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Abstract
In this paper we consider the initial boundary value problem for a viscoelastic wave
equation with strong damping and logarithmic nonlinearity of the form

utt(x, t) –�u(x, t) +
∫ t

0
g(t – s)�u(x, s)ds –�ut(x, t) =

∣∣u(x, t)∣∣p–2u(x, t) ln∣∣u(x, t)∣∣

in a bounded domain Ω ⊂ R
n, where g is a nonincreasing positive function. Firstly,

we prove the existence and uniqueness of local weak solutions by using
Faedo–Galerkin’s method and contraction mapping principle. Then we establish a
finite time blow-up result for the solution with positive initial energy as well as
nonpositive initial energy.
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1 Introduction
In this paper, we are concerned with the following viscoelastic wave equation with strong
damping and logarithmic nonlinearity source:

utt – �u +
∫ t

0
g(t – s)�u(s) ds – �ut = |u|p–2u ln |u| in Ω × (0, T), (1.1)

u = 0 on ∂Ω × (0, T), (1.2)

u(0) = u0, ut(0) = u1 on Ω , (1.3)

where Ω ⊂R
n, n ≥ 1, is a bounded domain with smooth boundary ∂Ω . This type of equa-

tion is related to viscoelastic mechanics, quantum mechanics theory, nuclear physics, op-
tics, geophysics and so on. For instance, the logarithmic nonlinearity arises in the inflation
cosmology and super-symmetric fields in the quantum field theory. In the case n = 1, 2,
Eq. (1.1) describes the transversal vibrations of a homogeneous viscous string and the
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longitudinal vibrations of a homogeneous bar, respectively. For the physical point of view,
we refer to [1–3] and the references therein.

During the past decades, the strongly damped wave equations with source effect

utt – �u – ω�ut + μut = f (u) (1.4)

have been studied extensively on existence, nonexistence, stability, and blow-up of solu-
tions. In the case of power nonlinearity f (u) = |u|p–2u, Sattinger [4] firstly considered the
existence of local as well as global solutions for equation (1.4) with ω = μ = 0 by intro-
ducing the concepts of stable and unstable sets. Since then, the potential well method has
become an important theory to the study of the existence and nonexistence of solutions
[5–15]. Ikehata [8] gave properties of decay estimates and blow-up of solutions to (1.4)
with linear damping (ω = 0 and μ > 0). Gazzola and Squassina [6] proved the global exis-
tence and finite time blow-up of solutions to problem (1.4) with weak and strong damping
(ω > 0). Liu [11] considered a viscoelastic version of (1.4). He investigated decay estimates
for global solutions when the initial data enter the stable set and showed finite blow-up
results when the initial data enter the unstable set.

In the case of logarithmic nonlinearity f (u) = u ln |u|k , Ma and Fang [16] proved the
existence of global solutions and infinite time blow-up to problem (1.4) with ω = 1, μ = 0,
and k = 2. Lian and Xu [17] investigated global existence, energy decay and infinite time
blow-up when ω ≥ 0 and μ > –ωλ1, where λ1 is the first eigenvalue of the operator –�

under homogeneous Dirichlet boundary conditions. The results of [16, 17] were obtained
by use of the potential well method and the logarithmic Sobolev inequality.

By the way, there is not much literature for strongly damped wave equations with the log-
arithmic nonlinear source |u|p–2u ln |u|. Recently, Di et al. [18] considered problem (1.1)–
(1.3) when the kernel function g = 0. The presence of the Laplacian operator –�u and the
logarithmic nonlinearity |u|p–2u ln |u| causes some difficulty so that one cannot apply the
logarithmic Sobolev inequality [19]. Thus, they discussed the global existence, unique-
ness, energy decay estimates and finite time blow-up of solutions by modifying the po-
tential well method. We also refer to [20, 21] and the references therein for problems with
logarithmic nonlinearity.

Motivated by these results, we study the existence and finite time blow-up of weak so-
lutions for problem (1.1)–(1.3) in the present work by applying the ideas in [11, 18]. To
the best our knowledge, this is the first work in the literature that takes into account a vis-
coelastic wave equation with strong damping and logarithmic nonlinearity in a bounded
domain Ω ⊂R

n.
The outline of this paper is as follows. In Sect. 2, we give materials needed for our work.

In Sect. 3, we prove the local existence of solutions for problem (1.1)–(1.3) using Faedo–
Galerkin’s method and contraction mapping principle. In Sect. 4, we establish a finite time
blow-up result.

2 Preliminaries
In this section we give notations, hypotheses, and some lemmas needed in our main re-
sults.

For a Banach space X, ‖ · ‖X denotes the norm of X. As usual, (·, ·) and 〈·, ·〉 denote the
inner product in the space L2(Ω) and the duality pairing between H–1(Ω) and H1

0 (Ω),
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respectively. ‖ · ‖q denotes the norm of the space Lq(Ω). For brevity, we denote ‖ · ‖2 by
‖ · ‖. Let cq be the best constants in the Poincaré type inequality

‖v‖q ≤ cq‖∇v‖2 for v ∈ H1
0 (Ω),

where

2 ≤ q < ∞, if n = 1, 2; 2 ≤ q ≤ 2n
n – 2

, if n ≥ 3.

