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Abstract
In this article, a class of integral boundary value problems of fractional delayed
differential equations is discussed. Based on the Guo–Krasnoselskii theorem, some
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to show the validity of the conditions of our main theorems.
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1 Introduction
Differential equation models have been widely used in control system, aerodynamics, fluid
flows and many other branches of engineering [1–9]. Recently, fractional calculus has at-
tracted great interest. There are several kinds of fractional operators have been proposed
so far, among which we have the well-known Grünwald–Letnikov, Riemann–Liouville,
Caputo derivative.

In the past several decades, fractional boundary value problems have obtained abundant
theoretical achievements. In [10, 11], the nonexistence of positive solutions for differential
equations of fractional order is analyzed with the help of reduction to absurdity. In [12],
the authors study a class of Riemann–Liouville fractional derivative equations and present
sufficient condition on the unique positive solution by employing a u0-positive operator.
There are many articles devoted to the existence and multiplicity of positive solutions for
the fractional boundary value problems, the approaches mainly include Leray–Schauder
degree theory [13, 14], the monotone iterative method [15, 16], the Leggett–Williams the-
orem [17, 18], the fixed point theorem on cones [17–19]. Especially, compared with the
previous results, papers [11–13, 17, 20] contain integral boundary conditions. In [21], the
authors first introduced a new method, called Avery–Peterson theory, which illustrates the
existence of at least three positive solutions. Since then, more and more attention [22–24]
was paid to this method, and many questions were solved.

At present, fractional delayed equations have aroused the extensive attention of many
scholars. They dealt with the existence of solutions under various boundary conditions by
different methods. For details, one can refer to [20, 25–27] and the references therein.
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In [28], Cabada and Wang considered a class of nonlinear fractional differential equa-
tions with integral boundary value conditions:

⎧
⎨

⎩

cDαu(t) + f (t, u(t)) = 0, 0 < t < 1,

u(0) = u′′(0) = 0, u(1) = λ
∫ 1

0 u(s) ds,

where 2 < α < 3, 0 < λ < 2, f : [0, 1] × [0,∞) → [0,∞) is a continuous function. The ex-
istence of at least one positive solution is obtained by using the Guo–Krasnoselskii fixed
point theorem.

Enlightened by the above literature, we discuss the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

cDβz(t) + g(t, zt) = 0, t ∈ [0, 1],

z(t) = φ(t), t ∈ [–τ , 0],

z(0) = z′′(0) = z′′′(0) = 0, z(1) = k
∫ 1

0 z(θ ) dθ ,

(1)

where 3 < β ≤ 4, 0 < k < 2, cDβ is the Caputo fractional derivative, g : [0, 1] × Cτ −→
[0, +∞) is a continuous function, zt(s) = z(t + s), for t ∈ [0, 1], s ∈ [–τ , 0]. φ ∈ Cτ (:=
C[–τ , 0]), Cτ is a Banach space with ‖φ‖[–τ ,0] = maxs∈[–τ ,0] |φ(s)| and let C+

τ = {z ∈
C[–τ , 0]|z(t) ≥ 0, t ∈ [–τ , 0]}.

In this paper, the sufficient conditions are obtained for the existence of at least two pos-
itive solutions for a class of integral boundary value problems of fractional differential
equations with delay. The integral boundary value condition and the time delay make the
results significant.

2 Preliminaries
This part introduce some useful definitions and important lemmas.

Definition 2.1 ([1]) The β order fractional integral for a function g(t) is defined as follows:

Iβg(t) =
1

Γ (β)

∫ t

0
(t – θ )β–1g(θ ) dθ , β > 0.

Definition 2.2 ([1]) The β order Caputo fractional derivative for a function g(t) is defined
as follows:

cDβg(t) =
1

Γ (n – β)

∫ t

0
(t – θ )n–β–1g(n)(θ ) dθ , n – 1 < β ≤ n.

