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Abstract
In this paper, consider the eminent coupled Boussinesq–Burger (BB) equations and
the coupled Whitham–Broer–Kaup (WBK) equations with time fractional derivative
arising in the investigation of shallow water waves. The derivative is described in the
sense of conformable derivative. We introduce the fundamental (G′/G)-expansion
method and its extension, namely the two-variable (G′/G, 1/G)-expansion method, to
establish general solutions, some typical wave solutions existing in the literature, and
some new and compatible soliton solutions comprised with certain parameters. For
the definite values of these parameters, we derive and show in figures the
well-known kink, singular kink, bell-shape soliton, periodic soliton, cuspon, and so on.
The obtained solutions affirm that the introduced methods are reliable and efficient
techniques to examine a wide variety of nonlinear fractional systems in the sense
conformable derivative.
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1 Introduction
Although the concept of fractional derivative is as old as that of the classical one, its ad-
vancement is not so old. Though relatively new, its use is increasing day by day due to its
advantages in modeling and widespread applications to real-world problems, and thus it
has generated much interest among researchers. There are many physical phenomena and
processes, such as anomalous diffusion processes in physics, chemistry, and biology, com-
plex diffusion process, diffusion in heterogeneous medium, diffusion processes in porous
medium, viscoelasticity, viscoelastic deformation, viscous fluid, groundwater investiga-
tions [1–3], and so on, which can be analyzed more accurately through fractional differen-
tial equations than through integer-order differential equations. Fractional differential and
integral operators have eliminated the drawback of classical integer-order difficulties con-
sidering their nonlocal characteristics [4–11]. There are different definitions of fractional
derivatives and integrals, such as variable-order fractional derivative, Riemann–Liouville
fractional derivative, Jumarie fractional derivative, Caputo fractional derivative, Weyl frac-
tional derivative, and so on. To describe anomalous diffusion phenomena, constant-order
fractional diffusion equations are introduced and have had great success. On the contrary,
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to characterize some complex diffusion processes, for instance, diffusion processes in het-
erogeneous medium [12] and diffusion processes in porous medium, if the medium struc-
ture or external field changes with time, then the variable-order fractional diffusion equa-
tions properly model the incidents [13]. The Riemann–Liouville and Jumarie derivatives
are recognized as a powerful modeling approach in the fields of viscoelasticity, viscoelastic
deformation, viscous fluid [14–16], anomalous diffusion [17], and so on. The problem in
groundwater investigation can be better analyzed by the Weyl fractional-order derivative
[18]. The Caputo-type fractional derivative [19] is useful in investigating numerical solu-
tions of a model equation. Therefore, in the recent years, fractional calculus has become
an emerging and interesting branch of applied mathematics and analysis.

Referring to mathematical models of the problems, the estimation of traveling wave
solutions of fractional nonlinear differential equations (FNDEs) helps us to better un-
derstand these phenomena. Therefore various mathematical approaches have been pro-
posed over the past few decades to extract soliton solutions to FNDEs, such as the aux-
iliary equation method [20], the exp-function method [21, 22], the simplest equation
method [23], the sine–cosine method [24], the first integral method [25, 26], the (G′/G)-
expansion method [27–29], the (G′/G, 1/G)-expansion method [30–32], the Kudryashov
method [33–35], the subequation method [36], the Jacobi elliptic equation method [37],
the Ricatti–Bernoulli sub-ODE method [38–40], and so on.