We need the following lemma.

Lemma 2.1 For each q > 0,

∣∣sq ln s
∣∣ ≤ 1

eq
for 0 < s < 1 and 0 ≤ s–q ln s ≤ 1

eq
for s ≥ 1.

Proof We can easily show this from simple calculation. So, we omit it here. �

Lemma 2.2 ([9]) Let L(t) be a positive, twice differentiable function satisfying the inequal-
ity

L(t)L′′(t) – (1 + δ)
(
L′(t)

)2 ≥ 0 for t > 0,

with some δ > 0. If L(0) > 0 and L′(0) > 0, then there exists a time T∗ ≤ L(0)
δL′(0) such that

lim
t→T–∗

L(t) = +∞.

With regard to problem (1.1)–(1.3), we impose the following assumptions:
(H1) Hypotheses on p.

The exponent p satisfies

2 < p < ∞, if n = 1, 2; 2 < p <
2(n – 1)

n – 2
, if n ≥ 3. (2.1)

(H2) Hypotheses on g .
The kernel function g : [0,∞) → [0,∞) is a nonincreasing and differentiable func-

tion satisfying

1 –
∫ ∞

0
g(s) ds := l > 0. (2.2)

Definition 2.1 Let T > 0. We say that a function u is a weak solution of problem (1.1)–(1.3)
if

u ∈ C
(
[0, T]; H1

0 (Ω)
) ∩ C1([0, T]; L2(Ω)

) ∩ C2([0, T]; H–1(Ω)
)
,
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leads to

〈
utt(t), w

〉
+

(∇u(t),∇w
)

–
∫ t

0
g(t – s)

(∇u(s),∇w
)

ds +
(∇ut(t),∇w

)

=
∫

Ω

∣∣u(x, t)
∣∣p–2u(x, t) ln

∣∣u(x, t)
∣∣w dx (2.3)

for any w ∈ H1
0 (Ω) and t ∈ (0, T), and

u(0) = u0 in H1
0 (Ω), ut(0) = u1 in L2(Ω).

3 Local existence of solutions
In this section we prove the local existence of solutions making use of the Faedo–Galerkin
method and the contraction mapping principle. For a fixed T > 0, we consider the space

H = C
(
[0, T]; H1

0 (Ω)
) ∩ C1([0, T]; L2(Ω)

)

with the norm

‖v‖2
H = max

0≤t≤T

(∥∥vt(t)
∥∥2 + l

∥∥∇v(t)
∥∥2).

To show the existence and uniqueness of local solution to problem (1.1)–(1.3), we firstly
establish the following result.

Lemma 3.1 Assume that (H1) and (H2) hold. Then, for every u0 ∈ H1
0 (Ω), u1 ∈ L2(Ω),

v ∈H, there exists a unique

u ∈ C
(
[0, T]; H1

0 (Ω)
) ∩ C1([0, T]; L2(Ω)

) ∩ C2([0, T]; H–1(Ω)
)

such that ut ∈ L2([0, T]; H1
0 (Ω)) and

utt – �u +
∫ t

0
g(t – s)�u(s) ds – �ut = |v|p–2v ln |v| in Ω × (0, T), (3.1)

u = 0 on ∂Ω × (0, T), (3.2)

u(0) = u0, ut(0) = u1 on Ω . (3.3)

Proof Existence. Let {wj}j∈N be an orthogonal basis of H1
0 (Ω) which is orthonormal in

L2(Ω) and Wm = span{w1, w2, . . . , wm}, then there exist subsequences um
0 ∈ Wm and um

1 ∈
Wm such that um

0 → u0 in H1
0 (Ω) and um

1 → u1 in L2(Ω), respectively. We will seek an
approximate solution

um(x, t) =
m∑

j=1

hm
j (t)wj(x)
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satisfying

(
um

tt (t), w
)

+
(∇um(t),∇w

)
–

∫ t

0
g(t – s)

(∇um(s),∇w
)

ds +
(∇um

t (t),∇w
)

=
∫

Ω

∣∣v(x, t)
∣∣p–2v(x, t) ln

∣∣v(x, t)
∣∣w(x) dx for w ∈ Wm (3.4)

and the initial conditions

um(0) = um
0 , um

t (0) = um
1 . (3.5)

Since (3.4)–(3.5) is a normal system of ordinary differential equations, there exists a solu-
tion um on the interval [0, tm) ⊂ [0, T]. We obtain an a priori estimate for the solution um

so that it can be extended to the whole interval [0, T] according to the extension theorem.
Step 1. A priori estimate. Replacing w by um

t (t) in (3.4) and using the relation

∫ t

0
g(t – s)

(∇um(s),∇um
t (t)

)
ds = –

g(t)
2

∥∥∇um(t)
∥∥2 +

1
2
(
g ′ ◦ ∇um)

(t)

–
1
2

d
dt

((
g ◦ ∇um)

(t) –
∫ t

0
g(s) ds

∥∥∇um(t)
∥∥2

)
,

where

(g ◦ φ)(t) =
∫ t

0
g(t – s)

∥∥φ(t) – φ(s)
∥∥2 ds,

we have

d
dt

{∥∥um
t (t)

∥∥2 +
(

1 –
∫ t

0
g(s) ds

)∥∥∇um(t)
∥∥2 +

(
g ◦ ∇um)

(t)
}

+ 2
∥∥∇um

t (t)
∥∥2

=
(
g ′ ◦ ∇um)

(t) – g(t)
∥∥∇um(t)

∥∥2 + 2
∫

Ω

∣∣v(x, t)
∣∣p–2v(x, t) ln

∣∣v(x, t)
∣∣um

t (x, t) dx.

