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Abstract
In this paper, certain Hermite–Hadamard–Mercer type inequalities are proved via
k-Caputo fractional derivatives. We established some new k-Caputo fractional
derivatives inequalities with Hermite–Hadamard–Mercer type inequalities for
differentiable mappingψ (n) whose derivatives in the absolute values are
convex.
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1 Introduction
Let 0 < u1 ≤ u2 ≤ · · · ≤ un and let μ = (μ1,μ2, . . . ,μn) be non-negative weights such that
∑n

i=1 μi = 1. The famous Jensen inequality [1] states that if ψ is a convex function on the
interval [θ1, θ2], then

ψ

( n∑

i=1

μiui

)

≤
( n∑

i=1

μiψ(ui)

)

(1)

for all ui ∈ [θ1, θ2] and μi ∈ [0, 1] (i = 1, 2, . . . , n).
In 1883, the Hermite–Hadamard (H-H) inequality was considered the most useful in-

equality in mathematical analysis. It is also known as the classical H-H inequality.
The Hermite–Hadamard inequality asserts that if ψ : J ⊆ R → R is a convex function

defined on J and θ1, θ2 ∈ J such that θ1 < θ2, then

ψ

(
θ1 + θ2

2

)

≤ 1
θ2 – θ1

∫ θ2

θ1

ψ(λ) dλ ≤ ψ(θ1) + ψ(θ2)
2

.

For recent results related with the Jensen–Mercer inequality, see [1–4].
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Theorem 1 If ψ is a convex function on [θ1, θ2], then

ψ

(

θ1 + θ2 –
n∑

i=1

μiui

)

≤ ψ(θ1) + ψ(θ2) –
n∑

i=1

μiψ(ui), (2)

∀ui ∈ [θ1, θ2] and all μi ∈ [0, 1] (i = 1, 2, . . . , n).

Inequality (2) is known as the Jensen–Mercer inequality. Recently, inequality (2) has
been studied and generalized in [5–7].

Fractional calculus was generally a study kept for the best minds in mathematics. The
early era of fractional calculus is as old as the history of differential calculus. One gen-
eralized the differential operators and ordinary integrals. However, the fractional deriva-
tives have some more basic properties than the corresponding classical ones. On the other
hand, besides the smooth requirement, the Caputo derivative does not coincide with the
classical derivative [8]. It was introduced in 1967.

In the following, we give the definition of Caputo fractional derivatives (see [9–11] and
the references therein).

Definition 1 Let α > 0 and α /∈ {1, 2, 3, . . . }, n = [α] + 1, ψ ∈ Cn[θ1, θ2]. The Caputo frac-
tional derivatives of order α are defined as follows:

(cDα
θ+

1
ψ

)
(u) =

1
Γ (n – α)

∫ u

θ1

ψ (n)(λ)
(u – λ)α–n+1 dλ; u > θ1,

and

(cDα
θ–

2
ψ

)
(u) =

(–1)n

Γ (n – α)

∫ θ2

u

ψ (n)(λ)
(λ – u)α–n+1 dλ; u < θ2.

If α = n ∈ {1, 2, 3, . . .} and the usual derivatives of ψ of order n exist, then the Caputo
fractional derivatives (cDα

θ+
1
ψ)(u) coincide with ψ (n)(u).

In particular, we have

(cD0
θ+

1
ψ

)
(u) =

(cD0
θ–

2
ψ

)
(u) = ψ(u),

where n = 1 and α = 0.

Definition 2 (See [12]) Diaz and Parigun have defined the k-Gamma function Γk , a gen-
eralization of the classical Gamma function, which is given by the following formula:

Γk(x) = lim
n–∞

n!kn(nk)
x
k – 1

(x)n,k
k > 0.

It is shown that the Mellin transform of the exponential function e– tk
k is the k-Gamma

function given by

Γk(α) =
∫ ∞

0
e– tk

k tα–1 dt.

Obviously, Γk(x + k) = xΓk(x), Γ (x) = limk→1 Γk(x) and Γk(x) = k
x
k –1Γ ( x

k ).
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Definition 3 ([13]) Let α > 0, k ≥ 1 and α /∈ {1, 2, 3, . . . }, n = [α] + 1, ψ ∈ Cn[θ1, θ2]. The
right-sided and left-sided Caputo k-fractional derivatives of order α are defined as follows:

(cDα,k
θ+

1
ψ

)
(u) =

1
kΓk(n – α

k )

∫ u

θ1

ψ (n)(λ)
(u – λ)

α
k –n+1 dλ; u > θ1 (3)

and

(cDα,k
θ–

2
ψ

)
(v) =

(–1)n

kΓk(n – α
k )

∫ θ2

v

ψ (n)(λ)
(λ – v)

α
k –n+1 dλ; v < θ2. (4)

For k = 1, Caputo k-fractional derivatives give the definition of Caputo fractional deriva-
tives.

In this article, by using the Jensen–Mercer inequality, we prove Hermite–Hadamard in-
equalities for fractional integrals and we establish some new Caputo k-fractional deriva-
tives connected with the left and right sides of Hermite–Hadamard type inequalities for
differentiable mappings whose derivatives in absolute values are convex.

Throughout the paper, we need the following assumptions.
A1 = ∀u, v ∈ [θ1, θ2], α > 0, k ≥ 1 and Γk(·) is the k-Gamma function.

2 Hermite–Hadamard–Mercer type inequalities for Caputo k-fractional
derivatives

By using the Jensen–Mercer inequality, Hermite–Hadamard type inequalities can be ex-
pressed in Caputo k-fractional derivative form as follows.