The exact traveling solutions to the coupled BB equation have been established in [41].
By using the Lie symmetry analysis Mhlanga and Khalique [42] described the traveling
wave solutions to the generalized coupled BB equation. The envelope soliton and pe-
riodic wave solutions have been studied by Ebadi et al. [43]. The coupled WBK equa-
tions are examined by other researchers using different analytical and numerical meth-
ods, such as the exp-function method [44], the Adomian decomposition method [45],
the (G′/G2)-expansion method [46], the hyperbolic function method [47], the Lie sym-
metry analysis [48], the differential transformation method [49], the homotopy analysis
method [50], and so on. Recently, Amjad et al. [51] used the result of a standard order
coupled fractional-order Whitham—Broer–Kaup equation by the Laplace decomposition
method. To the best of our knowledge, the coupled Boussinesq–Burger and Whitham–
Broer–Kaup nonlinear fractional differential equations have not been examined through
the (G′/G)-expansion method [52] and the (G′/G, 1/G)-expansion method [53]. There-
fore, motivated by the studies mentioned, the objective of our study is to extract general
solutions, some classical wave solutions, and some compatible soliton solutions entangled
with parameters to the equations mentioned. When we set definite values of the param-
eters, bell-shape soliton, kink, periodic, and other solitary wave solutions are originated
from the broad-ranging general solution.

The rest of the paper is arranged as follows: In Sect. 2, we present the properties of
the conformable derivative. In Sect. 3, we present the basic idea of the (G′/G)-expansion
method. In Sect. 4, we give the algorithm of the (G′/G, 1/G)-expansion method. In Sect. 5,
we implement the methods to extract soliton solutions to the coupled BB and coupled
WBK systems of time-fractional order. In Sect. 6, we provide a physical explanation and
graphs of the solutions. In Sect. 7, we present conclusions.
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2 The conformable derivative and some its properties
The conformable derivative of a function g of order α is defined as [54–57]

Tα(g)(t) = lim
x→0

g(t + xt1–α) – g(t)
x

, t > 0,α ∈ (0, 1), (2.1)

where g : [0,∞) → R, t > 0, and α ∈ (0, 1).
Let α ∈ (0, 1), and let g , f be α-differentiable at the point t. Then Tα satisfies the following

important properties:

Tα(ag + bf ) = aTα(g) + bTα(f ), a, b ∈ R; (2.2)

Tα

(
tμ

)
= μtμ–α , μ ∈ R; (2.3)

Tα(gof )(t) = t1–αf ′(t)g ′(f (t)
)
; (2.4)

Tα(gf )(t) = gTα(f ) + fTα(g); (2.5)

Tα

(
g
f

)
(t) =

fTα(g) – gTα(f )
f 2 . (2.6)

If g is a differentiable function, then Tα(g)(t) = t1–α dg
dt (t).

3 The algorithm of the (G′/G)-expansion method for FNDEs
Consider an FNDE of the form

F
(
v, Dα

t v, Dα
t Dα

t v, . . .
)

= 0, 0 < α < 1, (3.1)

where F is a polynomial of v and fractional partial derivatives of s, and v = v(x, t) is an
unidentified function to be computed.

By using the wave transformation

v(x, t) = V (ζ ), ζ = kx – w
tα

α
, (3.2)

where w is the wave velocity, and k is the wave number, both nonzero constants, the FNDE
(3.1) can be rewritten as the following ordinary differential equation (ODE):

P
(

V ,
dV
dζ

,
d2V
dζ 2 , . . .

)
= 0. (3.3)

Assume that Eq. (3.3) has the formal solution

V (ζ ) =
N∑

i=0

αi

(
G′(ζ )
G(ζ )

)i

, αN �= 0, (3.4)

where αi (i = 0, 1, . . . , N ) are constants, and the function G(ζ ) satisfies the auxiliary equa-
tion

G′′(ζ ) + λG′(ζ ) + μG(ζ ) = 0. (3.5)
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The constant N in Eq. (3.4) can be determined by balancing the highest-order derivatives
and nonlinear terms turn up in Eq. (3.3). Substituting solution (3.4) into (3.3), using (3.5),
summing up all terms of the same order of (G′/G), and setting the coefficients to zero yield
a system of algebraic equations for αi (i = 0, 1, . . . , N ), k, w, λ, and μ. We obtain the values
of constants αi (i = 0, 1, . . . , N ), k, w, λ, and μ by unraveling this system, and substituting
these constants and the general solutions of (3.5) into solution (3.4), we attain adequate
travelling wave solutions to the FNDE (3.1).