Definition 2.3 ([2]) Let P ⊆ X be a nonempty, convex closed set and X a real Banach
space. The P is called a cone in X provided that

(i) μz ∈ P, for all z ∈ P and μ ≥ 0;
(ii) z, –z ∈ P imply z = 0.

Definition 2.4 ([2]) Let P is a cone in real Banach space X. If map ψ : P → [0,∞) is con-
tinuous and satisfies

ψ
(
tz1 + (1 – t)z2

) ≥ tψ(z1) + (1 – t)ψ(z2), z1, z2 ∈ P, t ∈ [0, 1],

then ψ is called a nonnegative continuous concave functional on P.
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Lemma 2.1 ([1]) Assume that β > 0 and n = [β] + 1. If the function g ∈ L[0, 1] ∩ C[0, 1],
then there exists ci ∈ R, i = 1, 2, . . . , n, such that

IβcDβg(t) = g(t) – c1 – c2t – · · · – cntn–1.

Lemma 2.2 Equation (1) has a unique solution as follows:

z(t) =

⎧
⎨

⎩

∫ 1
0 G(t, θ )g(θ , zθ ) dθ , t ∈ [0, 1],

φ(t), t ∈ [–τ , 0],
(2)

where

G(t, θ ) =

⎧
⎨

⎩

2t(1–θ )β–1(β–k+kθ )–(2–k)β(t–θ )β–1

(2–k)Γ (β+1) , 0 ≤ θ ≤ t ≤ 1,
2t(1–θ )β–1(β–k+kθ )

(2–k)Γ (β+1) , 0 ≤ t ≤ θ ≤ 1.
(3)

Proof From Lemma 2.1, we have

z(t) = –
1

Γ (β)

∫ t

0
(t – θ )β–1g(θ , zθ ) dθ + c0 + c1t + c2t2 + c3t3.

According to z(0) = z′′(0) = z′′′(0) = 0, z(1) = k
∫ 1

0 z(θ ) dθ , we know that

c0 = c2 = c3 = 0, c1 =
1

Γ (β)

∫ 1

0
(1 – θ )β–1g(θ , zθ ) dθ + k

∫ 1

0
z(θ ) dθ .

Thus, Eq. (1) has a unique solution

z(t) = –
1

Γ (β)

∫ t

0
(t – θ )β–1g(θ , zθ ) dθ

+
(

1
Γ (β)

∫ 1

0
(1 – θ )β–1g(θ , zθ ) dθ + k

∫ 1

0
z(θ ) dθ

)

t. (4)

Letting J =
∫ 1

0 z(θ ) dθ , from (4) we get

J =
∫ 1

0
z(t) dt

= –
∫ 1

0

∫ t

0

(t – θ )β–1

Γ (β)
g(θ , zθ ) dθ dt

+
∫ 1

0

∫ 1

0

t(1 – θ )β–1

Γ (β)
g(θ , zθ ) dθ dt +

∫ 1

0
kJt dt

= –
∫ 1

0

(1 – θ )β

βΓ (β)
g(θ , zθ ) dθ +

1
2

∫ 1

0

(1 – θ )β–1

Γ (β)
g(θ , zθ ) dθ +

1
2

kJ .

It follows that

J = –
2

2 – k

∫ 1

0

(1 – θ )β

βΓ (β)
g(θ , zθ ) dθ +

1
2 – k

∫ 1

0

(1 – θ )β–1

Γ (β)
g(θ , zθ ) dθ . (5)
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Substituting (5) into (4), we derive

z(t) = –
∫ t

0

(t – θ )β–1

Γ (β)
g(θ , zθ ) dθ +

∫ 1

0

t(1 – θ )β–1

Γ (β)
g(θ , zθ ) dθ

–
2k

2 – k

∫ 1

0

t(1 – θ )β

βΓ (β)
g(θ , zθ ) dθ +

k
2 – k

∫ 1

0

t(1 – θ )β–1

Γ (β)
g(θ , zθ ) dθ

= –
∫ t

0

(t – θ )β–1

Γ (β)
g(θ , zθ ) dθ +

∫ 1

0

2t(1 – θ )β–1(β – k + kθ )
(2 – k)Γ (β + 1)