Theorem 2 Suppose that if ψ : [θ1, θ2] → R is a positive function with 0 ≤ θ1 < θ2 and
ψ ∈ Cn[θ1, θ2]. If ψ (n) is a convex function on [θ1, θ2] along with the assumptions in A1,
then the following inequalities for Caputo k-fractional derivatives hold:

ψ (n)
(

θ1 + θ2 –
u + v

2

)

≤ ψ (n)(θ1) + ψ (n)(θ2) –
Γk(n – α

k + k)
2(v – u)n– α

k

{(cDα,k
u+ ψ

)
(v) + (–1)n(cDα,k

v– ψ
)
(u)

}

≤ ψ (n)(θ1) + ψ (n)(θ2) – ψ (n)
(

u + v
2

)

. (5)

Proof Using the Jensen–Mercer inequality, we have

ψ (n)
(

θ1 + θ2 –
w + z

2

)

≤ ψ (n)(θ1) + ψ (n)(θ2) –
ψ (n)(w) + ψ (n)(z)

2
(6)

for all w, z ∈ [θ1, θ2].
Now by change of variables w = λu + (1 – λ)v and z = (1 – λ)u + λv, for all u, v ∈ [θ1, θ2]

and λ ∈ [0, 1] in (6), we have

ψ (n)
(

θ1 + θ2 –
u + v

2

)

≤ ψ (n)(θ1) + ψ (n)(θ2) –
ψ (n)(λu + (1 – λ)v) + ψ (n)((1 – λ)u + λv)

2
.
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Multiplying both sides by λn– α
k –1 above and then integrating the resulting inequality

with respect to λ over [0, 1], we have

1
(n – α

k )
ψ (n)

(

θ1 + θ2 –
u + v

2

)

≤ 1
(n – α

k )
{
ψ (n)(θ1) + ψ (n)(θ2)

}

–
1
2

{∫ 1

0
λn– α

k –1(ψ (n)(λu + (1 – λ)v
)

+ ψ (n)((1 – λ)u + λv
))

dλ

}

,

hence

ψ (n)
(

θ1 + θ2 –
u + v

2

)

≤ ψ (n)(θ1) + ψ (n)(θ2)

–
Γk(n – α

k + k)
2(v – u)n– α

k

{(cDα,k
u+ ψ

)
(v) + (–1)n(cDα,k

v– ψ
)
(u)

}

and so the first inequality of (5) is proved.
Now for the proof of second inequality of (5), we first note that if ψ (n) is a convex func-

tion, then for λ ∈ [0, 1], it gives

ψ (n)
(

u + v
2

)

= ψ (n)
(

λu + (1 – λ)v + (1 – λ)u + λv
2

)

≤ ψ (n)(λu + (1 – λ)v) + ψ (n)((1 – λ)u + λv)
2

.

Multiplying both sides by λn– α
k –1 above and then integrating the resulting inequality

with respect to λ over [0, 1], we have

1
n – α

k
ψ (n)

(
u + v

2

)

≤ 1
2

{∫ 1

0
λn– α

k –1(ψ (n)(λu + (1 – λ)v
)

+ ψ (n)((1 – λ)u + λv
))

dλ

}

,

hence

ψ (n)
(

u + v
2

)

≤ Γk(n – α
k + k)

2(v – u)n– α
k

{(cDα,k
u+ ψ

)
(v) + (–1)n(cDα,k

v– ψ
)
(u)

}
.

Multiplying by (–1) on both sides, we have

–
Γk(n – α

k + k)
2(v – u)n– α

k

{(cDα,k
u+ ψ

)
(v) + (–1)n(cDα,k

v– ψ
)
(u)

} ≤ –ψ (n)
(

u + v
2

)

. (7)

Adding ψ (n)(θ1) + ψ (n)(θ2) in both sides in (7), we get the second inequality of (5). �

Remark 1 If we take k = 1 in Theorem 2, then it reduces to Theorem 2 in [14].
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Theorem 3 Suppose that if ψ : [θ1, θ2] → R is a positive function with 0 ≤ θ1 < θ2 and
ψ ∈ Cn[θ1, θ2]. If ψ (n) is a convex function on [θ1, θ2] along with the assumptions in A1,
then the following inequalities for the Caputo k-fractional derivatives hold:

ψ (n)
(

θ1 + θ2 –
u + v

2

)

≤ 2n– α
k –1Γk(n – α

k + k)
(v – u)n– α

k

{(cDα,k
(θ1+θ2– u+v

2 )+ψ
)
(θ1 + θ2 – u)

+ (–1)n(cDα,k
(θ1+θ2– u+v

2 )–ψ
)
(θ1 + θ2 – v)

}

≤ ψ (n)(θ1) + ψ (n)(θ2) –
(

ψ (n)(u) + ψ (n)(v)
2

)

. (8)

Proof To prove the first part of the inequality, we use the convexity of ψ (n),

ψ (n)
(

θ1 + θ2 –
u1 + v1

2

)

= ψ (n)
(

θ1 + θ2 – u1 + θ1 + θ2 – v1

2

)

≤ ψ (n)(θ1 + θ2 – u1) + ψ (n)(θ1 + θ2 – v1)
2

for all u1, v1 ∈ [θ1, θ2]. Now by writing the variables u1 = λ
2 u + 2–λ

2 v and v1 = 2–λ
2 u + λ

2 v, for
u, v ∈ [θ1, θ2] and λ ∈ [0, 1], we get

2ψ (n)
(

θ1 + θ2 –
u + v

2

)

≤ ψ (n)
(

θ1 + θ2 –
(

λ

2
u +

2 – λ

2
v
))

+ ψ (n)
(

θ1 + θ2 –
(

2 – λ

2
u +

λ

2
v
))

.