4 Description of the (G′/G, 1/G)-expansion method for FNDEs
In this section, we interpret the (G′/G, 1/G)-expansion method as follows [53]. For the
auxiliary differential equation

G′′(ζ ) + λG(ζ ) = μ, (4.1)

we set

φ =
G′

G
, ψ =

1
G

, (4.2)

Thus from (4.1) and (4.2) we can derive

φ′ = –φ2 + μψ – λ, ψ ′ = –φψ . (4.3)

The solutions of Eq. (4.1) are subject to the following three cases.
Case 1: If λ < 0, then the formal solution of Eq. (4.1) is

G(ζ ) = A1 sinh(
√

–λζ ) + A2 cosh(
√

–λζ ) + μ/λ, (4.4)

and the corresponding relation is

ψ2 = –λ

(
φ2 – 2μψ + λ

λ2σ + μ2

)
, (4.5)

where σ = A2
1 – A2

2.
Case 2: If λ > 0, then the standard solution of Eq. (4.1) is

G(ζ ) = A1 sin(
√

λζ ) + A2 cos(
√

λζ ) + μ/λ. (4.6)

Thus the relation between φ and ψ is

ψ2 = λ

(
φ2 – 2μψ + λ

λ2σ – μ2

)
, (4.7)

where σ = A2
1 + A2

2.
Case 3: If λ = 0, then the typical solution of Eq. (4.1) is

G(ζ ) =
μ

2
ζ 2 + A1ζ + A2, (4.8)
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and the relations between φ and ψ is

ψ2 =
φ2 – 2μψ

A2
1 – 2μA2

, (4.9)

where A1, A2 are integral constants.
The major steps of the (G′/G, 1/G)-expansion method are described as follows.
Step 1: We assume that Eq. (3.3) has the general solution

V (ζ ) =
S∑

i=0

αiφ
i +

S∑

i=1

βiφ
i–1ψ , (4.10)

where G is the solution of the auxiliary Eq. (4.1), αi (i = 0, 1, . . . , S), βi (i = 1, 2, . . . , S), μ, and
λ are constants, and S in solution (4.10) can be determined by the balancing theory from
Eq. (3.3).

Step 2: Substituting (4.10) into (3.3) with (4.3) and (4.5), we obtain a polynomial in ψ

and φ, where the degree of ψ is not greater than one. Setting all coefficients of the poly-
nomial to zero yields a set of algebraic equations, which can be solved with the help of
Maple software package, and substituting the values of k, w, μ, λ, αi, βi into (4.10), we get
analytical exact solutions to Eq. (3.3) expressed by the hyperbolic function.

Step 3: Substituting (4.10) into (3.3) with (4.3) and (4.7) (or (4.3) and (4.9)), we get exact
solutions to Eq. (3.1) expressed by trigonometric or rational functions, respectively.

5 Extraction of soliton solutions
In this section, we extract the traveling wave, including periodic, kink, bell-shape soli-
ton, and so on wave solutions to the following fractional systems utilizing the methods
described in Sects. 3 and 4.

First, we consider the model based on the nonlinear time fractional coupled BB equa-
tions [58, 59]:

Dα
t u –

1
2

vx + 2uux = 0,

t > 0, 0 < α < 1,

Dα
t v –

1
2

uxxx + 2(uv)x = 0,

(5.1)

where u(x, t) represents the horizontal velocity field, and v(x, t) indicates the water surface
height above a horizontal level from the bottom.

Second, we consider a model based on the nonlinear time fractional coupled WBK equa-
tions [49]:

Dα
t u + uux + vx + cuxx = 0,

t > 0, 0 < α < 1,

Dα
t v + (uv)x + buxxx – cvxx = 0,

(5.2)

where the constants b and c represent the coefficients of diffusion and dissipation, respec-
tively, u(x, t) represents the horizontal field of horizontal velocity, and v(x, t) indicates the
height of deviation from the liquid equilibrium position.
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5.1 The time-fractional coupled BB equations
For the time-fractional coupled BB equations, we put the wave transformation

u(x, t) = U(ζ ), v(x, t) = V (ζ ),

ζ = x – w
tα

α
.