Integrating this over (0, t) and making use of (H2),

∥∥um
t (t)

∥∥2 + l
∥∥∇um(t)

∥∥2 +
(
g ◦ ∇um)

(t) + 2
∫ t

0

∥∥∇um
t (s)

∥∥2 ds

≤ ∥∥um
1
∥∥2 +

∥∥∇um
0
∥∥2 + 2

∫ t

0

∥∥∣∣v(s)
∣∣p–2v(s) ln

∣∣v(s)
∣∣∥∥ p

p–1

∥∥um
t (s)

∥∥
p ds. (3.6)

In order to estimate the last term in the right hand side of (3.6), we let

Ω1 =
{

x ∈ Ω :
∣∣um(x, t)

∣∣ < 1
}

and Ω2 =
{

x ∈ Ω :
∣∣um(x, t)

∣∣ ≥ 1
}

.

Since 2 < p < 2n
n–2 , we can take μ > 0 such that 2 < p + μp

p–1 < 2n
n–2 . Applying Lemma 2.1, we

infer that

∥∥|v|p–2v ln |v|∥∥
p

p–1
p

p–1
=

∫
Ω1

(∣∣|v|p–1 ln |v|∣∣) p
p–1 dx +

∫
Ω2

(∣∣|v|–μ+(p–1+μ) ln |v|∣∣) p
p–1 dx
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≤
(

1
e(p – 1)

) p
p–1 |Ω1| +

∫
Ω2

(|v|–μ ln |v|) p
p–1 |v| p(p–1+μ)

p–1 dx

≤
(

1
e(p – 1)

) p
p–1 |Ω1| +

(
1

eμ

) p
p–1

∫
Ω2

|v| p(p–1+μ)
p–1 dx

≤
(

1
e(p – 1)

) p
p–1 |Ω1| + c

p(p–1+μ)
p–1

p(p–1+μ)
p–1

(
1

eμ

) p
p–1 ‖∇v‖ p(p–1+μ)

p–1

≤ C, (3.7)

we used the fact that v ∈ H in the last inequality. Here and in the sequel, C denotes a
generic positive constant independent of m and t and different from line to line or even
in the same line.

From (3.7), we see that

2
∫ t

0

∥∥|v|p–2v ln |v|∥∥ p
p–1

∥∥um
t
∥∥

p ds ≤ C
∫ t

0

∥∥um
t (s)

∥∥
p ds

≤ C
∫ t

0

∥∥∇um
t (s)

∥∥ds ≤ CT +
∫ t

0

∥∥∇um
t (s)

∥∥2 ds.

Adapting this to (3.6), we get

∥∥um
t (t)

∥∥2 + l
∥∥∇um(t)

∥∥2 +
(
g ◦ ∇um)

(t) +
∫ t

0

∥∥∇um
t (s)

∥∥2 ds ≤ ∥∥um
1
∥∥2 +

∥∥∇um
0
∥∥2 + CT

≤ C.

Step 2. Passage to the limit. So, there exists a subsequence of {um}, which we still denote
by {um}, such that

um → u weakly star in L∞(
0, T ; H1

0 (Ω)
)
, (3.8)

um
t → ut weakly star in L∞(

0, T ; L2(Ω)
)
, (3.9)

um
t → ut weakly in L2(0, T ; H1

0 (Ω)
)
. (3.10)

Now, we integrate (3.4) over (0, t) to get

(
um

t (t), w
)

–
(
um

1 , w
)

+
∫ t

0

(∇um(s),∇w
)

ds –
∫ t

0

∫ τ

0
g(τ – s)

(∇um(s),∇w
)

ds dτ

+
(∇um(t),∇w

)
–

(∇um
0 ,∇w

)
=

∫ t

0

∫
Ω

∣∣v(x, s)
∣∣p–2v(x, s) ln

∣∣v(x, s)
∣∣w(x) dx ds.

Taking the limit m → ∞ in this, we have from (3.8) and (3.9) that

(
ut(t), w

)
– (u1, w) +

∫ t

0

(∇u(s),∇w
)

ds –
∫ t

0

∫ τ

0
g(τ – s)

(∇u(s),∇w
)

ds dτ

+
(∇u(t),∇w

)
– (∇u0,∇w) =

∫ t

0

∫
Ω

∣∣v(x, s)
∣∣p–2v(x, s) ln

∣∣v(x, s)
∣∣w(x) dx ds. (3.11)
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This remains valid for all w ∈ H1
0 (Ω). Differentiating (3.11) with respect to t, we have

〈
utt(t), w

〉
+

(∇u(t),∇w
)

–
∫ t

0
g(t – s)

(∇u(s),∇w
)

ds +
(∇ut(t),∇w

)

=
∫

Ω

∣∣v(x, t)
∣∣p–2v(x, t) ln

∣∣v(x, t)
∣∣w(x) dx for w ∈ H1

0 (Ω). (3.12)

Now, we are left with verifying that the limit function u satisfies the initial conditions, that
is,

u(0) = u0 in H1
0 (Ω), ut(0) = u1 in L2(Ω).