Multiplying both sides by λn– α
k –1 above and then integrating the resulting inequality

with respect to λ over [0, 1], we have

2ψ (n)
(

θ1 + θ2 –
u + v

2

)∫ 1

0
λn– α

k –1 dλ

≤
∫ 1

0
λn– α

k –1
(

ψ (n)
(

θ1 + θ2 –
(

λ

2
u +

2 – λ

2
v
))

+ ψ (n)
(

θ1 + θ2 –
(

2 – λ

2
u +

λ

2
v
)))

dλ,

hence

ψ (n)
(

θ1 + θ2 –
u + v

2

)

≤ 2n– α
k –1Γk(n – α

k + k)
(v – u)n– α

k

{(cDα,k
(θ1+θ2– u+v

2 )+ψ
)
(θ1 + θ2 – u)

+ (–1)n(cDα,k
(θ1+θ2– u+v

2 )–ψ
)
(θ1 + θ2 – v)

}
(9)

and so the first inequality of (8) is proved.
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Now for the proof of second inequality of (5), we first note that if ψ (n) is a convex func-
tion, then for λ ∈ [0, 1], it yields

ψ (n)
(

θ1 + θ2 –
(

λ

2
u +

2 – λ

2
v
))

≤ ψ (n)(θ1) + ψn(θ2) –
[

λ

2
ψ (n)(u) +

2 – λ

2
ψ (n)(v)

]

(10)

and

ψ (n)
(

θ1 + θ2 –
(

2 – λ

2
u +

λ

2
v
))

≤ ψ (n)(θ1) + ψ (n)(θ2) –
[

2 – λ

2
ψ (n)(u) +

λ

2
ψ (n)(v)

]

. (11)

By adding the inequalities of (10) and (11), we have

ψ (n)
(

θ1 + θ2 –
(

λ

2
u +

2 – λ

2
v
))

+ ψ (n)
(

θ1 + θ2 –
(

2 – λ

2
u +

λ

2
v
))

≤ 2
(
ψ (n)(θ1) + ψ (n)(θ2)

)
–

(
ψ (n)(u) + ψ (n)(v)

)
.

Multiplying both sides by λn– α
k –1 in above and then integrating the resulting inequality

with respect to λ over [0, 1], we have

∫ 1

0
λn– α

k –1
(

ψ (n)
(

θ1 + θ2 –
(

λ

2
u +

2 – λ

2
v
))

+ ψ (n)
(

θ1 + θ2 –
(

2 – λ

2
u +

λ

2
v
)))

dλ

≤ {
2
(
ψ (n)(θ1) + ψn(θ2)

)
–

(
ψ (n)(u) + ψ (n)(v)

)}
∫ 1

0
λn– α

k –1 dλ.

This implies

2n– α
k Γk(n – α

k )
(v – u)n– α

k

{(cDα,k
(θ1+θ2– u+v

2 )+ψ
)
(θ1 + θ1 – u)

+ (–1)n(cDα,k
(θ1+θ2– u+v

2 )–ψ
)
(θ1 + θ2 – v)

}

≤ {
2
(
ψ (n)(θ1) + ψ (n)(θ2)

)
–

(
ψ (n)(u) + ψ (n)(v)

)} 1
n – α

k
. (12)

Multiplying (12) by (n– α
k )

2 ,

2n– α
k –1Γk(n – α

k + k)
(v – u)n– α

k

{(cDα,k
(θ1+θ2– u+v

2 )+ψ
)
(θ1 + θ2 – u)

+ (–1)n(cDα,k
(θ1+θ2– u+v

2 )–ψ
)
(θ1 + θ2 – v)

}

≤ (
ψ (n)(θ1) + ψ (n)(θ2)

)
–

ψ (n)(u) + ψ (n)(v)
2

. (13)

Combining (9) and (13), we get (8). �
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Remark 2 If we take k = 1 in Theorem 3, then it reduces to Theorem 3 in [14].

Lemma 1 Suppose that ψ : [θ1, θ2] → R is a differentiable mapping on (θ1, θ2) with 0 ≤
θ1 < θ2 and ψ ∈ Cn+1[θ1, θ2] along with the assumptions in A1, then the following equality
for Caputo k-fractional derivatives holds:

ψ (n)(θ1 + θ2 – u) + ψ (n)(θ1 + θ2 – v)
2

–
Γk(n – α

k + k)
2(v – u)n– α

k

× {(cDα,k
(θ1+θ2–v)+ψ

)
(θ1 + θ2 – u) + (–1)n(cDα,k

(θ1+θ2–u)–ψ
)
(θ1 + θ2 – v)

}

=
v – u

2

∫ 1

0

(
λn– α

k – (1 – λ)n– α
k
)
ψ (n+1)(θ1 + θ2 –

(
λu + (1 – λ)v

))
dλ. (14)

Proof It suffices to note that

I =
v – u

2
{I1 – I2}, (15)

where

I1 =
∫ 1

0

(
λn– α

k
)
ψ (n+1)(θ1 + θ2 –

(
λu + (1 – λ)v

))
dλ

=
ψ (n)(θ1 + θ2 – u)

v – u

–
n – α

k
v – u

∫ 1

0
λn– α

k –1ψ (n)(θ1 + θ2 –
(
λu + (1 – λ)v

))
dλ

=
ψ (n)(θ1 + θ2 – u)

v – u

–
Γk(n – α

k + k)
(v – u)n– α

k +1

{
(–1)n(cDα,k

(θ1+θ2–u)–ψ
)
(θ1 + θ2 – v)

}
(16)

and

I2 =
∫ 1

0
(1 – λ)n– α

k ψ (n+1)(θ1 + θ2 –
(
λu + (1 – λ)v

))
dλ

= –
ψ (n)(θ1 + θ2 – v)

v – u

+
n – α

k
v – u

∫ 1

0
(1 – λ)n– α

k –1ψ (n)(θ1 + θ2 –
(
λu + (1 – tλ)v

))
dλ

= –
ψ (n)(θ1 + θ2 – v)

v – u

+
Γk(n – α

k + k)
(v – u)n– α

k +1

{(cDα,k
(θ1+θ2–v)+ψ

)
(θ1 + θ2 – u)

}
. (17)

Combining (16) and (17) with (15) and get (14). �

Remark 3 If we take k = 1 in Lemma 1, then it reduces to Lemma 1 in [14].