(5.3)

We will take the advantage of fractional wave transformation to turn system (5.1) into
the ODEs:

wU ′ +
1
2

V ′ – 2UU ′ = 0,

wV ′ +
1
2

U ′′′ – 2(UV )′ = 0,
(5.4)

By integrating we obtain

wU +
1
2

V – U2 + c1 = 0,

wV +
1
2

U ′′ – 2UV + c2 = 0,
(5.5)

where c1 and c2 are integrating constants.
Balancing between V and U2, U ′′, and UV in (5.5), we find N1 = 1 and N2 = 2.
Therefore the formal solutions of (5.5) can be presented by a polynomial in (G′/G):

U(ζ ) = α0 + α1
(
G′/G

)
, α1 �= 0,

V (ζ ) = β0 + β1
(
G′/G

)
+ β2

(
G′/G

)2, β2 �= 0.
(5.6)

Embedding (5.6) into (5.5) and applying the procedure stated in Sect. 3, we get the fol-
lowing result:

α0 = ∓λ/4 + w/2, α1 = ∓1/2, β0 = μ/2, β1 = λ/2, β2 = 1/2,

c1 = λ2/16 – w2/4 – μ/4, c2 = 0,
(5.7)

where w is an arbitrary constant.
By means of the values assembled in (5.7) and the general solutions of (3.5), from solution

(5.6) we accomplish three types of solitary wave solutions to the coupled BB Eq. (5.1) as
follows.

Type I: When (λ2 – 4μ) > 0, we attain the hyperbolic function solutions of (5.1):

u1(x, t) =
w
2

∓
√

λ2 – 4μ

4
×

(B1 cosh
√

λ2 – 4μ
ζ

2 + B2 sinh
√

λ2 – 4μ
ζ

2

B1 sinh
√

λ2 – 4μ
ζ

2 + B2 cosh
√

λ2 – 4μ
ζ

2

)
,

v1(x, t) =
(λ2 – 4μ)

8
×

[(B1 cosh
√

λ2 – 4μ
ζ

2 + B2 sinh
√

λ2 – 4μ
ζ

2

B1 sinh
√

λ2 – 4μ
ζ

2 + B2 cosh
√

λ2 – 4μ
ζ

2

)2

– 1
]

,

(5.8)

where ζ = x–w tα
α

. Solution (5.8) is the general hyperbolic type of the coupled BB equation,
from which different compact-form solutions can be extracted for definite values of the
integral constants.
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For B1 = 0, B2 �= 0, we get the squeezed bell-shape and kink-type solitary wave solutions
to the coupled BB Eqs. (5.1):

u11 (x, t) =
w
2

∓
√

λ2 – 4μ

4
tanh

(√
λ2 – 4μ

ζ

2

)
,

v11 (x, t) = –
(λ2 – 4μ)

8
sech2

(√
λ2 – 4μ

ζ

2

)
.

(5.9)

On the other hand, if we put B2 = 0, B1 �= 0, we gain singular solitary wave solutions of
(5.1):

u12 (x, t) =
w
2

∓
√

λ2 – 4μ

4
coth

(√
λ2 – 4μ

ζ

2

)
,

v12 (x, t) =
(λ2 – 4μ)

8
csch2

(√
λ2 – 4μ

ζ

2

)
.