From (3.8), (3.9), and Lion’s lemma [22], we get

um → u in C
(
[0, T]; L2(Ω)

)
. (3.13)

Thus, um(0) → u(0) in L2(Ω). Since um(0) = um
0 → u0 in H1

0 (Ω), we observe that

u(0) = u0 in H1
0 (Ω). (3.14)

Next, multiplying (3.4) by φ ∈ C∞
0 (0, T) and integrating it over (0, T), we find

–
∫ T

0

(
um

t (t), wφ′(t)
)

dt +
∫ T

0

(∇um(t),∇wφ(t)
)

dt

–
∫ T

0

∫ t

0
g(t – s)

(∇um(τ ),∇wφ(t)
)

dτ dt

–
∫ T

0

(∇um(t),∇wφ′(t)
)

dt =
∫ T

0

(∣∣v(t)
∣∣p–2v(t) ln

∣∣v(t)
∣∣, wφ(t)

)
dt for w ∈ Wm.

Letting m → ∞, we get

–
∫ T

0

(
ut(t), wφ′(t)

)
dt +

∫ T

0

(∇u(t),∇wφ(t)
)

dt

–
∫ T

0

∫ t

0
g(t – s)

(∇u(τ ),∇wφ(t)
)

dτ dt

–
∫ T

0

(∇u(t),∇wφ′(t)
)

dt =
∫ T

0

(∣∣v(t)
∣∣p–2v(t) ln

∣∣v(t)
∣∣, wφ(t)

)
dt for w ∈ H1

0 (Ω).

This yields utt ∈ L2(0, T ; H–1(Ω)). This and the fact that ut ∈ L2(0, T ; H1
0 (Ω)) imply that

ut ∈ C
(
[0, T]; H–1(Ω)

)
.

Thus, um
t (0) → ut(0) in H–1(Ω). Owing to um

t (0) = um
1 → u1 in L2(Ω), we conclude

ut(0) = u1 in L2(Ω).
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Uniqueness. Let u and ũ be the solutions of the linearized problem (3.1)–(3.3) and w =
u – ũ. Then w satisfies

wtt – �w +
∫ t

0
g(t – s)�w(s) ds – �wt = 0 in Ω × (0, T),

w = 0 on ∂Ω × (0, T),

w(0) = 0, wt(0) = 0 on Ω .

By the same arguments of (3.6), we observe

∥∥wt(t)
∥∥2 + l

∥∥∇w(t)
∥∥2 + (g ◦ ∇w)(t) + 2

∫ t

0

∥∥∇wt(s)
∥∥2 ds ≤ 0,

and hence w ≡ 0. This completes the proof. �

Now, we are ready to prove the local existence of problem (1.1)–(1.3).

Theorem 3.1 Assume that (H1) and (H2) hold. Then, for the initial data u0 ∈ H1
0 (Ω),

u1 ∈ L2(Ω), there exists a unique solution u of problem (1.1)–(1.3).

Proof Existence. For M > 0 large enough and T > 0, we let

MT =
{

u ∈H : ‖u‖H ≤ M
}

.

For a given v ∈H, there exists a unique solution u of problem (3.1)–(3.3). So, we can define
a map S : MT →H by S(v) = u. We will show that the map S is a contraction mapping on
MT . By a similar computation to that of (3.6), we find

∥∥ut(t)
∥∥2 + l

∥∥∇u(t)
∥∥2 + (g ◦ ∇u)(t) + 2

∫ t

0

∥∥∇ut(s)
∥∥2 ds

≤ ‖u1‖2 + ‖∇u0‖2 + 2
∫ t

0

∥∥∣∣v(t)
∣∣p–2v(t) ln

∣∣v(t)
∣∣∥∥ p

p–1

∥∥ut(t)
∥∥

p ds

≤ ‖u1‖2 + ‖∇u0‖2 + 2
∫ t

0

∥∥∇ut(s)
∥∥ds

+ 2
∫ t

0

{(
1

e(p – 1)

) p
p–1 |Ω1| + c

p(p–1+μ)
p–1

p(p–1+μ)
p–1

(
1

eμ

) p
p–1 ∥∥∇v(s)

∥∥ p(p–1+μ)
p–1

} 2(p–1)
p

ds

≤ ‖u1‖2 + ‖∇u0‖2 + 2
∫ t

0

∥∥∇ut(s)
∥∥ds + CT

(
1 + M2(p–1+μ)),

we used v ∈MT in the last inequality. Thus, we see

∥∥ut(t)
∥∥2 + l

∥∥∇u(t)
∥∥2 + (g ◦ ∇u)(t) ≤ ‖u1‖2 + ‖∇u0‖2 + CT

(
1 + M2(p–1+μ)). (3.15)

We take M > 0 large enough so that

‖u1‖2 + ‖∇u0‖2 ≤ M2

2
,
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then we choose T > 0 sufficiently small so that

CT
(
1 + M2(p–1+μ)) ≤ M2

2
.