Remark 4 If we take u = a and v = b in Lemma 1, then it reduces to Remark 2.5 in [11].
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Lemma 2 Suppose that ψ : [θ1, θ2] → R is a differentiable mapping on (θ1, θ2) with 0 ≤
θ1 < θ2 and ψ ∈ Cn+1[θ1, θ2] along with the assumptions in A1, then the following equality
for Caputo k-fractional derivatives holds:

ψ (n)
(

θ1 + θ2 –
u + v

2

)

–
2n– α

k –1Γk(n – α
k + k)

(v – u)n– α
k

× {(cDα,k
(θ1+θ2– u+v

2 )+ψ
)
(θ1 + θ2 – u) + (–1)n(cDα,k

(θ1+θ2– u+v
2 )–ψ

)
(θ1 + θ2 – v)

}

=
v – u

4

[∫ 1

0
λn– α

k ψ (n+1)
(

θ1 + θ2 –
(

λ

2
u +

2 – λ

2
v
))

dλ

–
∫ 1

0
λn– α

k ψ (n+1)
(

θ1 + θ2 –
(

2 – λ

2
u +

λ

2
v
))

dλ

]

. (18)

Proof It suffices to note that

I =
v – u

4
{I1 – I2}, (19)

where

I1 =
∫ 1

0
λn– α

k ψ (n+1)
(

θ1 + θ2 –
(

λ

2
u +

2 – λ

2
v
))

dλ

=
2

v – u
ψ (n)

(

θ1 + θ2 –
u + v

2

)

–
2(n – α

k )
v – u

∫ 1

0
λn– α

k –1ψ (n)
(

θ1 + θ2 –
(

λ

2
u +

2 – λ

2
v
))

dλ

=
2

v – u
ψ (n)

(

θ1 + θ2 –
u + v

2

)

– (–1)n 2n– α
k +1Γk(n – α

k + k)
(v – u)n– α

k +1

(cDα,k
(θ1+θ2– u+v

2 )–ψ
)
(θ1 + θ2 – v) (20)

and

I2 =
∫ 1

0
λn– α

k ψ (n+1)
(

θ1 + θ2 –
(

2 – λ

2
u +

λ

2
v
))

dλ

= –
2

v – u
ψ (n)

(

θ1 + θ2 –
u + v

2

)

+
2(n – α)

v – u

∫ 1

0
λn– α

k –1ψ (n)
(

θ1 + θ2 –
(

2 – λ

2
u +

λ

2
v
))

dλ

= –
2

v – u
ψ (n)

(

θ1 + θ2 –
u + v

2

)

+
2n– α

k +1Γk(n – α
k + k)

(v – u)n– α
k +1

(cDα,k
(θ1+θ2– u+v

2 )+ψ
)
(θ1 + θ2 – u). (21)

Combining (20) and (21) with (19), we get (18). �

Remark 5 If we take k = 1 in Lemma 2, then it reduces to Lemma 2 in [14].
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Remark 6 If we take u = a and v = b in Lemma 2, then it reduces to Lemma 2 in [10].

Theorem 4 Suppose that ψ : [θ1, θ2] → R is a differentiable mapping on (θ1, θ2) with
0 ≤ θ1 < θ2 and ψ ∈ Cn+1[θ1, θ2]. If |ψ (n+1)| is a convex function on [θ1, θ2] along with the
assumptions in A1, then the following inequality for Caputo k-fractional derivatives holds:

∣
∣
∣
∣
ψ (n)(θ1 + θ2 – u) + ψ (n)(θ1 + θ2 – v)

2
–

Γk(n – α
k + k)

2(v – u)n– α
k

× ((cDα,k
(θ1+θ1–v)+ψ

)
(θ1 + θ2 – u) + (–1)n(cDα,k

(θ1+θ2–u)–ψ
)
(θ1 + θ2 – v)

)
∣
∣
∣
∣

≤ v – u
n – α

k + 1

(

1 –
1

2n– α
k

){
∣
∣ψ (n+1)(θ1)

∣
∣ +

∣
∣ψ (n+1)(θ2)

∣
∣

–
( |ψ (n+1)(u)| + |ψ (n+1)(v)|

2

)}

. (22)

Proof By using Lemma 1 and the Jensen–Mercer inequality, we have

∣
∣
∣
∣
ψ (n)(θ1 + θ2 – u) + ψ (n)(θ1 + θ2 – v)

2
–

Γk(n – α
k + k)

2(v – u)n– α
k

× ((cDα,k
(θ1+θ2–v)+ψ

)
(θ1 + θ2 – u) + (–1)n(cDα,k

(θ1+θ2–u)–ψ
)
(θ1 + θ2 – v)

)
∣
∣
∣
∣

≤ v – u
2

∫ 1

0

∣
∣λn– α

k – (1 – λ)n– α
k
∣
∣
∣
∣ψ (n+1)(θ1 + θ2

–
(
λu + (1 – λ)v

))∣
∣dλ

∣
∣ψ (n+1)(θ1)

∣
∣

≤ v – u
2

∫ 1

0

{
∣
∣λn– α

k – (1 – λ)n– α
k
∣
∣

+
∣
∣ψ (n+1)(θ2)

∣
∣ –

(
λ
∣
∣ψ (n+1)(u)

∣
∣ + (1 – λ)

∣
∣ψ (n+1)(v)

∣
∣
)
}

dλ

≤ v – u
2

[I1 + I2], (23)

where

I1 =
∫ 1

2

0

(
(1 – λ)n– α

k – λn– α
k
)

× {∣
∣ψ (n+1)(θ1)

∣
∣ +

∣
∣ψ (n+1)(θ2)

∣
∣ –

(
λ
∣
∣ψ (n+1)(u)

∣
∣ + (1 – λ)

∣
∣ψ (n+1)(v)

∣
∣
)}

dλ

=
(∣
∣ψ (n+1)(θ1)

∣
∣ +

∣
∣ψ (n+1)(θ2)

∣
∣
)
(

1
n – α

k + 1
–

2–n+ α
k

n – α
k + 1

)

–
{
∣
∣ψ (n+1)(u)

∣
∣
(

1
(n – α

k + 1)(n – α
k + 2)

–
2–n+ α

k –1

n – α
k + 1

)

+
∣
∣ψ (n+1)(v)

∣
∣
(

1
(n – α

k + 2)
–

2–n+ α
k –1

n – α
k + 1

)}

(24)
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and

I2 =
∫ 1

1
2

(
λn– α

k – (1 – λ)n– α
k
)