(5.10)

Again, if we set B2 �= 0, B2
2 > B2

1, we accomplish the solitary wave solutions of (5.1):

u13 (x, t) =
w
2

∓
√

λ2 – 4μ

4
tanh

(
ζ0 +

√
λ2 – 4μ

ζ

2

)
,

v13 (x, t) = –
(λ2 – 4μ)

8
sech2

(
ζ0 +

√
λ2 – 4μ

ζ

2

)
,

(5.11)

where ζ0 = tanh–1 B1
B2

.
However, if we set B1 �= 0, B2

1 > B2
2, we attain the singular solitary wave solutions of (5.1):

u14 (x, t) =
w
2

∓
√

λ2 – 4μ

4
coth

(
ζ0 +

√
λ2 – 4μ

ζ

2

)
,

v14 (x, t) =
(λ2 – 4μ)

8
csch2

(
ζ0 +

√
λ2 – 4μ

ζ

2

)
,

(5.12)

where ζ0 = tanh–1 B2
B1

.
Type II: When (λ2 – 4μ) < 0, we derive the trigonometric function solutions of (5.1):

u2(x, t) =
w
2

∓
√

4μ – λ2

4

(–B1 sin
√

4μ – λ2 ζ

2 + B2 cos
√

4μ – λ2 ζ

2

B1 cos
√

4μ – λ2 ζ

2 + B2 sin
√

4μ – λ2 ζ

2

)
,

v2(x, t) =
(4μ – λ2)

8
×

[
1 +

(–B1 sin
√

4μ – λ2 ζ

2 + B2 cos
√

4μ – λ2 ζ

2

B1 cos
√

4μ – λ2 ζ

2 + B2 sin
√

4μ – λ2 ζ

2

)2]
.

(5.13)

Since B1 and B2 are integral constants; someone is able to accept their values sponta-
neously. Therefore, if we accept B1 = 0, B2 �= 0, we attain the subsequent singular periodic
wave solutions to the nonlinear coupled Boussinesq–Burger equations:

u21 (x, t) =
w
2

∓
√

4μ – λ2

4
cot

(√
4μ – λ2 ζ

2

)
,

v21 (x, t) =
(4μ – λ2)

8
csc2

(√
4μ – λ2 ζ

2

)
.

(5.14)
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Furthermore, if we accept B2 = 0, B1 �= 0, then we determine the following singular pe-
riodic wave solutions to the nonlinear coupled BB equations:

u22 (x, t) =
w
2

±
√

4μ – λ2

4
tan

(√
4μ – λ2 ζ

2

)
,

v22 (x, t) =
(4μ – λ2)

8
sec2

(√
4μ – λ2 ζ

2

)
.

(5.15)

However, if B2 �= 0, B2
2 > B2

1, then we obtain the singular periodic wave solutions of (5.1)
as follows:

u23 (x, t) =
w
2

∓
√

4μ – λ2

4
cot

(
ζ0 +

√
4μ – λ2 ζ

2

)
,

v23 (x, t) =
(4μ – λ2)

8
csc2

(
ζ0 +

√
4μ – λ2 ζ

2

)
,

(5.16)

where ζ0 = tan–1 B1
B2

.
On the other hand, if B1 �= 0, B2

1 > B2
2, then we attain the periodic wave solutions of (5.1)

as follows:

u24 (x, t) =
w
2

±
√

4μ – λ2

4
tan

(
ζ0 –

√
4μ – λ2 ζ

2

)
,

v24 (x, t) =
(4μ – λ2)

8
sec2

(
ζ0 –

√
4μ – λ2 ζ

2

)
,

(5.17)

where ζ0 = tan–1 B2
B1

.
Type III: When (λ2 – 4μ) = 0, we ensure the subsequent rational function solutions of

(5.1):

u3(x, t) =
w
2

∓ 1
2

B2

B1 + B2ζ
,

v3(x, t) =
1
2

(
B2

B1 + B2ζ

)2

,
(5.18)

wherein B1 could be zero, but B2 cannot be zero; otherwise, solution (5.18) would turn
into steady solution, which has no physical significance.

Now we use the two-variable (G′/G, 1/G)-expansion method to analyze the wave solu-
tions to the coupled BB equation. Accordingly, we look for the solutions in the form

U(ζ ) = a0 + a1φ + b1ψ ,

V (ζ ) = α0 + α1φ + α2φ
2 + β1ψ + β2φψ ,

(5.19)

where a0, a1, b1, α0, α1, α2, β1, and β2 are constants to be determined. As we mentioned
in Sect. 4, we have three cases.

