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Abstract
The aim of this work is to investigate the Wick-type stochastic nonlinear evolution
equations with conformable derivatives. The general Kudryashov method is improved
by a new auxiliary equation. So, a new technique, which we call “the general
improved Kudryashov method (GIKM)”, is introduced to produce exact solutions for
the nonlinear evolution equations with conformable derivatives. By means of GIKM,
white noise theory, Hermite transform, and computerized symbolic computation, a
novel technique is presented to solve the Wick-type stochastic nonlinear evolution
equations with conformable derivatives. This technique is applied to construct exact
traveling wave solutions for Wick-type stochastic combined KdV–mKdV equation with
conformable derivatives. Moreover, numerical simulations with 3D profiles are shown
for the obtained results.
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1 Introduction
Nonlinear evolution equations have a significant job in applied sciences, especially in
physics. Obtaining traveling wave solutions of these equations has been of major benefit
primarily within the context of mathematical physics. Such examinations have prompted
many intriguing sorts of solutions in the past, for example, the soliton solutions, the pe-
riodic solutions, the cnoidal solutions, the peakon solutions. In any case, searching these
solutions has not been simple at all as is showed in the literature. So, many powerful man-
ners have been introduced, such as the homogeneous balance manner [1], the first integral
manner [2], the tanh-coth manner [3], the modified tanh-coth manner [4], the inverse
scattering manner [5], Hirota’s bilinear manner [6], the RB sub-Ode manner [7, 8], the
sine-Gordon manner [9], the (G′/G)-expansion manner [10], the (G′/G, 1/G)-expansion
manner [11], the Exp-function manner [12], F-expansion manner [13, 14], and so on.
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There are abundant and full treatises related to the fractional and conformable deriva-
tives. Conformable fractional formulation of the fractional calculus was introduced in
[15]. The conformable calculus of time-scale was evidenced in [16]. In [17], the fractional
traditional mechanics was discussed by some conformable-type derivatives. Lately, the
conformable-type differential equations have become a significant object in physics and
mathematics. So, abundant experts focus their attention on the analytical and the approx-
imate integrals to these equations [18, 19]. Existence and uniqueness results for some
conformable-type partial differential equations (PDEs) have been proved by Gokdogan et
al. [20] and by Sania et al. [21]. In [22], a conformable sub-equation manner was suggested
to create exact solutions to the space and time fractional nonlinear resonant Schrödinger
equation. Also, fractional modulation to the Nipah virus was given by Markovian process
and some local time differential maps [23]. Overall, many studies have been done about
the solutions and properties of fractional and conformable-type PDEs [24–29].

Many researchers have been interested in the subject of random traveling wave, it is a
very important topic in the field of stochastic partial differential equations (SPDEs). The
stochastic KdV equation was proposed by Wadati [30] in 1983. He studied the diffusion
of soliton of the equation due to KdV under the Gaussian noise effect. The stochastic
traveling wave solutions for the local fractal KdV equation have been obtained by the Exp-
function technique in [31] and [32], respectively. Moreover, on account of [14, 33–39],
many kinds of Wick-type stochastic and fractional evolution equations have been studied
by utilizing diverse expansion techniques and white noise analysis.

Consider a nonlinear PDE (NPDE)

F (χ ,α, uα , uχ , uχχ , uχχχ , . . .) = 0, (1)

where (χ ,α) ∈R×R+ is the freelance variable and u(χ ,α) is its follower variable. Applying
the one-variable transformation

u(χ ,α) = u(κ), κ = χ – εα, (2)

we change (1) to an ordinary and nonlinear differential equation (NODE)

G
(
κ, u, u′, u′′, u′′′, . . .

)
= 0, (3)

where ′ := d
dκ . In [40], Kudryashov proposed his manner to find analytical solutions to

Eq. (1). He researched for the exact solutions taking into account the expression u(κ) =
∑x

i=0 μiX
i, where X = 1

1+eκ , which is the integral to the equation dX
dκ = X2 – X. A mod-

ified Kudryashov manner was presented by exchanging the ordinary exponential func-
tion eκ by means of the general sort of the exponential function aκ in [41–44]. In these
contributions, experts got the exact solutions to the NPDE (1) by using the expansion
u(κ) =

∑x
i=0 μiX

i, where X = 1
1±aκ , which is the integral to the equation dX

dκ = ln a(X2 –X).
Thereafter, some authors [45–48] applied a general sort of the Kudryashov manner to
rummage exact solutions of the NPDE (1). They have selected a rational expansion u(κ) =
∑x

i=0 μiX
i/

∑y
j=0 νjX

j, where X = 1
1+Ceκ , which is the integral to the equation dX

dκ = X2 – X.
Lately, Abdus Salam and Habiba [49] improved the general Kudryashov manner given in
[45] by electing the auxiliary equation dX

dκ = σX3 –X, 0 �= σ ∈R. This helpful equation has
the comprehensive solution X = ±1√

σ+Ce2κ .
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In this work, the general Kudryashov method [45] is improved by the novel auxiliary
equation

X
′(κ) = σXn(κ) – X(κ), 1 < n ∈N, 0 �= σ ∈R, (4)

which has numerous general solutions depending on the natural number n (see Eq. (25)).
Thus, a novel technique to build exact solutions for nonlinear evolution equations is ob-
tained. This technique is called the GIKM. The major feature of the GIKM over the others
lies in the way that it utilizes an especially clear and powerful algorithm to obtain exact
solutions for large families of nonlinear evolution equations. Also, a large set of exact so-
lutions can be determined effectively on picking the parameters that showed up. Besides,
the proposed GIKM generalizes some previous techniques. It depends on improving the
general Kudryashov technique by the general auxiliary equation (4), which has various
general solutions. Moreover, we apply the GIKM and white noise topics to construct exact
solutions for the Wick-type stochastic combined KdV–mKdV equation with conformable
derivatives. Also, numerical simulations with 3D profiles are provided to the obtained ex-
act solutions.