g(θ , zθ ) dθ

=
∫ 1

0
G(t, θ )g(θ , zθ ) dθ .

The conclusion have been proved. �

Lemma 2.3 ([28]) The function G(t, θ ) satisfies
(1) 0 < G(t, θ ) ≤ 2

(2–k)Γ (β) for t, θ ∈ (0, 1) if and only if 0 < k < 2;
(2) tG(1, θ ) ≤ G(t, θ ) ≤ MG(1, θ ), M = 2β

k(β–2) for all t, θ ∈ (0, 1), 3 < β ≤ 4 and 0 < k < 2.

Lemma 2.4 ([2]) Suppose that P is a cone in Banach space X. If Ω1, Ω2 are bounded open
sets in X such that 0 ∈ Ω1, Ω1 ⊂ Ω2 and operator T : P ∩ (Ω2 \ Ω1) −→ P is completely
continuous satisfying

(i) ‖Tz‖ ≥ ‖z‖, z ∈ P ∩ ∂Ω1 and ‖Tz‖ ≤ ‖z‖, z ∈ P ∩ ∂Ω2; or
(ii) ‖Tz‖ ≤ ‖z‖, z ∈ P ∩ ∂Ω1 and ‖Tz‖ ≥ ‖z‖, z ∈ P ∩ ∂Ω2,

then the operator T has at least one fixed point in P ∩ (Ω2 \ Ω1).

Lemma 2.5 ([29]) Suppose σ ∈ (0, 1
2 ) is a fixed number, for each z ∈ P and θ ∈ [σ , 1 – σ ]

(P is defined in Lemma 3.1), there exists a constant λ ∈ (0, 1) that satisfies

‖zθ‖[–τ ,0] ≥ λ‖z‖[0,1], ‖z‖[0,1] = sup
t∈[0,1]

∣
∣z(t)

∣
∣.

3 Main results
Next, the problem of positive solutions for Eq. (1) are studied. For convenience, some
notations and hypotheses are presented as follows:

g∞ = lim
z∈C+

τ ,‖z‖[–τ ,0]→+∞
g(t, z)

‖z‖[–τ ,0]
, g0 = lim

z∈C+
τ ,‖z‖[–τ ,0]→0+

g(t, z)
‖z‖[–τ ,0]

,

A =
λ

2

∫ 1–σ

σ

G(1, θ ) dθ ,λ ∈ (0, 1),σ ∈
(

0,
1
2

)

, B = M
∫ 1

0
G(1, θ ) dθ ;

(C1) φ(t) ≥ 0 on [–τ , 0];
(C2) g(t, z) ≥ 0 for t ∈ [0, 1] and z ∈ C+

τ ;
(C3) g0 = g∞ = +∞;
(C4) g0 = g∞ = 0;
(C5) if there exists a constant m ≥ ‖φ‖[–τ ,0] > 0, then

g(t, z) ≤ m
B

, ‖z‖[–τ ,0] ∈ [0, m], t ∈ [0, 1].
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(C6) if there exists a constant n ≥ ‖φ‖[–τ ,0] > 0, then

g(t, z) ≥ λn
A

, ‖z‖[–τ ,0] ∈ [λn, n], t ∈ [σ , 1 – σ ].

On C[–τ , 1] define an operator T

Tz(t) =

⎧
⎨

⎩

∫ 1
0 G(t, θ )g(θ , zθ ) dθ , t ∈ [0, 1],

φ(t), t ∈ [–τ , 0].

