.5

Γ (1.5)

< 0, ∀t > e
π
4 , i = 1, 2,

which is not positive on [1, e]. It is precisely what one would expect. It points out the fact
that the assertion of Theorem 2 is no longer true if we remove the hypothesis involved in
inequality (18).

4 An application to integral equations
We need to show that the singularity of system (1) allows us to investigate the problem of
the existence of a continuous solution for some nonlinear Hadamard fractional integral
equations. It will be done after proving a preliminary proposition.

In what follows, we let φ : (0,∞] →R
+ be a continuous function such that the map

(x, y) → ypφ(x/y) is nondecreasing with respect to the ordering in R
2. (23)

Let us present a simple sufficient condition for (23) as follows.

Proposition 4 Let p > 0. If the function φ is continuous nondecreasing on (0,∞] with the
property that z → z–pφ(z) is nonincreasing on R

+, then (23) holds true.

Proof Obviously (23) is equivalent to the assertion that the map (23) is nondecreasing
with respect to each variable separately. In other words, it is necessary and sufficient that
fc(z) := φ(cz) and gc(z) := zpφ(c/z) are both nondecreasing on R

+ for every c > 0.
Of course, a simpler equivalent condition is that z → φ(z) and z → zpφ(1/z) are both

nondecreasing R
+. Noting that (·)pφ(1/·) is nondecreasing if and only if z → z–pφ(z) is

nonincreasing on R
+, one can reformulate our condition now equivalently as follows:

φ : R+ → R
+ is any nondecreasing function with the property that z → z–pφ(z) is non-

increasing R
+, which is our expected thesis. �
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Remark 3
1. For z > 1, there must hold z–pφ(z) ≤ φ(1) and then φ(z) ≤ Mzp, i.e., φ cannot grow

faster than constant times zp.
2. For any p > 0, there are a lot of functions φ with the required property, because the

factor z → z–p is strictly decreasing. For instance, let φ(z) := 1 + z2, p ≥ 2.
Moreover, one can define φ piecewise on (0, a] and [a,∞) by choosing φ on the

first interval such that the monotonicity conditions are satisfied on this first interval
and then extending φ (without changing φ(a)) such that the monotonicity conditions
are satisfied on the second interval (e.g., constant or some other polynomial). Of
course, one could also choose more than two intervals.

The simplest example is to define φ piecewise polynomials: choose some numbers
r1, r2, . . . , r∞ ∈ [0, p) (a finite or countable set) and a corresponding partition
0 = s0 < s1 < s2 < · · · < s∞ = ∞ of [0,∞) and put

φ(z) = φi(z) + ci, for z ∈ [si–i, si), (i = 1, 2, . . . ,∞),

where φi(z) = zri , c0 is arbitrary and ci+1 = ci + φi(si).
We can generalize this construction for functions which are not even “piecewise”

power functions φi.
For instance, for r ∈ [0, p], w > 0, and real a > 0, the function

h(z) := tr(log(z – a + e)
)w

is nondecreasing on (a,∞) with the property that H(t) = z–ph(z) satisfies
H ′(z) = zr–p–1G(z), where

G(z) := (r – p)
(
log(z – a + e)

)w + w
(
log(z – a + e)

)w–1/(z – a + e).

Since r – p < 0, the first summand of G is negative and the second is convergent to 0
as z → ∞. Therefore, there is a constant C (depending on p, r, w, a) such that
G(z) ≤ 0 for t ≥ C (we can choose C large enough). As C ≥ a, this assertion makes
sense.

So, if si ≥ si–1 ≥ C, we can also choose φi(z) = h(z) – h(si–1). Of course, different
values for the constants r, a, w are possible on different intervals. Moreover, instead
of h we can start with a lot of different functions. However, the class of continuous
functions, which satisfies the required growth conditions, is really huge.

Example 4.1 We give one more direct example of a function φ satisfying (23). Let p = 2 and
define the continuous nondecreasing function φ : (0,∞] → [0,∞] by φ(z) := z log(1 + z).
Obviously, the function φ(z) := z–2φ(z) satisfies φ′(z) = z–2G(z), where

G(z) =
z

1 + z
– log(1 + z).

The mean value theorem on G on the interval [0, z] yields G(z) < G(0) = 0 for every z > 0.
Thus the map z → z–2φ(z) is decreasing, and so φ satisfies (23) as required.