From (3.15), we have ‖u‖H ≤ M, that is,

S(MT ) ⊂MT .

It remains to show that S is a contraction mapping. Let v1, v2 ∈ MT , u = S(v1), w = S(v2)
and z = u – w. Then z satisfies

ztt – �z +
∫ t

0
g(t – s)�z(s) ds – �zt

= |v1|p–2v1 ln |v1| – |v2|p–2v2 ln |v2| in Ω × (0, T), (3.16)

z = 0 on ∂Ω × (0, T), (3.17)

z(0) = 0, zt(0) = 0 on Ω . (3.18)

Multiplying zt in (3.16) and integrating it over (0, t),

‖zt‖2 + l‖∇z‖2 + (g ◦ ∇z) + 2
∫ t

0

∥∥∇zt(s)
∥∥2 ds

≤ 2
∫ t

0

∫
Ω

(|v1|p–2v1 ln |v1| – |v2|p–2v2 ln |v2|
)
zt dx ds

= 2
∫ t

0

∫
Ω

(
(p – 1)|ζ |p–2 ln |ζ | + |ζ |p–2)(v1 – v2)zt dx ds

= 2
∫ t

0

∫
Ω

|ζ |p–2(v1 – v2)zt dx ds + 2(p – 1)
∫ t

0

∫
Ω

|ζ |p–2 ln |ζ |(v1 – v2)zt dx ds

:= Ξ1 + Ξ2, (3.19)

where ζ = θv1 + (1 – θ )v2, here 0 < θ < 1. Young’s inequality yields

Ξ1 ≤ 2
∫ t

0
‖ζ‖p–2

n(p–2)‖v1 – v2‖ 2n
n–2

‖zt‖ds

≤ 2c 2n
n–2

cp–2
n(p–2)

∫ t

0
‖∇ζ‖p–2‖∇v1 – ∇v2‖‖zt‖ds

≤ C
∫ t

0
‖∇ζ‖2(p–2)‖∇v1 – ∇v2‖2 ds +

∫ t

0
‖∇zt‖2 ds

≤ CM2(p–2)T‖v1 – v2‖2
H +

∫ t

0
‖∇zt‖2 ds (3.20)

and

Ξ2 ≤ 2(p – 1)
∫ t

0

∥∥|ζ |p–2 ln |ζ |∥∥n‖v1 – v2‖ 2n
n–2

‖zt‖ds

≤ 2(p – 1)c 2n
n–2

∫ t

0

∥∥|ζ |p–2 ln |ζ |∥∥n‖∇v1 – ∇v2‖‖zt‖ds. (3.21)
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Since p – 2 < 2
n–2 , there exists η > 0 such that n(p – 2 + η) < 2n

n–2 . By similar arguments to
(3.7), we deduce

∥∥|ζ |p–2 ln |ζ |∥∥n
n ≤

(
1

e(p – 1)

)n

|Ω1| +
∫

Ω

(|ζ |–η ln |ζ |)n|ζ |n(p–2+η) dx

≤
(

1
e(p – 1)

)n

|Ω1| + cn(p–2+η)
n(p–2+η)

(
1
eη

)n

‖∇ζ‖n(p–2+η)

≤ C
(
1 + Mn(p–2+η)).

Applying this to (3.21), we get

Ξ2 ≤ C
(
1 + M(p–2+η))∫ t

0
‖v1 – v2‖H‖∇zt‖ds

≤ CT
(
1 + M(p–2+η))‖v1 – v2‖2

H +
∫ t

0
‖∇zt‖2 ds. (3.22)

Collecting (3.19), (3.20), (3.22), we arrive at

∥∥zt(t)
∥∥2 + l

∥∥∇z(t)
∥∥2 + (g ◦ ∇z)(t) ≤ CT

(
1 + M2(p–2) + M(p–2+η))‖v1 – v2‖2

H. (3.23)

Taking T > 0 sufficiently small so that CT(1 + M2(p–2) + M(p–2+η)) < 1, we conclude

∥∥S(v1) – S(v2)
∥∥
H < ‖v1 – v2‖H.

Thus, the contraction mapping principle ensures the existence of weak solutions.
Uniqueness. Let w and z be the solutions of problem (1.1)–(1.3) and U = w – z. Then U

satisfies

Utt – �U +
∫ t

0
g(t – s)�U(s) ds – �Ut = |w|p–2w ln |w| – |z|p–2z ln |z| in Ω × (0, T),

U = 0 on ∂Ω × (0, T),

U(0) = 0, Ut(0) = 0 on Ω .

By the same arguments as of (3.19), (3.20) and (3.21), we observe

∥∥Ut(t)
∥∥2 +

∥∥∇U(t)
∥∥2 ≤ C

∫ t

0

(∥∥Ut(s)
∥∥2 +

∥∥∇U(s)
∥∥2)ds.