× {∣
∣ψ (n+1)(θ1)

∣
∣ +

∣
∣ψ (n+1)(θ2)

∣
∣ –

(
λ
∣
∣ψ (n+1)(u)

∣
∣ + (1 – λ)

∣
∣ψ (n+1)(v)

∣
∣
)}

dλ

=
(∣
∣ψ (n+1)(θ1)

∣
∣ +

∣
∣ψ (n+1)(θ2)

∣
∣
)
(

1
(n – α

k + 1)
–

2–n+ α
k

n – α
k + 1

)

–
{
∣
∣ψ (n+1)(u)

∣
∣
(

1
(n – α

k + 2)
–

2–n+ α
k –1

n – α
k + 1

)

+
∣
∣ψ (n+1)(v)

∣
∣
(

1
(n – α

k + 1)(n – α
k + 2)

–
2–n+ α

k –1

n – α
k + 1

)}

. (25)

Combining (24) and (25) with (23) and we get (22). This completes the proof. �

Remark 7 If we take k = 1 in Theorem 4, then it reduces to Theorem 4 in [14].

Remark 8 If we take u = a and v = b in Theorem 4, then it reduces to Corollary 2.7 in [11].

Theorem 5 Suppose that ψ : [θ1, θ2] → R is a differentiable mapping on (θ1, θ2) with
0 ≤ θ1 < θ2 and ψ ∈ Cn+1[θ1, θ2]. If |ψ (n+1)| is a convex function on [θ1, θ2] along with the
assumptions in A1, then the following inequality for Caputo k-fractional derivatives holds:

∣
∣
∣
∣ψ

(n)
(

θ1 + θ2 –
u + v

2

)

–
2n– α

k –1Γk(n – α
k + k)

(v – u)n– α
k

× [(cDα,k
(θ1+θ2– u+v

2 )+ψ
)
(θ1 + θ2 – u) + (–1)n(cDα,k

(θ1+θ2– u+v
2 )–ψ

)
(θ1 + θ2 – v)

]
∣
∣
∣
∣

≤ v – u
2(n – α

k + 1)

{
∣
∣ψ (n+1)(θ1)

∣
∣ +

∣
∣ψ (n+1)(θ2)

∣
∣

–
( |ψ (n+1)(u)| + |ψ (n+1)(v)|

2

)}

. (26)

Proof By using Lemma 2 and the Jensen–Mercer inequality, we have

∣
∣
∣
∣ψ

(n)
(

θ1 + θ2 –
u + v

2

)

–
2n– α

k –1Γ (n – α
k + 1)

(v – u)n– α
k

× [(cDα,k
(θ1+θ2– u+v

2 )+ψ
)
(θ1 + θ2 – u) + (–1)n(cDα,k

(θ1+θ2– u+v
2 )–ψ

)
(θ1 + θ2 – v)

]
∣
∣
∣
∣

≤ v – u
4

[∫ 1

0
λn– α

k

∣
∣
∣
∣ψ

(n+1)
(

θ1 + θ2 –
(

λ

2
u +

2 – λ

2
v
))∣

∣
∣
∣dλ

–
∫ 1

0
λn– α

k

∣
∣
∣
∣ψ

(n+1)
(

θ1 + θ2 –
(

2 – λ

2
u +

λ

2
v
))∣

∣
∣
∣dλ

]

≤ v – u
4

[∫ 1

0
λn– α

k

{
∣
∣ψ (n+1)(θ1)

∣
∣

+
∣
∣ψ (n+1)(θ2)

∣
∣ –

(
λ

2
∣
∣ψ (n+1)(u)

∣
∣ +

(2 – λ)
2

∣
∣ψ (n+1)(v)

∣
∣
)}

dλ



Zhao et al. Advances in Difference Equations        (2020) 2020:262 Page 11 of 17

+
∫ 1

0
λn– α

k

{
∣
∣ψ (n+1)(θ1)

∣
∣ +

∣
∣ψ (n+1)(θ2)

∣
∣

–
(

(2 – λ)
2

∣
∣ψ (n+1)(u)

∣
∣ +

λ

2
∣
∣ψ (n+1)(v)

∣
∣
)}

dλ

]

by using calculus tools, we obtain

≤ v – u
2(n – α

k + 1)

{
∣
∣ψ (n+1)(θ1)

∣
∣ +

∣
∣ψ (n+1)(θ2)

∣
∣

–
( |ψ (n+1)(u)| + |ψ (n+1)(v)|

2

)}

.

This completes the proof. �

Remark 9 If we take k = 1 in Theorem 5, then it reduces to Theorem 5 in [14].

Theorem 6 Suppose that ψ : [θ1, θ2] → R is a differentiable mapping on (θ1, θ2) with 0 ≤
θ1 < θ2 and ψ ∈ Cn+1[θ1, θ2]. If |ψ (n+1)|q is a convex function on [θ1, θ2], q > 1 and along with
the assumptions in A1, then the following inequality for Caputo k-fractional derivatives
holds:

∣
∣
∣
∣ψ

(n)
(

θ1 + θ2 –
u + v

2

)

–
2n– α

k –1Γk(n – α
k + k)

(v – u)n– α
k

× [(cDα,k
(θ1+θ2– u+v

2 )+ψ
)
(θ1 + θ2 – u) + (–1)n(cDα,k

(θ1+θ2– u+v
2 )–ψ

)
(θ1 + 2 – v)

]
∣
∣
∣
∣

≤ v – u
4

(
1

np – α
k p + 1

) 1
p
[(

∣
∣ψ (n+1)(θ1)

∣
∣q +

∣
∣ψ (n+1)(θ2)

∣
∣q

–
( |ψ (n+1)(u)|q + 3|ψ (n+1)(v)|q

4

)) 1
q

+
(

∣
∣ψ (n+1)(θ1)

∣
∣q +

∣
∣ψ (n+1)(θ2)

∣
∣q

–
(

3|ψ (n+1)(u)|q + |ψ (n+1)(v)|q
4

)) 1
q
]

. (27)