The remnant of this work is structured as follows: Sect. 2 contains the needed topics
about the conformable calculus and the Gaussian analysis of white noise. In Sect. 3, the
GIKM is demonstrated. In Sect. 4, we apply the GIKM, jointly with the Gaussian analysis
of white noise, to investigate the Wick-type stochastic combined KdV–mKdV equation
with conformable derivatives. Section 5 gives discussions and numerical simulations for
the obtained results. Section 6 presents a conclusion.

2 Preliminaries
2.1 The conformable derivative and integral
In this division, we recollect the paramount aspects of the conformable-type derivative
and its integral.

Definition 2.1 ([50, 51]) Assume that ξ is a function from (0,∞) into R. For � ∈ (0, 1],
we define the conformable-type derivative of ξ of order � as follows:

D�
α ξ (α) = lim

h→0

ξ (α + hα1–� ) – ξ (α)
h

, α > 0. (5)

Definition 2.2 ([50, 51]) Assume that ξ is a � -conformable differentiable function for
α ∈ (0, a), a > 0 and limα→0+ D�

α ξ (α) exists. Then D�
α ξ (0) = limα→0+ D�

α ξ (α) and the
conformable-type integral of the function ξ beginning from α0 ∈ [0,α) is given by

I� ,α0ξ (α) =
∫ α

α0

ξ (η)
η1–�

dη, (6)

where the integral is the classical improper Riemann integral and � ∈ (0, 1].

The coming theorems give some precious properties for the conformable-type deriva-
tive.
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Theorem 2.1 ([50, 51]) Assume that � ∈ (0, 1], ξ and ζ are � -order conformable differ-
entiable functions at α ∈ (0,∞), and ξ is differentiable (in the usual sense) with respect
to α. Then:

(i) D�
α (aξ + bζ ) = aD�

α ξ + bD�
α ζ for all a, b ∈R;

(ii) D�
α (αa) = aαa–� for all a ∈R;

(iii) D�
α (ξζ ) = ξD�

α ζ + ζD�
α ξ ;

(iv) D�
α ( ξ

ζ
) = ζD�

α ξ–ξD�
α ζ

ζ2 ;
(v) D�

α (ξ (α)) = α1–�ξ ′(α),
where ′ denotes the usual derivative with regard to α.

Theorem 2.2 ([44]) Assume that the function ξ is a differentiable and � -order con-
formable differentiable function on (0,∞). Also, assume that ζ is a differentiable function
defined on the range of ξ . Then

D�
α (ξ ◦ ζ )(α) = α1–�

[
ζ (α)

]�–1
ζ ′(α)

(
D�

α ξ (α)
)
α=ζ

. (7)

2.2 Basilar topics of white noise discipline
The Gaussian white noise discipline begins with the rigging D(RN ) ⊂ L2(RN ) ⊂ D∗(RN )
where D(RN ) is the Schwartz space of quickly decreasing, unlimited differentiable
functions on R

N and D∗(RN ) is the tempered space of distributions. Depending on
the Bochner–Minlos theorem [52], we have a lonesome white noise measure μw on
(D∗(RN ),β(D∗(RN ))). Presume that ζn(x) = π–1/4((n – 1)!)–1/2e–x2/2 hn–1(

√
2x), n ∈≥ 1 are

the Hermite functions, where hn(x) denotes the Hermite polynomials. It is well known
that the gathering (ζn)n∈N fabricates an orthonormal basis for L2(R). Let m = (m1, . . . , mN )
be N-dimensional multi-indices with m1, . . . , mN ∈ N, then the tensor multiplications
ζm := ζ(m1,...,mN ) = χm1 ⊗ · · · ⊗ χmN , m ∈ N

N fabricate an orthonormal basis to L2(RN ).
Introduce an ordering in N

N by

i < j ⇒
N∑

k=1

m(i)
k ≤

N∑

k=1

m(j)
k , where m(i) =

(
m(i)

k
)N

k=1, m(j) =
(
m(j)

k
)N

k=1 ∈N
N . (8)

Using the above ordering, we define 
i := ζm(i) = ζm(i)
1

⊗ · · · ⊗ ζm(i)
N

, i ∈ N. Let J = (NN

0 )c be
the aggregate of sequences m = (mi)i∈N with compact support and mi ≥ 1. For m ∈ J, we
set

Hm(ϑ) =
∞∏

i=1

hmi

(〈ϑ ,
i〉
)
, ϑ ∈D∗(

R
N)

. (9)

Let n ∈N, the Kondrative space of test stochastic functions (D)n
1 is defined by

(D)n
1 =

{

f =
∑

m
cmHm ∈

n⊕

k=1

L2(μw) : cm ∈R
n and

‖f ‖2
1,k :=

∑

m
c2

m(m!)2(2N)km < ∞ ∀k ∈N

}

, (10)
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and the Kondrative space of distribution stochastic functions (D)n
–1 is defined by

(D)n
–1 =

{
F =

∑

m
bmHm : bm ∈R

n and

‖F‖2
–1,k :=

∑

m
b2

m(2N)–qm < ∞ for some q ∈N

}
. (11)

The Wick product of two stochastic distributions F =
∑

m amHm, G =
∑

m̄ bm̄Hm̄ ∈ (D)n
–1

with am, bm̄ ∈ R
n is known as

F � G =
∑

m,m̄

(am, bm̄)Hm+m̄. (12)

Let F =
∑

m amHm ∈ (D)n
–1 with am ∈R

n. The Hermite transform of F is defined by

HF(z) = F̃(z) =
∑

m
amzm ∈C

n (when convergent), (13)

where z = (z1, z2, . . .) ∈ C
N and zm =

∏∞
i=1 zmi

i , with m = (m1, m2, . . .) ∈ J and z0
i = 1.

For F , G ∈ (D)n
–1, via the shape of Hermite transformation, we have

F̃ � G(z) = F̃(z) • G̃(z) (14)

for all z such that F̃(z) and G̃(z) exist. The relation “•” indicates the bilinear multiplica-
tion in C

n, which is known as (z1
1, . . . , z1

n) • (z2
1, . . . , z2

n) =
∑n

i=1 z1
i z2

i , where zk
i ∈C. Thus, the

Hermite transform changes the Wick multiplication into the classical multiplication and
convergence in (D)n

–1 into bounded and pointwise convergence in a certain neighborhood
of the origin in C

n. For more specifics about Kondrative spaces, Hermite transformation,
and Wick multiplication, we refer to [52].