Case 1: When λ < 0, inserting (5.19) into (5.5), by (4.3), (4.4), and (4.5) system (5.5) turns
into a polynomial in ψ and φ. The coefficients of this equation yield a system of alge-
braic equations in a0, a1, b1, α0, α1, α2, β1, β2, w, λ, μ, σ , ζ1, and ζ2. Solving the algebraic
equations via Maple software package, we obtain three different sets of results.
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Result 1

a0 = ±1
2

√

–4ζ1 +
2λ3σ – λμ2

4λ2σ + 4μ2 ± μ

4

√

–
λ

λ2σ + μ2 ,

a1 = 0, b1 = ±
√

–
λ2σ + μ2

4λ
,

α0 =
1
4

λ3σ + 2λμ2

λ2σ + μ2 , α1 = 0, α2 =
1
2

, β1 = –
1
2
μ, β2 = 0,

w = ±
√

–4ζ1 +
2λ3σ – λμ2

4λ2σ + 4μ2 , ζ1 = ζ1, ζ2 = ∓ σλ3μ
√

–λ

8(λ2σ + μ2)
√

λ2σ + μ2
.

(5.20)

From (4.4), (5.19), and (5.20) with (5.3) we derive the following hyperbolic function so-
lutions of (5.1):

u1(x, t) = ±1
2

√

–4ζ1 +
2λ3σ – λμ2

4λ2σ + 4μ2 ± 1
4

μ
√

–λ
√

λ2σ + μ2

± 1
2
√

–λ

√
λ2σ + μ2

A1 sinh
√

–λζ + A2 cosh
√

–λζ + μ/λ
,

v1(x, t) =
λ3σ + 2λμ2

4λ2σ + 4μ2 –
λ

2

(
A1 cosh

√
–λζ + A2 sinh

√
–λζ

A1 sinh
√

–λζ + A2 cosh
√

–λζ + μ/λ

)2

–
1
2

μ

A1 sinh
√

–λζ + A2 cosh
√

–λζ + μ/λ
,

(5.21)

where ζ = x ∓
√

–4ζ1 + 2λ3σ–λμ2

4λ2σ+4μ2
tα
α

and σ = A2
1 – A2

2.
Inasmuch as A1, A2, and μ are free parameters, choosing A1 = 0, μ = 0, and A2 > 0, from

(5.21) we attain the following solitary wave solutions:

u11 (x, t) = ±1
2

(√

–4ζ1 +
λ

2
+ i

√
–λ sech

√
–λζ

)
,

v11 (x, t) =
λ

4
–

λ

2
tanh2

√
–λζ .

(5.22)

Alternatively, choosing A2 = 0, μ = 0, and A1 > 0, we attain the solitary wave solutions

u12 (x, t) = ±1
2

(√

–4ζ1 +
λ

2
+

√
–λ csch

√
–λζ

)
,

v12 (x, t) =
λ

4
–

λ

2
coth2

√
–λζ .

(5.23)

Result 2

a0 = ±1
4
√

–λ – 16ζ1, a1 =
1
4

, b1 = ±1
4

√

–
λ2σ + μ2

λ
,

α0 =
1
4
λ, α1 = 0, α2 =

1
4

, β1 = –
1
4
μ, β2 = ±1

4

√

–
λ2σ + μ2

λ
,

w = ±1
2
√

–λ – 16ζ1, ζ1 = ζ1, ζ2 = 0.