Gronwall’s inequality gives U ≡ 0. This completes the proof. �

4 Finite time blow-up of solutions
In this section we establish the blow-up of the weak solution for problem (1.1)–(1.3). For
this purpose, we set the following functionals:

J(v) =
1
2

(
1 –

∫ ∞

0
g(s) ds

)
‖∇v‖2 –

1
p

∫
Ω

∣∣v(x)
∣∣p

ln
∣∣v(x)

∣∣dx +
1
p2 ‖v‖p

p, (4.1)
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I(v) =
(

1 –
∫ ∞

0
g(s) ds

)
‖∇v‖2 –

∫
Ω

∣∣v(x)
∣∣p

ln
∣∣v(x)

∣∣dx, (4.2)

then

J(v) =
(

1
2

–
1
p

)(
1 –

∫ ∞

0
g(s) ds

)
‖∇v‖2 +

1
p

I(v) +
1
p2 ‖v‖p

p. (4.3)

Define the potential depth as

d = inf
v∈H1

0 (Ω)\{0}
sup
λ>0

J(λv), (4.4)

then, see e.g. [23–25],

0 < d = inf
v∈N

J(v), (4.5)

where N is the well-known Nehari manifold given by

N =
{

v ∈ H1
0 (Ω) \ {0} | I(v) = 0

}
.

Lemma 4.1 For any v ∈ H1
0 (Ω) \ {0}, there exists a unique λ∗ > 0 such that

I(λv) = λ
∂J(λv)

∂λ

⎧⎪⎪⎨
⎪⎪⎩

> 0, 0 < λ < λ∗,

= 0, λ = λ∗,

< 0, λ > λ∗.

(4.6)

Proof For λ > 0, we have

∂

∂λ
J(λv) = λ

{(
1 –

∫ ∞

0
g(s) ds

)
‖∇v‖2 – λp–2

∫
Ω

∣∣v(x)
∣∣p

ln
∣∣v(x)

∣∣dx – λp–2 lnλ‖v‖p
p

}

:= λK(λv). (4.7)

By simple calculation, we also get

∂

∂λ
K(λv) = –λp–3

{
(p – 2)

∫
Ω

∣∣v(x)
∣∣p

ln
∣∣v(x)

∣∣dx + (p – 2) lnλ‖v‖p
p + ‖v‖p

p

}

⎧⎪⎪⎨
⎪⎪⎩

> 0, 0 < λ < λ1,

= 0, λ = λ1,

< 0, λ > λ1,

where

λ1 = exp

( (p – 2)
∫
Ω

|v(x)|p ln |v(x)|dx + ‖v‖p
p

(2 – p)‖v‖p
p

)
< 1. (4.8)
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Since limλ→0+ K(λv) = (1 –
∫ ∞

0 g(s) ds)‖∇v‖2 ≥ 0 and limλ→+∞ K(λv) = –∞, there exists a
unique λ∗ > λ1 such that K(λ∗v) = 0. From this and (4.7), we have

∂J(λv)
∂λ

⎧⎪⎪⎨
⎪⎪⎩

> 0, 0 < λ < λ∗,

= 0, λ = λ∗,

< 0, λ > λ∗.

Noting that I(λv) = λ
∂J(λv)

∂λ
, which is verified by a direct computation, we complete the

proof. �

Now, we define the energy for problem (1.1)–(1.3) by

E(t) =
1
2
∥∥ut(t)

∥∥2 +
1
2

(
1 –

∫ t

0
g(s) ds

)∥∥∇u(t)
∥∥2 +

1
2

(g ◦ ∇u)(t)

–
1
p

∫
Ω

∣∣u(x, t)
∣∣p

ln
∣∣u(x, t)

∣∣dx +
1
p2

∥∥u(t)
∥∥p

p, (4.9)

then

E(t) ≥ J
(
u(t)

)
+

1
2
∥∥ut(t)

∥∥2 +
1
2

(g ◦ ∇u)(t) ≥ J
(
u(t)

)
. (4.10)

Replacing w in (2.3) by ut(t) and using (H2), one sees

d
dt

E(t) +
∥∥∇ut(t)

∥∥2 =
1
2
(
g ′ ◦ ∇u(t)

)
(t) –

g(t)
2

∥∥∇u(t)
∥∥2 ≤ 0

and hence

E(t) +
∫ t

0

∥∥∇ut(s)
∥∥2 ds ≤ E(0) for 0 ≤ t < Tmax, (4.11)

where Tmax is the maximal existence time of the solution u of problem (1.1)–(1.3).

Lemma 4.2 Let (H1) and (H2) hold. If I(u0) < 0 and E(0) < d, then the solution u of problem
(1.1)–(1.3) satisfies

I
(
u(t)

)
< 0 and E(t) < d for t ∈ [0, Tmax). (4.12)

Proof From (4.11), it is clear that E(t) < d. Since I(u0) < 0 and u is continuous on [0, Tmax),

I
(
u(t)

)
< 0 for some interval [0, t1) ⊂ [0, Tmax). (4.13)

Let t0 be the maximal time satisfying (4.13). Suppose t0 < Tmax, then I(u(t0)) = 0, that is,

u(t0) ∈N .