In the following, the distribution stochastic process (or (D)n
–1-process) is a measurable

map u from R
N into (D)n

–1. Furthermore, if the (D)n
–1-valued function u is continuous, dif-

ferentiable, Ck , etc., then the (D)n
–1-process u has the same features, respectively. Now, for

π < ∞, ρ > 0, deem the infinite dimensional neighborhoods Oπ (ρ) = {(z1, z2, . . .) ∈ C
N :

∑
m�=0 |zm|2(2N)πm < ρ2} of the origin in C

N [52]. To study the stochastic conformable
PDEs, we require the following facts.

Lemma 2.1 ([52, 53]) Suppose that X(α,ϑ) and Y (α,ϑ) are (D)–1-processes such that
(i) D�

α X̃(α, z) = Ỹ (α, z) ∀(α, z) ∈ (s, t) ×Oπ (ρ) and that
(ii) Ỹ (α, z) is a bounded function for (α, z) ∈ (s, t) ×Oπ (ρ) and continuous for α ∈ (s, t)

∀z ∈Oπ (ρ).
Then X(α,ϑ) has a � -order conformable derivative for each α ∈ (s, t) and

D�
α X(α,ϑ) = Y (α,ϑ) in (D)–1. (15)

Lemma 2.2 ([52, 53]) Let X(α,ϑ) be a (D)–1-process. Suppose that there exist π < ∞, ρ > 0
such that

sup
{

X̃(α, z) : α ∈ [s, t], z ∈Oπ (ρ)
}

< ∞ (16)
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and X̃(α, z) is a continuous function for α ∈ [s, t] ∀z ∈ Oπ (ρ). Then the � -order con-
formable integral operator of X(α) exists and

˜I� ,sX(α)(z) = I� ,sX̃(α, z) for � , s ≥ 0, α ∈ [s, t], z ∈Oπ (ρ). (17)

Theorem 2.3 ([52]) Suppose that u(χ ,α, z) is a solution (in the usual strong and pointwise
sense) of the equation

Ω̃
(
u,χ ,α, z, D�

α , D�
χ1 , . . . , D�

χN

)
= 0 (18)

for (χ ,α) in some bounded open set D ⊂R
N ×R+, ∀z ∈Oπ (ρ) and for π < ∞ ρ > 0. More-

over, suppose that u(χ ,α, z) and all its conformable derivatives, which are implicated in
Eq. (18), are bounded for (χ ,α, z) ∈ D × Oπ (ρ), continuous for (χ ,α) ∈ D ∀z ∈ Oπ (ρ),
and analytic ∀z ∈ Oπ (ρ) for all (χ ,α) ∈ D. Then ∃ U(χ ,α) ∈ (D)–1 such that u(χ ,α, z) =
Ũ(χ ,α)(z) for all (χ ,α, z) ∈ D×Oπ (ρ) and U(χ ,α) solves (in the strong sense) the equation

Ω�(U ,χ ,α,ϑ , D�
α , D�

χ1 , . . . , D�
χN

)
= 0 in (D)–1. (19)

3 Demonstration of the GIKM
Consider a conformable NPDE in the form

P
(
u,χ ,α, D�

α u, D�
χ u, D2�

χ u, D3�
χ u, . . .

)
= 0, (20)

where u = u(χ ,α) is the unknown function and P is a polynomial function in u and its
conformable derivatives. To obtain wave solution for Eq. (20), we use the wave transfor-
mation

u = u(κ), κ(χ ,α) =
χ�

�
+ ω

∫ α

a

θ (η)
η1–�

dη, (21)

where a ≥ 0, ω are constants and θ is a nonzero function to be determined later. Hence,
Eq. (21) converts Eq. (20) to a NODE

Q
(

u,κ,
du
dκ

,
d2u
dκ2 ,

d3u
dκ3 , . . .

)
= 0. (22)

For easiness, we integrate Eq. (22) as long as all terms involve derivatives. Then, we equal-
ize the integration constants to zero. Thereafter, the solution of Eq. (22) can be expanding
as the form

u(κ) =
∑x

i=0 μi(α)Xi(κ)
∑y

j=0 νj(α)Xj(κ)
, (23)

where μi, νj (i = 0, 1, . . . , x, j = 0, 1, . . . , y) are functions to be determined and X solves the
common auxiliary equation

X
′(κ) = σXn(κ) – X(κ), 1 < n ∈N, 0 �= σ ∈R. (24)
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Solving Eq. (24) gives a general family of solutions

X(κ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
n–1√σ+C exp[(n–1)κ]

, n = 2, 4, 6, 8, . . . ,

±1
n–1√σ+C exp[(n–1)κ]

, n = 3, 7, 11, 15, . . . ,

±1
n–1√σ+C exp[(n–1)κ]

, ±i
n–1√σ+C exp[(n–1)κ]

, n = 5, 9, 13, 17, . . . .

(25)

The integer numbers x and y can be appointed by balancing the highest order linear
and nonlinear terms in Eq. (22). By inserting Eqs. (23) and (24) into Eq. (22), we get an
algebraic-form equation in X and its powers. Placing the coefficients of all terms that in-
clude the similar power for X to be zero, gives a system of algebraic-form equations in μi,
νj, and θ . By employing the symbolic system Mathematica, we can determine μi, νj, and
θ . Lastly, by utilizing these values and Eq. (25), we can construct some exact and traveling
wave solutions to Eq. (20).