Lemma 3.1 If (C1), (C2) hold and P is a cone in Banach space X = C[–τ , 1] with norm
‖z‖[–τ ,1] = maxt∈[–τ ,1] |z(t)| as follows:

P =
{

z ∈ X|z ≥ 0, z is concave down on [0, 1]
}

,

then the following conclusions are true.
(i) T(P) ⊆ P;

(ii) T : P → P is completely continuous.

Proof It is easy to check that (i) holds and T is continuous. So we only prove that (ii) is
true. Assume that H be a bounded subset in P, which is to say there exists l > 0 such that
‖z‖ ≤ l for all z ∈ H . Let

N = sup
t∈[0,1],z∈[0,l]

∣
∣g(t, zt)

∣
∣ + 1.

Then, for z ∈ H , we have

∣
∣Tz(t)

∣
∣ =

∣
∣
∣
∣

∫ 1

0
G(t, θ )g(θ , zθ ) dθ

∣
∣
∣
∣ ≤ 2N

(2 – k)Γ (β)
.

That is, T(H) is uniformly bounded.
Let z ∈ H and t1 < t2, t1, t2 ∈ [–τ , 1]. If 0 ≤ t1 < t2 ≤ 1, then

∣
∣(Tz)′(t)

∣
∣

=
∣
∣
∣
∣–

∫ t

0

(t – θ )β–2

Γ (β – 1)
g(θ , zθ ) dθ +

∫ 1

0

2(1 – θ )β–1(β – k + kθ )
(2 – k)Γ (β + 1)

g(θ , zθ ) dθ

∣
∣
∣
∣

≤
∫ t

0

(t – θ )β–2

Γ (β – 1)
∣
∣g(θ , zθ )

∣
∣dθ +

∫ 1

0

2(1 – θ )β–1(β – k + kθ )
(2 – k)Γ (β + 1)

∣
∣g(θ , zθ )

∣
∣dθ

≤ N
[

tβ–1

Γ (β)
+

2(β + 1 – k)
(2 – k)Γ (β + 2)

]

≤ N
β(β + 1)(2 – k) + 2(β + 1 – k)

(2 – k)Γ (β + 2)
] := N0.

Hence

∣
∣Tz(t2) – Tz(t1)

∣
∣ ≤

∫ t2

t1

∣
∣(Tz)′(θ )

∣
∣dθ ≤ N0(t2 – t1).
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If –τ ≤ t1 < t2 ≤ 0, then

∣
∣Tz(t2) – Tz(t1)

∣
∣ =

∣
∣φ(t2) – φ(t1)

∣
∣.

If –τ ≤ t1 < 0 < t2 ≤ 1, then

∣
∣Tz(t2) – Tz(t1)

∣
∣ =

∣
∣Tz(t2) – Tz(0)

∣
∣ +

∣
∣Tz(0) – Tz(t1)

∣
∣

≤
∫ 1

0

∣
∣G(t2, θ ) – G(0, θ )

∣
∣
∣
∣g(θ , zθ )

∣
∣dθ +

∣
∣φ(0) – φ(t1)

∣
∣

≤ 2N(β + 1 – k)
(2 – k)Γ (β + 2)

t2 +
∣
∣φ(0) – φ(t1)

∣
∣

<
2N(β + 1 – k)

(2 – k)Γ (β + 2)
|t2 – t1| +

∣
∣φ(0) – φ(t1)

∣
∣.

Therefore, T(H) is equicontinuous. On the basis of the Ascoli–Arzelà theorem we con-
clude that T(H) is relatively compact. The conclusion has been proved. �

Theorem 3.1 If (C1), (C2), (C3) and (C5) are satisfied, then Eq. (1) has at least two positive
solutions z1 and z2 with

0 ≤ ‖z1‖[–τ ,1] < m < ‖z2‖[–τ ,1].