Abdalla et al. Advances in Difference Equations        (2020) 2020:267 Page 21 of 23

Clearly, when studying nonquadratic problems, it is sufficient to follow some ideas from
Theorem 2. Let us present now the following version for nonquadratic singular system of
fractional integral equations with Hadamard integrals.

Theorem 3 Let h1, h2 ∈ C[[a, b], (0,∞)] and φi : (0,∞] → R
+ (i = 1, 2) be continuous

functions satisfying (23) with pi > 0 (i = 1, 2). Suppose that there is 0 < μi < γi (i = 1, 2)
such that, for any t ∈ [a, b], μ̄ ≤ (h1(t)x2, h2(t)x1) holds true for every x̄ ≤ μ̄ and γ̄ ≥
(2‖h1‖μ2, 2‖h2‖μ1). If

(

max
i

‖hi‖ +
2Ψ̃ (1) maxi ‖Mi‖ψ ( γ

μ
)maxi{Pi}

Γ (α)
max

{

φ1

(
γ2

γ1

)

,φ2

(
γ1

γ2

)})

≤ 1
2

, (24)

then the following singular system of Hadamard fractional integral equations

y1(t) = h1(t) + J
α1
1 M1(t)

φ1(y2(t))
(y2(t))p1

, t ∈ [1, e],α1 > 0,

y2(t) = h2(t) + J
α2
1 M2(t)

φ1(y1(t))
(y1(t))p2

, t ∈ [1, e],α2 > 0,
(25)

admits at least one solution ȳ = (y1, y2) ∈ C such that ( μ

γ
, μ

γ
) ≤ ȳ(t) ≤ ( γ

μ
, γ

μ
), t ∈ [1, e] and

that y1(·)y2(·) = 1.

Proof Consider system (1) with the following parameter functions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H1(t, x̄) = h1(t)x2,

f1(t, x̄) = M1(t)x1,

η1(x1, x2) = xp1–1
1 φ1(x2/x1),

ζ1(x̄) = xp1
2

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H2(t, x̄) = h2(t)x1,

f2(t, x̄) = M2(t)x2,

η2(x̄) = xp2–1
2 φ1(x1/x2),

ζ2(x̄) = xp2
1 .

In this case, in view of (24), one can verify that the assumptions of Theorem 2 are satisfied.
Therefore, the system

⎧
⎨

⎩

x1(t) = h1(t)x2(t) + x2(t)Jα1
1 M1(t) (x1(t))p1 φ1(x2(t)/x1(t))

(x2(t))p1 , t ∈ [1, e],α1 > 0,

x2(t) = h2(t)x1(t) + x1(t)Jα2
1 M2(t) (x2(t))p2 φ1(x1(t)/x2(t))

(x1(t))p2 , t ∈ [1, e],α2 > 0,
(26)

has at least one solution x̄ ∈ C such that (μ,μ) ≤ x̄(t) ≤ (γ ,γ ), t ∈ [1, e]. Since x̄ = (0, 0), it
can be proved that system (26) is equivalent to the following one:

⎧
⎨

⎩

x1(t)
x2(t) = h1(t) + J

α1
1 M1(t)( x1(t)

x2(t) )p1φ1(x2(t)/x1(t)),
x2(t)
x1(t) = h2(t) + J

α2
1 M2(t)( x2(t)

x1(t) )p2φ2(x1(t)/x2(t)).

Now, put y1 = x1/x2 and y2 = x2/x1, it follows that system (25) has at least one solution
ȳ = (y1, y2) ∈ C such that ( μ

γ
, μ

γ
) ≤ ȳ(t) ≤ ( γ

μ
, γ

μ
), t ∈ [1, e] and that y1(·)y2(·) = 1. �

Finally, we present an example to show the applicability of the preceding result.
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Example 4.2 Consider the following singular system of fractional order integral equations:

y1(t) =
1

10
+ J

0.5
1

1 + y2
2(t)

15y2
2(t)

, t ∈ [1, e],

y2(t) =
1

10
+ J

0.5
1

log(1 + y1(t))
5y1(t)

, t ∈ [1, e].
(27)

Observe that the above system is a special case of system (25). Namely, if we put Mi(t) = 1
(with Mi(t) ∈ Lψ3 [1, e] and ψ(u) = |u|3

3 ), Ψ̃ (1) < 2, ‖Mi‖ψ3 = 3
√

e–1
3 and

φ1(z) =
1 + z2

15
, φ2(z) =

z
5

log(1 + z), pi = 2, z ∈R
+.