4 Application to Wick-type stochastic combined KdV–mKdV equation with
conformable derivatives

In this section, GIKM for n = 5, white noise theory, Hermite transform, and computer-
ized symbolic computation are applied to find exact traveling wave solutions of Wick-
type stochastic combined KdV–mKdV with conformable derivatives. The KdV and mKdV
equations are solitary equations, which have been widely researched. For these equations,
the nonlinear terms usually arise in abundant physical issues, like flow mechanics, quan-
tum fields, and plasma physics. This section is devoted to constructing exact traveling
wave solutions of Wick-type stochastic combined KdV–mKdV equation with conformable
derivatives

D�
α U + �(α) � U � D�

χ U + Λ(α) � U�2 � D�
χ U + D3�

χ U = 0, (26)

where (χ ,α) ∈ R × R+ and 0 < � ≤ 1, while � and Λ are real and integrable nonzero
functions with values in (D)–1. Equation (26) is the perturbation of the variable coefficients
combined KdV–mKdV equation with conformable derivatives

D�
α u + δ(α)uD�

χ u + λ(α)u2D�
χ u + D3�

χ u = 0, (27)

where δ, λ are nonzero integrable functions on R+. Moreover, if Eq. (27) is considered in
some random ambience, we have a random combined KdV–mKdV equation. To construct
exact solutions of the random combined KdV–mKdV equation, we only examine it in a
white noise ambience, thus, we will investigate the Wick-type stochastic combined KdV–
mKdV equation (26).

By using Hermite transform and Eq. (26), we get a conformable deterministic equation

D�
α Ũ(χ ,α, z) + �̃(α, z)Ũ(χ ,α, z)D�

χ Ũ(χ ,α, z)

+ Λ̃(α, z)Ũ2D�
χ Ũ(χ ,α, z) + D3�

χ Ũ(χ ,α, z) = 0, (28)

where z = (z1, z2, . . .) ∈ (CN)c. To construct traveling wave solutions to Eq. (28), we employ
the transformations �̃(α, z) = δ(α, z), Λ̃(α, z) = λ(α, z), Ũ(χ ,α, z) = u(χ ,α, z) = u(κ(χ ,α, z))
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with

κ(χ ,α, z) =
χ�

�
+ ω

∫ α

a

θ (η, z)
η1–�

dη, (29)

where ω is a free constant and θ is a nonzero function to be specified. Hence, Eq. (28) can
be transformed to the following NODE

ωθ
du
dκ

+ δu
du
dκ

+ λu2 du
dκ

+
d3u
dκ3 = 0. (30)

Integrating the NODE (30) and placing the integration constants to be zero give

ωθu +
δ

2
u2 +

λ

3
u3 +

d2u
dκ2 = 0. (31)

Considering the homogeneous balance for d2u
dκ2 and u3, we get x – y – 4 = 0. Let y = 1, then

x = 5. So, we can set the wave solution of Eq. (31) as the form

u
(
κ(χ ,α, z)

)
=

∑5
i=0 μi(α, z)Xi(κ(χ ,α, z))

∑1
j=0 νj(α, z)Xj(κ(χ ,α, z))

. (32)

Substituting Eqs. (32) and (24) for n = 5 into Eq. (31) gives an algebraic-form equation in
X and its powers. Equating the coefficients of the terms that contain the same power for
X to zero gives a system of algebraic-form equations in μi, νj (i = 0, . . . , 5, j = 0, 1) and θ

(see the Appendix). By treating this system via Mathematica, we obtain the following sets
of values.

Case I.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μ0 = μ0, μ1 = 36μ0ν2
0ν1–180μ2

0ν0ν1δ+12μ2
0ν1(3ν0δ+2μ0λ)

6(μ2
0λ+ν2

0 +μ0ν0δ)–μ0(3ν0δ+2μ0λ) ,

μ2 = ± 155ν3
0

102ν2
1
√

6λ
, μ3 = ± 10ν2

0
ν1

√
96λ

, μ4 = 0, μ5 = ±
√

96ν1σ√
λ

,

ν0 = ν0, ν1 = ν1, θ = μ0(3ν0δ+2μ0λ)
6ων2

0
,

(33)

where μ0, ν0, and ν1 are free integrable functions on R+. Substituting the values (33) into
(32) and using (25) produce traveling wave solutions to Eq. (28) as follows:

u1(χ ,α, z) =
4
√

σ + C exp[4κ(χ ,α, z)]
ν1(α, z) ± ν0(α, z) 4

√
σ + C exp[4κ(χ ,α, z)]

[
μ0(α, z) + A(α, z)

102ν2
1 (α, z)

√
6λ(α, z)

± 155ν3
0 (α, z)

(σ + C exp[4κ(χ ,α, z)]) 1
2

+
255ν3

1 (α, z)
(σ + C exp[4κ(χ ,α, z)]) 3

4

+
2448σν3

1 (α, z)

(σ + C exp[4κ(χ ,α, z)]) 5
4

]
, (34)

u2(χ ,α, z) =
4
√

σ + C exp[4κ(χ ,α, z)]
ν1(α, z) ± iν0(α, z) 4

√
σ + C exp[4κ(χ ,α, z)]

[
μ0(α, z) + A(α, z)

102ν2
1 (α, z)

√
6λ(α, z)
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± i
155ν3

0 (α, z)
(σ + C exp[4κ(χ ,α, z)]) 1

2
± i

255ν3
1 (α, z)

(σ + C exp[4κ(χ ,α, z)]) 3
4

± i
2448σν3

1 (α, z)

(σ + C exp[4κ(χ ,α, z)]) 5
4

]
, (35)

where

A(α, z) =

(
36μ0(α, z)ν2

0 (α, z)ν1(α, z) – 180μ2
0(α, z)ν0(α, z)ν1(α, z)δ(α, z)

+ 12μ2
0(α, z)ν1(α, z)(3ν0(α, z)δ(α, z) + 2μ0(α, z)λ(α, z))

)

(
6(μ2

0(α, z)λ(α, z) + ν2
0 (α, z) + μ0(α, z)ν0(α, z)δ(α, z))

– μ0(α, z)(3ν0(α, z)δ(α, z) + 2μ0(α, z)λ(α, z))

) (36)

and

κ(χ ,α, z) =
χ�

�
+

∫ α

a

μ0(η, z)(3ν0(η, z)δ(η, z) + 2μ0(η, z)λ(η, z))
6η1–�ν2

0 (η, z)
dη, (37)

provided that λ > 0 and ν0 �= 0.