Proof Suppose that (C5) holds. Let Ωm = {z ∈ P : ‖z‖[–τ ,1] < m}, for any z ∈ P ∩ ∂Ωm, we
have

(Tz)(t) =

⎧
⎨

⎩

∫ 1
0 G(t, θ )g(θ , zθ ) dθ , 0 ≤ t ≤ 1,

φ(t), –τ ≤ t ≤ 0,

≤
⎧
⎨

⎩

m
B M

∫ 1
0 G(1, θ ) dθ , 0 ≤ t ≤ 1,

‖φ‖[–τ ,0], –τ ≤ t ≤ 0,

≤
⎧
⎨

⎩

m, 0 ≤ t ≤ 1,

‖φ‖[–τ ,0], –τ ≤ t ≤ 0,

≤ ‖z‖[–τ ,1],

which yields

‖Tz‖[–τ ,1] ≤ ‖z‖[–τ ,1], for z ∈ P ∩ ∂Ωm.

Suppose that (C3) holds. Since g0 = ∞, we may choose ‖φ‖[–τ ,0] < m1 < m, such that
g(t, z) ≥ K‖z‖[–τ ,0], for 0 ≤ ‖z‖[–τ ,0] ≤ m1, where K > 0 satisfies KA ≥ 1.

Let Ωm1 = {z ∈ P : ‖z‖[–τ ,1] < m1}, for any z ∈ P ∩ ∂Ωm1 , we have

(Tz)
(

1
2

)

≥
∫ 1–σ

σ

G
(

1
2

, θ
)

g(θ , zθ ) dθ ≥ K
∫ 1–σ

σ

G
(

1
2

, θ
)

‖zθ‖[–τ ,0] dθ
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≥ Kλ

2

∫ 1–σ

σ

G(1, θ )‖z‖[0,1] dθ =
Kλ

2

∫ 1–σ

σ

G(1, θ )‖z‖[–τ ,1] dθ

≥ ‖z‖[–τ ,1],

which yields

‖Tz‖[–τ ,1] ≥ ‖z‖[–τ ,1], for z ∈ P ∩ ∂Ωm1 .

Next, since g∞ = ∞, we may choose m2 > m > ‖φ‖[–τ ,0], such that g(t, z) ≥ L‖z‖[–τ ,0], for
‖z‖[–τ ,0] ≥ λm2, where L > 0 satisfies LA ≥ 1.

Let Ωm2 = {z ∈ P : ‖z‖[–τ ,1] < m2}, for any z ∈ P ∩ ∂Ωm2 , we have

(Tz)
(

1
2

)

≥
∫ 1–σ

σ

G
(

1
2

, θ
)

g(θ , zθ ) dθ ≥ L
∫ 1–σ

σ

G
(

1
2

, θ
)

‖zθ‖[–τ ,0] dθ

≥ Lλ

2

∫ 1–σ

σ

G(1, θ )‖z‖[0,1] dθ =
Lλ

2

∫ 1–σ

σ

G(1, θ )‖z‖[–τ ,1] dθ

≥ ‖z‖[–τ ,1],

which yields

‖Tz‖[–τ ,1] ≥ ‖z‖[–τ ,1], for z ∈ P ∩ ∂Ωm2 .

Therefore, the conclusion has been proved by (i) and (ii) of Lemma 2.4. �

Theorem 3.2 If (C1), (C2), (C4) and (C6) are satisfied, then Eq. (1) has at least two positive
solutions z1 and z2 with

0 ≤ ‖z1‖[–τ ,1] < n < ‖z2‖[–τ ,1].

Proof Suppose that (C6) holds. Letting Ωn = {z ∈ P : ‖z‖[–τ ,1] < n}, for any z ∈ P ∩ ∂Ωn, we
have

(Tz)
(

1
2

)

≥
∫ 1–σ

σ

G
(

1
2

, θ
)

g(θ , zθ ) dθ ≥ 1
2

∫ 1–σ

σ

G(1, θ )g(θ , zθ ) dθ

≥ nλ

2A

∫ 1–σ

σ

G(1, θ ) dθ = n = ‖z‖[–τ ,1],

which yields

‖Tz‖[–τ ,1] ≥ ‖z‖[–τ ,1], for z ∈ P ∩ ∂Ωn.