Proof By using Lemma 2 and applying the Hölder integral inequality, we have

∣
∣
∣
∣ψ

(n)
(

θ1 + θ2 –
u + v

2

)

–
2n– α

k –1Γk(n – α
k + k)

(v – u)n– α
k

× [(cDα,k
(θ1+θ2– u+v

2 )+ψ
)
(θ1 + θ2 – u) + (–1)n(cDα,k

(θ1+θ2– u+v
2 )–ψ

)
(θ1 + θ2 – v)

]
∣
∣
∣
∣

≤ v – u
4

[(∫ 1

0
λ(n– α

k )p dλ

) 1
p
(∫ 1

0

∣
∣
∣
∣ψ

(n+1)
(

θ1 + θ2 –
(

λ

2
u +

2 – λ

2
v
))∣

∣
∣
∣

q

dλ

) 1
q

+
(∫ 1

0
λ(n– α

k )p dλ

) 1
p
(∫ 1

0

∣
∣
∣
∣ψ

(n+1)
(

θ1 + θ2 –
(

2 – λ

2
u +

λ

2
v
))∣

∣
∣
∣

q

dλ

) 1
q
]

.
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By the convexity of |ψ (n+1)|q, we have

≤ v – u
4

(
1

np – α
k p + 1

) 1
p
[{∫ 1

0

(
∣
∣ψ (n+1)(θ1)

∣
∣q +

∣
∣ψ (n+1)(θ2)

∣
∣q

–
(

λ

2
∣
∣ψ (n+1)(u)

∣
∣q +

2 – λ

2
∣
∣ψ (n+1)(v)

∣
∣q

))

dλ

} 1
q

+
{∫ 1

0

(
∣
∣ψ (n+1)(θ1)

∣
∣q

+
∣
∣ψ (n+1)(θ2)

∣
∣q –

(
2 – λ

2
∣
∣ψ (n+1)(u)

∣
∣q +

λ

2
∣
∣ψ (n+1)(v)

∣
∣q

))

dλ

} 1
q
]

≤ v – u
4

(
1

np – α
k p + 1

) 1
p
[(

∣
∣ψ (n+1)(θ1)

∣
∣q +

∣
∣ψ (n+1)(θ2)

∣
∣q

–
( |ψn+1(u)|q + 3|ψ (n+1)(v)|q

4

)) 1
q

+
(

∣
∣ψ (n+1)(θ1)

∣
∣q +

∣
∣ψ (n+1)(θ2)

∣
∣q –

(
3|ψ (n+1)(u)|q + |ψ (n+1)(v)|q

4

)) 1
q
]

.

This completes the proof. �

Remark 10 If we take k = 1 in Theorem 6, then it reduces to Theorem 6 in [14].

3 New Hölder and improved İşcan inequalities
Theorem 7 Suppose that ψ : [θ1, θ2] → R is a differentiable mapping on (θ1, θ2) with 0 ≤
θ1 < θ2 and ψ ∈ Cn+1[θ1, θ2]. If |ψ (n+1)|q is a convex function on [θ1, θ2], q > 1 and along with
the assumptions in A1, then the following inequality for Caputo k-fractional derivatives
holds:

∣
∣
∣
∣ψ

(n)
(

θ1 + θ2 –
u + v

2

)

–
2n– α

k –1Γk(n – α
k + k)

(v – u)n– α
k

× [(cDα,k
(θ1+θ2– u+v

2 )+ψ
)
(θ1 + θ2 – u) + (–1)n(cDα,k

(θ1+θ2– u+v
2 )–ψ

)
(θ1 + θ2 – v)

]
∣
∣
∣
∣

≤ v – u
4

[{(
1

((n – α
k )p + 1)((n – α

k )p + 2)

) 1
p
(

1
2
(∣
∣ψ (n+1)(θ1)

∣
∣q

+
∣
∣ψ (n+1)(θ2)

∣
∣q) –

(
1

12
∣
∣ψ (n+1)(u)

∣
∣q +

5
12

∣
∣ψ (n+1)(v)

∣
∣q

)) 1
q

+
(

1
((n – α

k )p + 2)

) 1
p
(

1
2
(∣
∣ψ (n+1)(θ1)

∣
∣q +

∣
∣ψ (n+1)(θ2)

∣
∣q)

–
(

1
6
∣
∣ψ (n+1)(u)

∣
∣q +

1
3
∣
∣ψ (n+1)(v)

∣
∣q

)) 1
q
}

+
{(

1
((n – α

k )p + 1)((n – α
k )p + 2)

) 1
p

×
(

1
2
(∣
∣ψ (n+1)(θ1)

∣
∣q +

∣
∣ψ (n+1)(θ2)

∣
∣q) –

(
5

12
∣
∣ψ (n+1)(u)

∣
∣q +

1
12

∣
∣ψ (n+1)(v)

∣
∣q

)) 1
q
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+
(

1
((n – α

k )p + 2)

) 1
p
(

1
2
(∣
∣ψ (n+1)(θ1)

∣
∣q +

∣
∣ψn+1(θ2)

∣
∣q)

–
(

1
3
∣
∣ψ (n+1)(u)

∣
∣q +

1
6
∣
∣ψ (n+1)(v)

∣
∣q

)) 1
q
}]

. (28)

Proof By using Lemma 2 with Jensen–Mercer inequality and applying the Hölder–İşcan
integral inequality [Theorem 1.4, [15]], we have

∣
∣
∣
∣ψ

(n)
(

θ1 + θ2 –
u + v

2

)

–
2n– α

k –1Γk(n – α
k + k)

(v – u)n– α
k

× [(cDα,k
(θ1+θ2– u+v

2 )+ψ
)
(θ1 + θ2 – u) + (–1)n(cDα,k

(θ1+θ2– u+v
2 )–ψ

)
(θ1 + θ2 – v)

]
∣
∣
∣
∣

≤ v – u
4

{(∫ 1

0
(1 – λ)λnp– α

k p dλ

) 1
p

×
(∫ 1

0
(1 – λ)