Case II.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ0 = ν0
√

9δ2–384λ–3ν0δ

8λ
, μ1 = ν1

√
3δ2–128λ–3ν1δ

8λ
,

μ2 = μ4(813ν2
0σ 2–8μ2

4λ)
120ν2

1σ 2 , μ3 = –306μ4ν0
72ν1

, μ4 = μ4, μ5 = 0,

ν0 = ν0, ν1 = ν1, θ = δ(3δ–
√

9δ2–384λ)–64λ

32ωλ
,

(38)

where μ4, ν0, and ν1 are free integrable functions on R+. Substituting the values (38) into
(32) and using (25) produce traveling wave solutions to Eq. (28) as follows:

u3(χ ,α, z) =
4
√

σ + C exp[4κ(χ ,α, z)]
ν1(α, z) ± ν0(α, z) 4

√
σ + C exp[4κ(χ ,α, z)]

×
[

(ν0(α, z)
√

9δ2(α, z) – 384λ(α, z) – 3ν0(α, z)δ(α, z))
8λ(α, z)

± ν1(α, z)
√

3δ2(α, z) – 128λ(α, z) – 3ν1(α, z)δ(α, z)
8λ(α, z)(σ + C exp[4κ(χ ,α, z)]) 1

4

+
μ4(α, z)(813ν2

0 (α, z)σ 2 – 8μ2
4(α, z)λ(α, z))

120ν2
1 (α, z)σ 2(σ + C exp[4κ(χ ,α, z)]) 1

2

± 306μ4(α, z)ν0(α, z)
72ν1(α, z)(σ + C exp[4κ(χ ,α, z)]) 3

4

+
μ4(α, z)

(σ + C exp[4κ(χ ,α, z)])

]
, (39)

u4(χ ,α, z) =
4
√

σ + C exp[4κ(χ ,α, z)]
ν1(α, z) ± iν0(α, z) 4

√
σ + C exp[4κ(χ ,α, z)]

×
[

(ν0(α, z)
√

9δ2(α, z) – 384λ(α, z) – 3ν0(α, z)δ(α, z))
8λ(α, z)
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± i
ν1(α, z)

√
3δ2(α, z) – 128λ(α, z) – 3ν1(α, z)δ(α, z)

8λ(α, z)(σ + C exp[4κ(χ ,α, z)]) 1
4

+
μ4(α, z)(813ν2

0 (α, z)σ 2 – 8μ2
4(α, z)λ(α, z))

120ν2
1 (α, z)σ 2(σ + C exp[4κ(χ ,α, z)]) 1

2

± i
306μ4(α, z)ν0(α, z)

72ν1(α, z)(σ + C exp[4κ(χ ,α, z)]) 3
4

+
μ4(α, z)

(σ + C exp[4κ(χ ,α, z)])

]
, (40)

where

κ(χ ,α, z) =
χ�

�
+

∫ α

a

δ(η, z)(3δ(η, z) –
√

9δ2(η, z) – 384λ(η, z)) – 64λ(η, z)
32η1–�λ(η, z)

dη, (41)

provided that λ �= 0, σ �= 0, ν1 �= 0, and δ2 ≥ 128λ
3 .

Case III.
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ0 = μ0, μ1 = ν1(–3δ+
√

9δ2–528λ)
8λ

, μ2 = μ3 = μ4 = μ5 = 0,

ν0 = – μ0
66 (3δ +

√
9δ2 – 528λ), ν1 = ν1,

θ = –3δ2+δ
√

9δ2–528λ–88λ
32ωλ

,

(42)

where μ0 and ν1 are free integrable functions on R+. Substituting the values (42) into (32)
and using (25) produces traveling wave solutions to Eq. (28) as follows:

u5(χ ,α, z) =

(
528μ0(α, z)λ(α, z)(σ + C exp[4κ(χ ,α, z)]) 1

4

± 66ν1(α, z)(–3δ(α, z) +
√

9δ2(α, z) – 528λ(α, z))

)

(
–8μ0(α, z)λ(α, z)(3δ(α, z) +

√
9δ2(α, z) – 528λ(α, z))

× (σ + C exp[4κ(χ ,α, z)]) 1
4 ± 528ν1(α, z)λ(α, z)

) , (43)

u6(χ ,α, z) =

(
528μ0(α, z)λ(α, z)(σ + C exp[4κ(χ ,α, z)]) 1

4

± 66iν1(α, z)(–3δ(α, z) +
√

9δ2(α, z) – 528λ(α, z))

)

(
–8μ0(α, z)λ(α, z)(3δ(α, z) +

√
9δ2(α, z) – 528λ(α, z))

× (σ + C exp[4κ(χ ,α, z)]) 1
4 ± 528iν1(α, z)λ(α, z)

) , (44)

where

κ(χ ,α, z) =
χ�

�
+

∫ α

a

–3δ2(η, z) + δ(η, z)
√

9δ2(η, z) – 528λ(η, z) – 88λ(η, z)
32η1–�λ(η, z)

dη, (45)

provided that λ �= 0 and δ2 ≥ 528λ
9 .

Obviously, we can find different traveling wave solutions of Eq. (28) by applying different
cases to the solutions of the algebraic system in the Appendix.

The features of exponential functions lead to the existence of an open bounded set D ⊂
R×R+, π < ∞, ρ > 0 provided that the solution u(χ ,α, z) of Eq. (28) and all its conformable
derivatives that are included in Eq. (28) are uniformly bounded with respect to (χ ,α, z) ∈
D ×Oπ (ρ), continuous for (χ ,α) ∈ D ∀z ∈Oπ (ρ), and analytic for z ∈Oπ (ρ) ∀(χ ,α) ∈ D.
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According to Theorem 2.3, ∃U(χ ,α) ∈ (D)–1 such that u(χ ,α, z) = Ũ(χ ,α)(z) ∀(χ ,α, z) ∈
D × Oπ (ρ) and U(χ ,α) solves Eq. (26) in (D)–1. Hence, by taking the inverse Hermite
transform to Eqs. (34)–(37), (39)–(41), and (43)–(45), we obtain the stochastic solutions
of Eq. (26) as follows:

U1(χ ,α) =
4
√

σ + C exp�[4κ1(χ ,α)]
ν1(α) ± ν0(α) � 4

√
σ + C exp�[4κ1(χ ,α)]

�
[

μ0(α) + A(α)
102ν�2

1 (α) � √
6Λ(α)

± 155ν�3
0 (α)