Suppose that (C4) holds. Since g0 = 0, we may choose ‖φ‖[–τ ,0] < n1 < n, such that g(t, z) ≤
C‖z‖[–τ ,0], for 0 ≤ ‖z‖[–r,0] ≤ n1, where C > 0 satisfies CB ≤ 1.

Let Ωn1 = {z ∈ P : ‖z‖[–τ ,1] < n1}, for any z ∈ P ∩ ∂Ωm2 , we have

(Tz)(t) =

⎧
⎨

⎩

∫ 1
0 G(t, θ )g(θ , zθ ) dθ , 0 ≤ t ≤ 1,

φ(t), –τ ≤ t ≤ 0,
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≤
⎧
⎨

⎩

CM
∫ 1

0 G(1, θ )‖zθ‖[–τ ,0] dθ , 0 ≤ t ≤ 1,

‖φ‖[–r,0], –τ ≤ t ≤ 0,

≤
⎧
⎨

⎩

CB‖z‖[–τ ,1], 0 ≤ t ≤ 1,

‖φ‖[–r,0], –τ ≤ t ≤ 0,

≤ ‖z‖[–τ ,1],

which yields

‖Tz‖[–τ ,1] ≤ ‖z‖[–τ ,1], for z ∈ P ∩ ∂Ωn1 .

In addition, since g∞ = 0, there exists R > n, such that g(t, z) ≤ D‖z‖[–τ ,0], for ‖z‖[–τ ,0] > R,
where D > 0 satisfies (D + 1)B ≤ 1.

Choose a constant n2 > 0, such that n2 > max{n,‖φ‖[–τ ,0], max{g(θ , zθ )|0 ≤ ‖zθ‖[–τ ,0] ≤
R}B}. Let Ωn2 = {z ∈ P : ‖z‖[–τ ,1] < n2}, for any z ∈ P ∩ ∂Ωn2 , we have

(Tz)(t)

≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

‖zθ ‖[–τ ,0]>R MG(1, θ )g(θ , zθ ) dθ

+
∫

0≤‖zθ ‖[–τ ,0]≤R MG(1, θ )g(θ , zθ ) dθ , 0 ≤ t ≤ 1,

φ(t), –τ ≤ t ≤ 0,

≤
⎧
⎨

⎩

{Dn2 + max{g(θ , zθ )|0 ≤ ‖zθ‖[–τ ,0] ≤ R}}B, 0 ≤ t ≤ 1,

‖φ‖[–τ ,0], –τ ≤ t ≤ 0,

≤
⎧
⎨

⎩

n2, 0 ≤ t ≤ 1,

‖φ‖[–τ ,0], –τ ≤ t ≤ 0,

≤ n2 = ‖z‖[–τ ,1],

which yields

‖Tz‖[–τ ,1] ≤ ‖z‖[–τ ,1], for z ∈ P ∩ ∂Ωn2 .

Therefore, the conclusion has been proved by (i) and (ii) of Lemma 2.4. �

From the ideas in the proofs of Theorem 3.1 and Theorem 3.2, we have Theorem 3.3
and Theorem 3.4.

Theorem 3.3 If (C1), (C2) are satisfied and the conditions g0 = ∞, g∞ = 0 hold, then Eq. (1)
has at least one positive solution.