(5.24)



Al-Shawba et al. Advances in Difference Equations        (2020) 2020:232 Page 10 of 27

From (4.4), (5.19), and (5.24) with (5.3) we find the following hyperbolic function solu-
tions of (5.1):

u2(x, t) = ±1
4
√

–λ – 16ζ1

+
√

–λ

4
A1 cosh

√
–λζ + A2 sinh

√
–λζ

A1 sinh
√

–λζ + A2 cosh
√

–λζ + μ/λ

± 1
4
√

–λ

√
λ2σ + μ2

A1 sinh
√

–λζ + A2 cosh
√

–λζ + μ/λ
,

v2(x, t) =
λ

4
–

1
4

μ

A1 sinh
√

–λζ + A2 cosh
√

–λζ + μ/λ

–
1
4

A1 cosh
√

–λζ + A2 sinh
√

–λζ

(A1 sinh
√

–λζ + A2 cosh
√

–λζ + μ/λ)2

× [
A1λ cosh

√
–λζ + A2λ sinh

√
–λζ ∓

√
λ2σ + μ2

]
,

(5.25)

where ζ = x ∓ 1
2
√

–λ – 16ζ1
tα
α

.
In particular, if we set A1 = 0, μ = 0, and A2 > 0 into (5.25), we attain the following solitary

wave solutions:

u21 (x, t) = ±1
4
√

–λ – 16ζ1 +
√

–λ

4
[tanh

√
–λζ ± i sech

√
–λζ ],

v21 (x, t) =
λ

4
–

λ

4
tanh

√
–λζ [tanh

√
–λζ ± i sech

√
–λζ ].

(5.26)

On the contrary, if we set A2 = 0, μ = 0, and A1 > 0, we attain the solitary wave solu-
tions

u22 (x, t) = ±1
4
√

–λ – 16ζ1 +
√

–λ

4
[coth

√
–λζ ± csch

√
–λζ ],

v22 (x, t) =
λ

4
–

λ

4
coth

√
–λζ [coth

√
–λζ ∓ csch

√
–λζ ].

(5.27)

Result 3

a0 = ±1
4
√

–λ – 16ζ1, a1 = –
1
4

, b1 = ±1
4

√

–
λ2σ + μ2

λ
,

α0 =
1
4
λ, α1 = 0, α2 =

1
4

,

β1 = –
1
4
μ, β2 = ∓1

4

√

–
λ2σ + μ2

λ
,

w = ±1
2
√

–λ – 16ζ1, ζ1 = ζ1, ζ2 = 0.

(5.28)
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From result 3 we gain other hyperbolic function solutions of (5.1):

u3(x, t) = ±1
4
√

–λ – 16ζ1 –
√

–λ

4
A1 cosh

√
–λζ + A2 sinh

√
–λζ

A1 sinh
√

–λζ + A2 cosh
√

–λζ + μ/λ

± 1
4
√

–λ

√
λ2σ + μ2

A1 sinh
√

–λζ + A2 cosh
√

–λζ + μ/λ
,

v3(x, t) =
λ

4
–

1
4

μ

A1 sinh
√

–λζ + A2 cosh
√

–λζ + μ/λ

–
1
4

A1 cosh
√

–λζ + A2 sinh
√

–λζ

(A1 sinh
√

–λζ + A2 cosh
√

–λζ + μ/λ)2

× [
A1λ cosh

√
–λζ + A2λ sinh

√
–λζ ±

√
λ2σ + μ2

]
,

(5.29)

where ζ = x ∓ 1
2
√

–λ – 16ζ1
tα
α

.
Similarly, if the parameters take distinct values, then we deduce many other solitary

wave solutions, but for conciseness, here we do not document the other solutions.
Case 2 When λ > 0, substituting (5.19) into (5.5) and using (4.3), (4.6), and (4.7), system

(5.5) can be expressed as a polynomial in ψ and φ. Vanishing all coefficients from this
polynomial, we obtain a system of algebraic equations, which can be solved by utilizing
Maple software package to get different results.

Result 1

a0 = ±1
2

√

–4ζ1 +
2λ3σ + λμ2

4λ2σ – 4μ2 ± μ

4

√
λ

λ2σ – μ2 ,

a1 = 0, b1 = ±1
2

√
λ2σ – μ2

λ
,

α0 =
1
4

λ3σ – 2λμ2

λ2σ – μ2 , α1 = 0, α2 =
1
2

, β1 = –
1
2
μ, β2 = 0,

w = ±
√

–4ζ1 +
2λ3σ + λμ2

4λ2σ – 4μ2 , ζ1 = ζ1, ζ2 = ∓ σλ3μ
√

λ

8(λ2σ – μ2)
√

λ2σ – μ2
.