(σ + C exp�[4κ1(χ ,α)])� 1
2

+
255ν�3

1 (α)
(σ + C exp�[4κ1(χ ,α)])� 3

4

+
2448σν�3

1 (α)

(σ + C exp�[4κ1(χ ,α)])� 5
4

]
, (46)

U2(χ ,α) =
4
√

σ + C exp�[4κ1(χ ,α)]
ν1(α) ± iν0(α) � 4

√
σ + C exp�[4κ1(χ ,α)]

�
[

μ0(α) + A(α)
102ν�2

1 (α) � √
6Λ(α)

± i
155ν�3

0 (α)
(σ + C exp�[4κ1(χ ,α)])� 1

2
+ i

255ν�3
1 (α)

(σ + C exp�[4κ1(χ ,α)])� 3
4

+ i
2448σν�3

1 (α)

(σ + C exp�[4κ1(χ ,α)])� 5
4

]
, (47)

where

A(α) =

(
36μ0(α) � ν�2

0 (α) � ν1(α) – 180μ�2
0 (α) � ν0(α) � ν1(α) � �(α)

+ 12μ�2
0 (α) � ν1(α) � (3ν0(α) � �(α) + 2μ0(α) � Λ(α))

)

(
6(μ�2

0 (α) � Λ(α) + ν�2
0 (α) + μ0(α) � ν0(α) � �(α))

– μ0(α) � (3ν0(α) � �(α) + 2μ0(α) � Λ(α))

) (48)

and

κ1(χ ,α) =
χ�

�
+

∫ α

a

μ0(η) � (3ν0(η) � �(η) + 2μ0(η) � Λ(η))
6η1–� ν�2

0 (η)
dη (49)

such that λ > 0 and ν0 �= 0.

U3(χ ,α) =
4
√

σ + C exp�[4κ2(χ ,α)]
ν1(α) ± ν0(α) � 4

√
σ + C exp�[4κ2(χ ,α)]

�
[

(ν0(α) � √
9��2(α) – 384Λ(α) – 3ν0(α) � �(α))

8Λ(α)

± ν1(α) � √
3��2(α) – 128Λ(α) – 3ν1(α) � �(α)

8Λ(α) � (σ + C exp�[4κ2(χ ,α)])� 1
4

+
μ4(α) � (813σ 2ν�2

0 (α) – 8μ�2
4 (α) � Λ(α))

120σ 2ν�2
1 (α) � (σ + C exp�[4κ2(χ ,α)])� 1

2

± 306μ4(α) � ν0(α)
72ν1(α) � (σ + C exp�[4κ2(χ ,α)])� 3

4

+
μ4(α)

(σ + C exp�[4κ2(χ ,α)])

]
, (50)
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U4(χ ,α) =
4
√

σ + C exp�[4κ2(χ ,α)]
ν1(α) ± iν0(α) � 4

√
σ + C exp�[4κ2(χ ,α)]

�
[

(ν0(α) � √
9��2(α) – 384Λ(α) – 3ν0(α) � �(α))

8Λ(α)

± i
ν1(α) � √

3��2(α) – 128Λ(α) – 3ν1(α) � �(α)
8Λ(α) � (σ + C exp�[4κ2(χ ,α)])� 1

4

+
μ4(α) � (813σ 2ν�2

0 (α) – 8μ�2
4 (α) � Λ(α))

120σ 2ν�2
1 (α) � (σ + C exp�[4κ2(χ ,α)])� 1

2

± i
306μ4(α) � ν0(α)

72ν1(α) � (σ + C exp�[4κ2(χ ,α)])� 3
4

+
μ4(α)

(σ + C exp�[4κ2(χ ,α)])

]
, (51)

where

κ2(χ ,α)

=
χ�

�
+

∫ α

a

�(η, z) � (3�(η, z) –
√

9��2(η, z) – 384Λ(η, z)) – 64Λ(η, z)
32η1–�Λ(η, z)

dη (52)

such that λ �= 0, σ �= 0, ν1 �= 0, and δ2 ≥ 128λ
3 .

U5(χ ,α) =

(
528μ0(α) � Λ(α) � (σ + C exp[4κ3(χ ,α)])� 1

4

± 66ν1(α) � (–3�(α) +
√

9��2(α) – 528Λ(α))

)

(
–8μ0(α) � Λ(α) � (3�(α) +

√
9��2(α) – 528Λ(α))

� (σ + C exp[4κ3(χ ,α)])� 1
4 ± 528ν1(α) � Λ(α)

) , (53)

U6(χ ,α, z) =

(
528μ0(α) � Λ(α) � (σ + C exp[4κ3(χ ,α)])� 1

4

± 66iν1(α) � (–3�(α) +
√

9��2(α) – 528Λ(α))

)

(
–8μ0(α) � Λ(α) � (3�(α) +

√
9��2(α) – 528Λ(α))

� (σ + C exp[4κ(χ ,α, z)])� 1
4 ± 528iν1(α) � Λ(α)

) , (54)

where

κ3(χ ,α)

=
χ�

�
+

∫ α

a

–3��2(η, z) + �(η, z) � √
9��2(η, z) – 528Λ(η, z) – 88Λ(η, z)

32η1–�Λ(η, z)
dη (55)

such that λ �= 0 and δ2 ≥ 528λ
9 .

5 Discussions and numerical simulations
This section is devoted to some discussions and numerical simulations to the obtained
solutions.