Theorem 3.4 If (C1), (C2) are satisfied and the conditions g0 = 0, g∞ = ∞ hold, then Eq. (1)
has at least one positive solution.
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4 Some examples
Example 4.1 We consider the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

cD 10
3 z(t) = –z 1

3 (t – 1
2 ), t ∈ [0, 1],

z(t) = t6, t ∈ [– 1
2 , 0],

z(0) = z′′(0) = z′′′(0) = 0, z(1) = 1
2
∫ 1

0 z(θ ) dθ ,

(6)

where α = 10
3 , k = 1

2 , τ = 1
2 , g(t, z) = z 1

3 (– 1
2 ); since

g(t, z)
‖z‖[– 1

2 ,0]
=

z 1
3 (– 1

2 )
‖z‖[– 1

2 ,0]
≤

‖z‖ 1
3
[– 1

2 ,0]

‖z‖[– 1
2 ,0]

= ‖z‖– 2
3

[– 1
2 ,0]

→ 0, as ‖z‖[– 1
2 ,0] → +∞

we have g∞ = 0. In addition, there exists a constant c > 0 with z(t) ≥ c‖z‖[–r,0],

g(t, z)
‖z‖[– 1

2 ,0]
=

z 1
3 (– 1

2 )
‖z‖[– 1

2 ,0]
≥ c

‖z‖ 1
3
[– 1

2 ,0]

‖z‖[– 1
2 ,0]

= c‖z‖– 2
3

[– 1
2 ,0]

→ +∞, as ‖z‖[– 1
2 ,0] → 0.

Thus, g0 = +∞, Eq. (6) has at least one positive solution by Theorem 3.3.

Example 4.2 We consider the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

cD 7
2 z(t) = –(z 1

2 (t – 1
3 ) + z2(t – 1

3 )), t ∈ [0, 1],

z(t) = t4, t ∈ [– 1
3 , 0],

z(0) = z′′(0) = z′′′(0) = 0, z(1) =
∫ 1

0 z(θ ) dθ ,

(7)

where α = 7
2 , k = 1, τ = 1

3 , g(t, z) = z 1
2 (– 1

3 ) + z2(– 1
3 ), and there exists a constant c > 0 with

z(t) ≥ c‖z‖[–r,0]; since

g(t, z)
‖z‖[– 1

3 ,0]
=

z 1
2 (– 1

3 ) + z2(– 1
3 )

‖z‖[– 1
3 ,0]

≥ c
‖z‖ 1

2
[– 1

3 ,0]
+ ‖z‖2

[– 1
3 ,0]

‖z‖[– 1
3 ,0]

→ +∞, as ‖z‖[– 1
3 ,0] → +∞,

g(t, z)
‖z‖[– 1

3 ,0]
=

z 1
2 (– 1

3 ) + z2(– 1
3 )

‖z‖[– 1
3 ,0]

≥ c
‖z‖ 1

2
[– 1

3 ,0]
+ ‖z‖2

[– 1
3 ,0]

‖z‖[– 1
3 ,0]

→ +∞, as ‖z‖[– 1
3 ,0] → 0,

we have g0 = +∞, g∞ = +∞. Thus the condition (C3) holds. Furthermore, M = 2α
k(α–2) =

14
3 ,

∫ 1
0 G(1, s) ds =

∫ 1
0

(1–s)α–1(k[2(s–1)+α])
(2–k)Γ (α+1) ds = 5

9Γ ( 9
2 )

, B = M
∫ 1

0 G(1, s) ds = 224
567

√
π

. Taking m = 2,

then when 0 ≤ ‖z‖[– 1
3 ,0] ≤ 2, we have g(t, z) ≤ 6 ≤ m

B = 567
√

π

112 , which implies the condition
(C5) holds. Hence by Theorem 3.1, Eq. (7) has at least two positive solutions z1 and z2 with

0 < ‖z‖[– 1
3 ,1] < 2 < ‖z‖[– 1

3 ,1].

5 Conclusion
In this paper, on the basis of the Guo–Krasnoselskii theorem, the sufficient conditions en-
sure that the existence and multiplicity of positive solutions are obtained. This research



Li et al. Advances in Difference Equations        (2020) 2020:256 Page 10 of 11

method can be extended to many fractional boundary value problems. It is worth not-
ing that the equation involves time delay and an integral boundary value condition, to be
compared to much previous work, which has never been considered. In addition, our work
is inspiring for future research as regards triple positive solutions of fractional boundary
value problems with delay.
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