∣
∣
∣
∣ψ

(n+1)
(

θ1 + θ2 –
(

λ

2
u +

2 – λ

2
v
))∣

∣
∣
∣

q

dλ

) 1
q

+
(∫ 1

0
λnp– α

k p+1 dt
) 1

p
(∫ 1

0
λ

∣
∣
∣
∣ψ

(n+1)
(

θ1 + θ2 –
(

λ

2
u +

2 – λ

2
v
))∣

∣
∣
∣

q

dλ

) 1
q
}

+
{(∫ 1

0
(1 – λ)λnp– α

k p dλ

) 1
p
(∫ 1

0
(1 – λ)

∣
∣
∣
∣ψ

(n+1)
(

θ1 + θ2

–
(

2 – λ

2
u +

λ

2
v
))∣

∣
∣
∣

q

dλ

) 1
q

+
(∫ 1

0
λnp– α

k p+1 dλ

) 1
p
(∫ 1

0
λ

∣
∣
∣
∣ψ

(n+1)
(

θ1 + θ2 –
(

2 – λ

2
u +

λ

2
v
))∣

∣
∣
∣

q

dλ

) 1
q
}

. (29)

By the convexity of |ψ (n+1)|q
∣
∣
∣
∣ψ

(n+1)
(

θ1 + θ2 –
(

λ

2
u +

2 – λ

2
v
))∣

∣
∣
∣

q

≤ ∣
∣ψ (n+1)(θ1)

∣
∣q +

∣
∣ψ (n+1)(θ2)

∣
∣q –

(
λ

2
∣
∣ψ (n+1)(u)

∣
∣q +

2 – λ

2
∣
∣ψ (n+1)(v)

∣
∣q

)

. (30)

It is easy to see that

∫ 1

0
(1 – λ)λnp– α

k p dλ =
1

((n – α
k )p + 1)((n – α

k )p + 2)
(31)

and

∫ 1

0
(1 – λ)

∣
∣
∣
∣ψ

(n+1)
(

θ1 + θ2 –
(

λ

2
u +

2 – λ

2
v
))∣

∣
∣
∣

q

dλ

=
1
2
(∣
∣ψ (n+1)(θ1)

∣
∣q +

∣
∣ψ (n+1)(θ2)

∣
∣q)

–
(

1
12

∣
∣ψ (n+1)(u)

∣
∣q +

5
12

∣
∣ψ (n+1)(v)

∣
∣q

)

(32)
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and

∫ 1

0
λnp– α

k p+1 dλ =
1

((n – α
k )p + 2)

(33)

and

∫ 1

0
λ

∣
∣
∣
∣ψ

(n+1)
(

θ1 + θ2 –
(

λ

2
u +

2 – λ

2
v
))∣

∣
∣
∣

q

dλ

=
1
2
(∣
∣ψ (n+1)(θ1)

∣
∣q +

∣
∣ψ (n+1)(θ2)

∣
∣q) –

(
1
6
∣
∣ψ (n+1)(u)

∣
∣q +

1
3
∣
∣ψ (n+1)(v)

∣
∣q

)

(34)

and

∫ 1

0
(1 – λ)

∣
∣
∣
∣ψ

(n+1)
(

θ1 + θ2 –
(

2 – λ

2
u +

λ

2
v
))∣

∣
∣
∣

q

dλ

=
1
2
(∣
∣ψ (n+1)(θ1)

∣
∣q +

∣
∣ψ (n+1)(θ2)

∣
∣q) –

(
5

12
∣
∣ψ (n+1)(u)

∣
∣q +

1
12

∣
∣ψ (n+1)(v)

∣
∣q

)

(35)

and

∫ 1

0
λ

∣
∣
∣
∣ψ

(n+1)
(

θ1 + θ2 –
(

2 – λ

2
u +

λ

2
v
))∣

∣
∣
∣

q

dλ

=
1
2
(∣
∣ψ (n+1)(θ1)

∣
∣q +

∣
∣ψn+1(θ2)

∣
∣q) –

(
1
3
∣
∣ψ (n+1)(u)

∣
∣q +

1
6
∣
∣ψ (n+1)(v)

∣
∣q

)

(36)

By combining (31), (32), (33), (34), (35), (36), with (29) we get (28).
This completes the proof. �

Remark 11 If we take k = 1 in Theorem 7, then it reduces to Theorem 7 in [14].

Theorem 8 Suppose that ψ : [θ1, θ2] → R is a differentiable mapping on (θ1, θ2) with θ1 < θ2

and ψ ∈ Cn+1[θ1, θ2]. If |ψ (n+1)|q is a convex function on [θ1, θ2], q ≥ 1 and along with the
assumptions in A1, then the following inequality for Caputo k-fractional derivatives holds:

∣
∣
∣
∣ψ

(n)
(

θ1 + θ2 –
u + v

2

)

–
2n– α

k –1Γk(n – α
k + k)

(v – u)n– α
k

× [(cDα,k
(θ1+θ2– u+v

2 )+ψ
)
(θ1 + θ2 – u) + (–1)n(cDα,k

(θ1+θ2– u+v
2 )–ψ

)
(θ1 + θ2 – v)

]
∣
∣
∣
∣

≤ v – u
4

{{(
1

(n – α
k + 1)(n – α

k + 2)

)1– 1
q

×
( |ψn+1(θ1)|q + |ψn+1(θ2)|q

(n – α
k + 1)(n – α

k + 2)
–

( |ψ (n+1)(u)|q
2(n – α

k + 2)(n – α
k + 3)

+
(n – α

k + 5)|ψ (n+1)(v)|q
2(n – α

k + 1)(n – α
k + 2)(n – α

k + 3)

)) 1
q

+
(

1
(n – α

k + 2)

)1– 1
q
( |ψ (n+1)(θ1)|q + |ψ (n+1)(θ2)|q

(n – α
k + 2)
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–
( |ψ (n+1)(u)|q

2(n – α
k + 3)

+
|ψ (n+1)(v)|q

2(n – α
k + 2)(n – α

k + 3)

)) 1
q
}

+
{(

1
(n – α

k + 1)(n – α
k + 2)