From the equality exp�(ϕ) = cosh�(ϕ) + sinh�(ϕ), our stochastic traveling wave solutions
(46), (47), (50), (51), (53), and (54) of Eq. (26) can be handily altered to stochastic solitary



Hyder Advances in Difference Equations        (2020) 2020:236 Page 13 of 19

wave solutions. Especially, the solution U1(χ ,α) can be altered to a solitary stochastic wave
solution of the form

U∗
1 (χ ,α) =

4
√

σ + C(cosh�[4κ1(χ ,α)] + sinh�[4κ1(χ ,α)])
ν1(α) ± ν0(α) � 4

√
σ + C(cosh�[4κ1(χ ,α)] + sinh�[4κ1(χ ,α)])

�
[

μ0(α) + A(α)
102ν1(α)�2 � √

6Λ(α)

± 155ν�3
0 (α)

(σ + C(cosh�[4κ1(χ ,α)] + sinh�[4κ1(χ ,α)]))� 1
2

+
255ν�3

1 (α)
(σ + C(cosh�[4κ1(χ ,α)] + sinh�[4κ1(χ ,α)]))� 3

4

+
2448σν�3

1 (α)

(σ + C(cosh�[4κ1(χ ,α)] + sinh�[4κ1(χ ,α)]))� 5
4

]
, (56)

where A(α) and κ1(χ ,α) are given in Eqs. (48), (49) and Λ > 0. Also, from the equality
exp�(iϕ) = cos�(ϕ) + i sin�(ϕ), our stochastic traveling wave solutions (46), (47), (50), (51),
(53), and (54) of Eq. (26) can be easily altered to stochastic periodic wave solutions. Es-
pecially, the solution U1(χ ,α) can be altered to a periodic stochastic wave solution of the
form

U∗∗
1 (χ ,α) =

4
√

σ + C(cos�[4κ∗∗
1 (χ ,α)] + i sin�[4κ∗∗

1 (χ ,α)])
ν1(α) ± ν0(α) � 4

√
σ + C(cos�[4κ∗∗

1 (χ ,α)] + i sin�[4κ∗∗
1 (χ ,α)])

�
[

μ0(α) + A(α)
102ν1(α)�2 � √

6Λ(α)

± 155ν�3
0 (α)

(σ + C(cos�[4κ∗∗
1 (χ ,α)] + i sin�[4κ∗∗

1 (χ ,α)]))� 1
2

+
255ν�3

1 (α)
(σ + C(cos�[4κ∗∗

1 (χ ,α)] + i sin�[4κ∗∗
1 (χ ,α)]))� 3

4

+
2448σν�3

1 (α)

(σ + C(cos�[4κ∗∗
1 (χ ,α)] + i sin�[4κ∗∗

1 (χ ,α)]))� 5
4

]
, (57)

where A(α) is given in Eq. (48) and

κ
∗∗
1 (χ ,α) = –i

(
χ�

�
+

∫ α

a

μ0(η) � (3ν0(η) � �(η) + 2μ0(η) � Λ(η))
6η1–�ν�2

0 (η)
dη

)
, Λ > 0. (58)

We notice that solutions (46), (47), (50), (51), (53), and (54) of Eq. (26) robustly rely on
the given functions μ0(α), ν0(α), ν1(α), β4(α), �(α), and Λ(α). So, for diverse shapes of
these functions, we can get diverse solutions of Eq. (26), which can be constructed from
Eqs. (46), (47), (50), (51), (53), and (54). We explain this by the following example. We
focus our work in this example on the stochastic traveling wave solution U1. For the other
solutions U2 – U6, U∗

1 , and U∗∗
1 , the proceedings are similar.
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Example 5.1 Assume that

⎧
⎨

⎩
a = 0, ν0(α) = a0μ0(α), ν1(α) = a1μ0(α),

�(α) = a2μ0(α), Λ(α) = a3μ0(α), μ0(α) = ζ (α) + a4s1–� W (α),
(59)

where ai (i = 0, 1, . . . , a) are arbitrary constants, ζ (α) is a � -conformable integrable map
on R+, and W (α) is the Gaussian white noise, which is the derivative of the Brownian
motion B(α) with respect to α. The Hermite transform of W (α) is known as W̃ (α, z) =
∑∞

i=1 zi
∫ α

0 
i(η) dη [52].
Using the identity exp�(B(α)) = exp(B(α) – s2

2 ) [52], the definition of W̃ (α, z), and Eq. (46)
gives the functional solution of Brownian motion and white noise type of Eq. (26) as fol-
lows:

UBW (χ ,α) =
4
√

σ + C exp[4Υ (χ ,α)]
a1 ± a0

4
√

σ + C exp[4Υ (χ ,α)]

×
[

1 + A1(α)
102a2

1
√

6a3(ζ (α) + a4s1–� W (α))�5

± 155a3
3

(σ + C exp[4Υ (χ ,α)]) 1
2

+
255a3

1

(σ + C exp[4Υ (χ ,α)]) 3
4

+
2448σa3

1

(σ + C exp[4Υ (χ ,α)]) 5
4

]
, (60)

where

A1(α) =

(
36a2

2a1(ζ (α) + a4s1–� W (α))
+ (24a1a3 – 144a0a1a2)(ζ (α) + a4s1–� W (α))�2

)

6a2
0 + (4a3 + 3a0a2)(ζ (α) + a4s1–� W (α)))

(61)

and

Υ (χ ,α) =
χ�

�
+

3a0a2 + 2a3

6a2
0

[∫ α

0

ζ (η)
η1–�

dη + a4

(
B(α) –

α2

2

)]
. (62)

For � = 0.01, 0.1, and 1, the numerical simulation of wave solution (60) is shown in Figs. 1
and 2, when C = σ = a1 = a3 = 1, a0 = a2 = a4 = –1, ζ (α) = eα , 0 ≤ α ≤ 4, and 0 ≤ χ ≤ 4.
Figure 1 represents the evolutional behaviors of solution (60) without stochastic effect
(B(α) = W (α) = 0), and Fig. 2 presents the behavior of solution (60) with the noise effect
B(α) = Random[0, 1] × tan(1.7α) and W (α) = 1.7 Random[0, 1] × sec2(1.7α). From Figs. 1
and 2, it is concluded that the stochastic forcing terms lead to the uncertainty of the trav-
eling wave amplitudes.