It is already seen that (cf. Example 4.1) the functions involved in (27) satisfy the assump-
tions of Theorem 3 with α1 = α2 = 0.5.

Evidently, if we choose μ1 = μ2 = μ ≤ 1
10 and γ1 = γ2 = γ = 11

10μ, one can get

max
i

‖hi‖ +
2Ψ̃ (1) maxi ‖Mi‖ψ ( γ

μ
)maxi{Pi}

Γ (α)
max

{

φ1

(
γ2

γ1

)

,φ2

(
γ1

γ2

)}

≤
(

1
10

+
(

11
10

)2 4√
π

3

√
e – 1

3
max

{
φ1(1),φ2(1)

}
)

< 1/2.

Thus, inequality (24) holds true. Consequently, in view of Theorem 3, system (27) has at
least one solution ȳ ∈ C such that ( 10

11 , 10
11 ) ≤ ȳ(t) ≤ ( 11

10 , 11
10 ), t ∈ [1, e] and that y1(·)y2(·) = 1.
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12. Cichoń, M., Metwali, M.: On quadratic integral equations in Orlicz spaces. J. Math. Anal. Appl. 387, 419–432 (2012)
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16. Cichoń, M., Salem, H.A.H.: On the solutions of Caputo–Hadamard Pettis-type fractional differential equations. Rev. R.

Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113, 3031–3053 (2019)
17. Darwish, M.: On Erdélyi–Kober fractional Urysohn–Volterra quadratic integral equations. Appl. Math. Comput. 273,

562–569 (2016)
18. Darwish, M., Sadarangani, K.: On a quadratic integral equation with supremum involving Erdélyi–Kober fractional

order. Math. Nachr. 288, 566–576 (2015)
19. Dhage, B.C., Dhage, S.B., Graef, J.R.: Local attractivity and stability analysis of a nonlinear quadratic fractional integral

equation. Appl. Anal. 95, 1989–2003 (2016)
20. Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics. Springer, Berlin (2004)
21. Ding, H.-S., Liu, M.-M., Nieto, J.J.: Multiple positive solutions for quadratic integral equations of fractional order. J.

Funct. Spaces 2017, Article ID 4571067 (2017)
22. Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Notes and Reports in Mathematics in Science

and Engineering, vol. 5. Academic Press, San Diego (2014)
23. Hadamard, J.: Essai sur l’étude des fonctions donnés par leur développment de Taylor. J. Math. Pures Appl. 8, 101–186

(1892)
24. Huang, H., Liu, W.: Positive solutions for a class of nonlinear Hadamard fractional differential equations with a

parameter. Adv. Differ. Equ. 2018(1), 96 (2018)
25. Kilbas, A.A.: Hadamard-type fractional calculus. J. Korean Math. Soc. 38, 1191–1204 (2001)
26. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier,

Amsterdam (2006)
27. Kilbas, A.A., Titioura, A.A.: Nonlinear differential equations with Marchaud–Hadamard type fractional derivative in the

weighted space of summable functions. Math. Model. Anal. 12, 343–356 (2007)
28. Metwali, M.: On a class of quadratic Urysohn–Hammerstein integral equations of mixed type and initial value

problem of fractional order. Mediterr. J. Math. 13, 2691–2707 (2016)
29. Mishra, L.N., Sen, M.: On the concept of existence and local attractivity of solutions for some quadratic Volterra

integral equation of fractional order. Appl. Math. Comput. 285, 174–183 (2016)
30. Salem, H.A.H.: On the existence of continuous solutions for a singular system of non-linear fractional integral

equations. Appl. Math. Comput. 198, 443–452 (2008)
31. Salem, H.A.H.: On the quadratic integral equations and their applications. Comput. Math. Appl. 62, 2931–2943 (2011)
32. Salem, H.A.H.: Hadamard-type fractional calculus in Banach spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat.

113, 987–1006 (2018)
33. Salem, H.A.H.: On functions without pseudo derivatives having fractional pseudo derivatives. Quaest. Math. 42,

1237–1252 (2019)
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