Thus, we have from (4.5)

J
(
u(t0)

) ≥ inf
v∈N

J(v) = d.
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But this is a contradiction for

J
(
u(t0)

) ≤ E(t0) ≤ E(0) < d. �

Theorem 4.1 Let the conditions (H1) and (H2) hold. Assume that I(u0) < 0, E(0) = αd,
where α < 1, and the kernel function g satisfies

∫ ∞

0
g(s) ds ≤ p – 2

p – 2 + 1
(1–α̂)2p+2α̂(1–α̂)

, (4.14)

where α̂ = max{0,α}. Moreover, suppose that (u0, u1) > 0 when E(0) = 0. Then the solution
u of problem (1.1)–(1.3) blows up in finite time.

Proof By contradiction, suppose that the solution u is global. For any T > 0, we consider
L : [0, T] →R

+ defined by

L(t) =
∥∥u(t)

∥∥2 +
∫ t

0

∥∥∇u(s)
∥∥2 ds + (T – t)‖∇u0‖2 + b(t + T0)2, (4.15)

where T0 > 0 and b ≥ 0, which are specified later. Then

L(t) > 0 for t ∈ [0, T], (4.16)

L′(t) = 2
(
u(t), ut(t)

)
+

∥∥∇u(t)
∥∥2 – ‖∇u0‖2 + 2b(t + T0)

= 2
(
u(t), ut(t)

)
+ 2

∫ t

0

(∇u(s),∇ut(s)
)

ds + 2b(t + T0), (4.17)

and, from (1.1),

L′′(t) = 2
∥∥ut(t)

∥∥2 – 2
∥∥∇u(t)

∥∥2 + 2
∫ t

0
g(t – s)

(∇u(t),∇u(s)
)

ds

+ 2
∫

Ω

∣∣u(x, t)
∣∣p

ln
∣∣u(x, t)

∣∣dx + 2b

= 2
∥∥ut(t)

∥∥2 – 2
(

1 –
∫ t

0
g(s) ds

)∥∥∇u(t)
∥∥2

– 2
∫ t

0
g(t – s)

(∇u(t),∇u(t) – ∇u(s)
)

ds + 2
∫

Ω

∣∣u(x, t)
∣∣p

ln
∣∣u(x, t)

∣∣dx

+ 2b, (4.18)

for almost every t ∈ [0, T]. By the Cauchy–Schwartz inequality and (4.15), we see that

(L′(t))2

4
=

((
u(t), ut(t)

)
+

∫ t

0

(∇u(s),∇ut(s)
)

ds + b(t + T0)
)2

≤
(∥∥u(t)

∥∥2 +
∫ t

0

∥∥∇u(s)
∥∥2 ds + b(t + T0)2

)(∥∥ut(t)
∥∥2 +

∫ t

0

∥∥∇ut(s)
∥∥2 ds + b

)

=
(
L(t) – (T – t)‖∇u0‖2)(∥∥ut(t)

∥∥2 +
∫ t

0

∥∥∇ut(s)
∥∥2 ds + b

)

≤ L(t)
(∥∥ut(t)

∥∥2 +
∫ t

0

∥∥∇ut(s)
∥∥2 ds + b

)
. (4.19)
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Thus, we have from (4.18) and (4.19) that

L(t)L′′(t) –
p + 2

4
(
L′(t)

)2 ≥ L(t)F(t), (4.20)

where

F(t) = –p
∥∥ut(t)

∥∥2 – 2
(

1 –
∫ t

0
g(s) ds

)∥∥∇u(t)
∥∥2 + 2

∫
Ω

∣∣u(x, t)
∣∣p

ln
∣∣u(x, t)

∣∣dx

– 2
∫ t

0
g(t – s)

(∇u(t),∇u(t) – ∇u(s)
)

ds – (p + 2)
∫ t

0

∥∥∇ut(s)
∥∥2 ds – pb. (4.21)

Applying (4.9) to this and using (4.11) and Young’s inequality, we get

F(t) = –2pE(t) + (p – 2)
(

1 –
∫ t

0
g(s) ds

)∥∥∇u(t)
∥∥2 + p(g ◦ ∇u)(t) +

2
p
∥∥u(t)

∥∥p
p

– (p + 2)
∫ t

0

∥∥∇ut(s)
∥∥2 ds – 2

∫ t

0
g(t – s)

(∇u(t),∇u(t) – ∇u(s)
)

ds – pb

≥ –2pE(0) + (p – 2)
(

1 –
∫ t

0
g(s) ds

)∥∥∇u(t)
∥∥2 + p(g ◦ ∇u)(t) +

2
p
∥∥u(t)

∥∥p
p

+ (p – 2)
∫ t

0

∥∥∇ut(s)
∥∥2 ds – 2

∫ t

0
g(t – s)

(∇u(t),∇u(t) – ∇u(s)
)

ds – pb

≥ –2pE(0) +
{

(p – 2) –
(

p – 2 +
1
ε

)∫ t

0
g(s) ds

}∥∥∇u(t)
∥∥2 + (p – ε)(g ◦ ∇u)(t)

+
2
p
∥∥u(t)

∥∥p
p + (p – 2)

∫ t

0

∥∥∇ut(s)
∥∥2 ds – pb, (4.22)

where ε > 0. We now consider the initial energy E(0) divided into three cases: E(0) < 0,
E(0) = 0, and 0 < E(0) < d.