)1– 1
q

×
( |ψ (n+1)(θ1)|q + |ψ (n+1)(θ2)|q

(n – α
k + 1)(n – α

k + 2)
–

( (n – α
k + 5)|ψn+1(u)|q

2(n – α
k + 1)(n – α

k + 2)(n – α
k + 3)

+
|ψ (n+1)(v)|q

2(n – α
k + 2)(n – α

k + 3)

)) 1
q

+
(

1
(n – α

k + 2)

)1– 1
q

×
( |ψ (n+1)(θ1)|q + |ψ (n+1)(θ2)|q

(n – α
k + 2)

–
( (n – α

k + 4)|ψ (n+1)(u)|q
2(n – α

k + 2)(n – α
k + 3)

+
|ψ (n+1)(v)|q
2(n – α

k + 3)

)) 1
q
}}

. (37)

Proof By using Lemma 2 with the Jensen–Mercer inequality and applying the improved
power-mean integral inequality [Theorem1.5, [15]], we have

∣
∣
∣
∣ψ

(n)
(

θ1 + θ2 –
u + v

2

)

–
2n– α

k –1Γk(n – α
k + 1)

(v – u)n– α
k

× [(cDα,k
(θ1+θ2– u+v

2 )+ψ
)
(θ1 + θ2 – u) + (–1)n(cDα,k

(θ1+θ2– u+v
2 )–ψ

)
(θ1 + θ2 – v)

]
∣
∣
∣
∣

≤ v – u
4

{(∫ 1

0
(1 – λ)λn– α

k dλ

)1– 1
q

×
(∫ 1

0
(1 – λ)λn– α

k

∣
∣
∣
∣ψ

(n+1)
(

θ1 + θ2 –
(

λ

2
u +

2 – λ

2
v
))∣

∣
∣
∣

q

dλ

) 1
q

+
(∫ 1

0
λn– α

k +1 dλ

)1– 1
q
(∫ 1

0
λn– α

k +1
∣
∣
∣
∣ψ

(n+1)
(

θ1 + θ2

–
(

λ

2
u +

2 – λ

2
v
))∣

∣
∣
∣

q

dλ

) 1
q
}

+
{(∫ 1

0
(1 – λ)λn– α

k dλ

)1– 1
q
(∫ 1

0
(1 – λ)λn– α

k

∣
∣
∣
∣ψ

(n+1)
(

θ1 + θ2

–
(

λ

2
v +

2 – λ

2
u
))∣

∣
∣
∣

q

dλ

) 1
q

+
(∫ 1

0
λn– α

k +1 dλ

)1– 1
q

×
(∫ 1

0
λn– α

k +1
∣
∣
∣
∣ψ

(n+1)
(

θ1 + θ2 –
(

λ

2
v +

2 – λ

2
u
))∣

∣
∣
∣

q

dt
) 1

q
}

. (38)

It is easy to see that

∫ 1

0
(1 – λ)λn– α

k dλ =
1

(n – α
k + 1)(n – α

k + 2)
(39)
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and
∫ 1

0
(1 – λ)λn– α

k

∣
∣
∣
∣ψ

n+1
(

θ1 + θ2 –
(

λ

2
u +

2 – λ

2
v
))∣

∣
∣
∣

q

dλ

=
(|ψ (n+1)(θ1)|q + |ψ (n+1)(θ2)|q)

(n – α
k + 1)(n – α

k + 2)

–
( |ψ (n+1)(u)|q

2(n – α
k + 2)(n – α

k + 3)
+

(n – α
k + 5)|ψ (n+1)(v)|q

2(n – α
k + 1)(n – α

k + 2)(n – α
k + 3)

)

(40)

and
∫ 1

0
λn– α

k +1 dλ =
1

(n – α
k + 2)

(41)

and
∫ 1

0
λn– α

k +1
∣
∣
∣
∣ψ

(n+1)
(

θ1 + θ2 –
(

λ

2
u +

2 – λ

2
v
))∣

∣
∣
∣

q

dλ

=
(|ψ (n+1)(θ1)|q + |ψ (n+1)(θ2)|q)

(n – α
k + 2)

–
( |ψ (n+1)(u)|q

2(n – α
k + 3)

+
|ψ (n+1)(v)|q

2(n – α
k + 2)(n – α

k + 3)

)

(42)

and
∫ 1

0
(1 – λ)λn– α

k

∣
∣
∣
∣ψ

(n+1)
(

θ1 + θ2 –
(

2 – λ

2
u +

λ

2
v
))∣

∣
∣
∣

q

dλ

=
(|ψ (n+1)(θ1)|q + |ψ (n+1)(θ2)|q)

(n – α
k + 1)(n – α

k + 2)

–
( (n – α

k + 5)|ψ (n+1)(u)|q
2(n – α

k + 1)(n – α
k + 2)(n – α

k + 3)
+

|ψ (n+1)(v)|q
2(n – α

k + 2)(n – α
k + 3)

)

(43)

and
∫ 1

0
λn– α

k +1
∣
∣
∣
∣ψ

(n+1)
(

θ1 + θ2 –
(

2 – λ

2
u +

λ

2
v
))∣

∣
∣
∣

q

dλ

=
( |ψ (n+1)(θ1)|q + |ψ (n+1)(θ2)|q

(n – α
k + 2)

–
( (n – α

k + 4)|ψ (n+1)(u)|q
2(n – α

k + 2)(n – α
k + 3)

+
|ψ (n+1)(v)|q
2(n – α

k + 3)

))

. (44)

By combining (39), (40), (41), /(42), (43), (44) with (38) we get (37), which completes the
proof. �

4 Conclusion
In this article, we show Hermite–Hadamard type inequalities can be expressed in Caputo
k-fractional derivative form by employing the Jensen–Mercer inequality. New Hermite–
Jensen–Mercer type inequalities using Caputo k-fractional derivatives are established for
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differentiable mappings whose derivatives in absolute values are convex. Some known re-
sults are recaptured as special cases of our results. We hope that our new idea and tech-
nique may inspire many researcher in this fascinating field.
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