6 Conclusion
In fact, the stochastic physical models are more sensible than the deterministic models.
Thus, right now, we focus the investigation on the SPDEs with conformable derivatives.
Foremost, the general Kudryashov method [45] is improved by the novel auxiliary equa-
tion (4), which has numerous general solutions depending on the natural number n (see
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Figure 1 (a), (b), and (c) 3D plots of solution (60) without the noise effect, when � = 0.01, 0.1, and 1,
respectively

Figure 2 (a), (b), and (c) 3D plots of solution (60) under the noise effect, when � = 0.01, 0.1, and 1,
respectively

Eq. (25)). Thus, a novel technique to build exact solutions for nonlinear evolution equa-
tions is obtained. This technique is called the GIKM. The major feature of the GIKM over
the others lies in the way that it utilizes an especially clear and powerful algorithm to ob-
tain exact solutions for a large family of nonlinear evolution equations. Also, a large set
of exact solutions can be determined effectively on picking the parameters that showed
up. Besides, the proposed GIKM generalizes some previous techniques. It depends on im-
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proving the general Kudryashov technique by the general auxiliary equation (4) which has
various general solutions. Moreover, we apply the GIKM and white noise topics to con-
struct exact solutions for the Wick-type stochastic combined KdV–mKdV equation with
conformable derivatives. Also, numerical simulations with 3D profiles are provided to the
obtained exact solutions. Eventually, the overall approach proposed in this paper can be
utilized for solving diverse nonlinear evolution equations in physics and engineering, both
deterministic and stochastic types.

Appendix
The system of algebraic equations in μi, νj (i = 0, 1, . . . , 5, j = 0, 1), and θ for the combined
KdV–mKdV equation

X
0: – 2μ1ν

2
0 + μ0

(
2ν0ν1 + μ0ν0δ – 2ν2

0ωθ + μ2
0λ

)
= 0,

X
1: – 8μ2ν

2
0 + μ1

(
2ν0ν1 + 2μ0μ1δ + 2μ2

0ωθ + 3μ2
0
)

+ μ0ν1
(
2ν1 + μ0ν1δ + 4μ0ωθ

)
,

X
2: μ0

(
3μ2

1λ – 2ν2
1ωθ

)
+ μ1(μ1ν0δ + 2μ0ν1δ + 4ν0ν1ωθ )

+ μ2
(
2μ0ν0δ – 6ν0ν1 – 2ν2

0ωθ + 3μ2
0λ

)
– 18μ3ν

2
0 = 0,

X
3: – 32μ4ν

2
0 + μ3

(
2μ0ν0δ – 22ν0ν1 – 2ν2

0ωθ + 3μ2
0λ

)
+ μ2

(
2ν2

1 + 2μ1ν0δ

+ 2μ0ν1δ – 4ν0ν1ωθ + 6μ0μ1λ
)

+ μ1
(
μ1ν1δ – 2ν2

1ωθ + μ2
1λ

)
= 0,

X
4: – 50μ5ν

2
0 + μ4

(
46ν0ν1 + 2μ0ν0δ – 2ν2

0ωθ + 3μ2
0λ

)
+ μ3

(
2μ1ν0δ – 8ν2

1

+ 2μ0ν1δ + 4ν0ν1ωθ + 6μ0μ1λ
)

+ μ2
(
μ2ν0δ + 2μ1ν1δ – 2ν2

1ωθ

+ 3μ0μ2λ + 3μ2
1λ

)
+ 10ν0σ (μ1ν0 – μ0ν1) = 0,

X
5: μ5

(
2μ0ν0δ – 78ν0ν1 – 2ν2

0ωθ + 3μ2
0λ

)
+ μ4

(
2μ1ν0δ – 18ν2

1 + 2μ0ν1δ

+ 4ν0ν1ωθ + 6μ0μ1λ
)

+ μ3
(
2μ2ν0δ + 2μ1ν1δ + 3μ2

1λ – 2ν2
1ωθ + 6μ0μ2λ

)

+ μ2
(
μ2ν1δ + 3μ1μ2λ + 24ν2

0σ
)

+ 6ν1σ (μ1ν0 – μ0ν1) = 0,

X
6: μ5

(
–32ν2

1 + 2μ1ν0δ – 4ν0ν1δ + 6μ0μ1λ + 2μ0ν1δ
)

+ μ4
(
2μ2ν0δ + 2μ1ν1δ

– 2ν2
1ωθ + 3μ2

1λ + 6μ0μ2λ
)

+ μ3
(
μ3ν0δ + 2μ2ν1δ + 6μ1μ2λ

+ 3μ0μ3λ + 42ν2
0σ

)
+ μ2

(
30ν0ν1σ + μ2

2λ
)

= 0,

X
7: μ5

(
2μ2ν0δ + 2μ1ν1δ – 2ν2

1ωθ + 3μ2
1λ + 6μ0μ2λ

)
+ μ4

(
2μ3ν0δ + 2μ2ν1δ

+ 6μ1μ2λ + 6μ0μ3λ + 64ν2
0σ

)
+ μ3

(
μ3ν1δ + 3μ2

2λ + 3μ1μ3λ + 62ν0ν1σ
)

+ 10μ2ν
2
1σ = 0,

X
8: μ5

(
2μ3ν0δ + 2μ2ν1δ + 6μ1μ2λ + 6μ0μ3λ + 90ν2

0σ
)

+ μ4
(
μ4ν0δ + 2μ3ν1δ

+ 3μ2
2λ + 3μ0μ4λ + 6μ1μ3λ + 102ν0ν1σ

)
+ μ3

(
3μ2μ3λ + 24ν2

1σ
)

= 0,

X
9: μ5

(
2μ4ν0δ + 2μ3ν1δ + 3μ2

2λ + 6μ0μ4λ + 6μ1μ3λ + 150ν0ν1σ
)

+ μ4
(
μ4ν1δ + 6μ2μ3λ + 3μ1μ4λ + 42ν2

1σ
)

+ μ3
3λ = 0,

X
10: μ5

(
μ5ν0δ + 2μ4ν1δ + 6μ2μ3λ + 6μ1μ4λ + 3μ0μ5λ + 64ν2

1σ
)
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+ 3μ4λ
(
μ3

3 + μ2μ4
)

= 0,

X
11: μ5

(
μ5ν1δ + 3μ2

3λ + 6μ2μ4λ + 3μ1μ5λ
)

+ 3μ3μ
2
4λ = 0,

X
12: μ5(6μ3μ4λ + 3μ2μ5λ) + μ3

4λ = 0,

X
13: 3μ5λ

(
μ2

4 + μ3μ5
)

= 0,

X
14: 3μ4μ

2
5λ = 0,

X
15: μ3

5λ = 0.
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