Case 1: α < 0, i.e. E(0) < 0.
Taking ε = p in (4.22) and choosing 0 < b ≤ –2E(0), we have from (4.14)

F(t) ≥ p
(
–2E(0) – b

)
+

{
(p – 2) –

(
p – 2 +

1
p

)∫ t

0
g(s) ds

}∥∥∇u(t)
∥∥2

+
2
p
∥∥u(t)

∥∥p
p + (p – 2)

∫ t

0

∥∥∇ut(s)
∥∥2 ds ≥ 0. (4.23)

Case 2: α = 0, i.e. E(0) = 0.
Taking ε = p in (4.22) and b = 0, we see from (4.14) that

F(t) ≥
{

(p – 2) –
(

p – 2 +
1
p

)∫ t

0
g(s) ds

}∥∥∇u(t)
∥∥2

+
2
p
∥∥u(t)

∥∥p
p + (p – 2)

∫ t

0

∥∥∇ut(s)
∥∥2 ds ≥ 0. (4.24)

Case 3: 0 < α < 1, i.e. 0 < E(0) < d.
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Taking ε = (1 – α)p + 2α in (4.22), we find

F(t) ≥ –2pE(0) +
{

(p – 2) –
(

p – 2 +
1

(1 – α)p + 2α

)∫ t

0
g(s) ds

}∥∥∇u(t)
∥∥2

+ α(p – 2)(g ◦ ∇u)(t) +
2
p
∥∥u(t)

∥∥p
p + (p – 2)

∫ t

0

∥∥∇ut(s)
∥∥2 ds – pb. (4.25)

Due to the condition (4.14), it follows that

(p – 2) –
(

p – 2 +
1

(1 – α)p + 2α

)∫ t

0
g(s) ds ≥ α(p – 2)

(
1 –

∫ ∞

0
g(s) ds

)
, (4.26)

and hence

F(t) ≥ –2pE(0) + α(p – 2)
{(

1 –
∫ ∞

0
g(s) ds

)∥∥∇u(t)
∥∥2 + (g ◦ ∇u)(t)

}

+
2
p
∥∥u(t)

∥∥p
p + (p – 2)

∫ t

0

∥∥∇ut(s)
∥∥2 ds – pb

≥ –2pE(0) + α(p – 2)
(

1 –
∫ ∞

0
g(s) ds

)∥∥∇u(t)
∥∥2 +

2α

p
∥∥u(t)

∥∥p
p – pb. (4.27)

On the other hand, it is noted that I(u(t)) < 0 for all t ∈ [0, T] from Lemma 4.2. So,
Lemma 4.1 ensures that the existence of λ∗ ∈ (0, 1) satisfying I(λ∗u(t)) = 0. Hence, from
(4.3) and (4.5)

d ≤ J
(
λ∗u(t)

)
=

(
1
2

–
1
p

)(
1 –

∫ ∞

0
g(s) ds

)
λ2

∗
∥∥∇u(t)

∥∥2 +
λ

p
∗

p2

∥∥u(t)
∥∥p

p

<
p – 2

2p

(
1 –

∫ ∞

0
g(s) ds

)∥∥∇u(t)
∥∥2 +

1
p2

∥∥u(t)
∥∥p

p. (4.28)

Since u is continuous on [0, T], there exists κ > 0 such that

d + κ <
p – 2

2p

(
1 –

∫ ∞

0
g(s) ds

)∥∥∇u(t)
∥∥2 +

1
p2

∥∥u(t)
∥∥p

p for all t ∈ [0, T].

From this and (4.27), we get

F(t) ≥ –2pαd + 2αp
{

p – 2
2p

(
1 –

∫ ∞

0
g(s) ds

)∥∥∇u(t)
∥∥2 +

1
p2

∥∥u(t)
∥∥p

p

}
– pb

> 2αpκ – pb. (4.29)

Choosing b > 0 sufficiently small so that 2αpκ – pb ≥ 0, we obtain

F(t) ≥ 0. (4.30)

Adapting (4.23), (4.24), (4.30) to (4.20), we infer

L(t)L′′(t) –
p + 2

4
(
L′(t)

)2 ≥ 0. (4.31)
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Now it remains to show L′(0) > 0. In the case of E(0) = 0, the condition (u0, u1) > 0 gives

L′(0) = 2(u0, u1) > 0.

For the cases of E(0) < 0 and 0 < E(0) < d, we choose T0 large enough so that

L′(0) = 2(u0, u1) + 2bT0 > 0.

Thus, we conclude from Lemma 2.2 that

lim
t→T–∗

L(t) = +∞ (4.32)

for

T∗ ≤ 4L(0)
(p – 2)L′(0)

=
2‖u0‖2 + 2T‖∇u0‖2 + 2bT2

0
(p – 2)((u0, u1) + bT0)

.

Thus, we deduce that

T∗ ≤ 2‖u0‖2 + 2bT2
0

(p – 2)(u0, u1) + (p – 2)bT0 – 2‖∇u0‖2 . (4.33)

From (4.15), (4.32) and (4.33), we have

lim
t→T–∗

(∥∥u(t)
∥∥ +

∫ t

0

∥∥∇u(s)
∥∥2 ds

)
= +∞.

This contradicts our assumption that the weak solution is global. Thus, we conclude that
the weak solution u to problem (1.1)–(1.3) blows up in finite time. �
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