(5.30)

From (4.6), (5.19), and (5.30) with (5.3), we deduce the following trigonometric function
solutions of (5.1):

u1(x, t) = ±1
2

√

–4ζ1 +
2λ3σ + λμ2

4λ2σ – 4μ2 ± μ

4

√
λ

√
λ2σ – μ2

± 1
2
√

λ

√
λ2σ – μ2

A1 sin
√

λζ + A2 cos
√

λζ + μ/λ
,

v1(x, t) =
λ3σ – 2λμ2

4λ2σ – 4μ2 +
λ

2

(
A1 cos

√
λζ – A2 sin

√
λζ

A1 sin
√

λζ + A2 cos
√

λζ + μ/λ

)2

–
1
2

μ

A1 sin
√

λζ + A2 cos
√

λζ + μ/λ
,

(5.31)

where ζ = x ∓
√

–4ζ1 + 2λ3σ+λμ2

4λ2σ–4μ2
tα
α

and σ = A2
1 + A2

2.
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In particular, by taking A1 = 0, μ = 0, and A2 > 0 in (5.31), we achieve the following
periodic wave solutions:

u11 (x, t) = ±1
2

√

–4ζ1 +
λ

2
±

√
λ

2
sec

√
λζ ,

v11 (x, t) =
λ

4
+

λ

2
tan2

√
λζ ,

(5.32)

whereas for A2 = 0, μ = 0, and A1 > 0, we deduce the periodic wave solutions

u12 (x, t) = ±1
2

√

–4ζ1 +
λ

2
±

√
λ

2
csc

√
λζ ,

v12 (x, t) =
λ

4
+

λ

2
cot2

√
λζ .

(5.33)

Result 2

a0 = ±1
4
√

–λ – 16ζ1, a1 =
1
4

, b1 = ±1
4

√
λ2σ – μ2

λ
,

α0 =
1
4
λ, α1 = 0, α2 =

1
4

, β1 = –
1
4
μ, β2 = ±1

4

√
λ2σ – μ2

λ
,

w = ±1
2
√

–λ – 16ζ1, ζ1 = ζ1, ζ2 = 0.

(5.34)

From (4.6), (5.19), and (5.34) with (5.3), we get the following trigonometric function
solutions of (5.1):

u2(x, t) = ±1
4
√

–λ – 16ζ1 +
√

λ

4
A1 cos

√
λζ – A2 sin

√
λζ

A1 sin
√

λζ + A2 cos
√

λζ + μ/λ

± 1
4
√

λ

√
λ2σ – μ2

A1 sin
√

λζ + A2 cos
√

λζ + μ/λ
,

v2(x, t) =
λ

4
–

1
4

μ

A1 sin
√

λζ + A2 cos
√

λζ + μ/λ

+
1
4

A1 cos
√

λζ – A2 sin
√

λζ

(A1 sin
√

λζ + A2 cos
√

λζ + μ/λ)2

× [
A1λ cos

√
λζ – A2λ sin

√
λζ ±

√
λ2σ – μ2

]
,

(5.35)

where ζ = x ∓ 1
2
√

–λ – 16ζ1
tα
α

.
In particular, if we set A1 = 0, μ = 0, and A2 > 0 into (5.35), then we get the following

periodic wave solutions:

u21 (x, t) = ±1
4
√

–λ – 16ζ1 –
√

λ

4
[tan

√
λζ ∓ sec

√
λζ ],

v21 (x, t) =
λ

4
+

λ

4
tan

√
λζ [tan

√
λζ ∓ sec

√
λζ ].

(5.36)
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Moreover, if we set A2 = 0, μ = 0, and A1 > 0, then we find the periodic wave solutions

u22 (x, t) = ±1
4
√

–λ – 16ζ1 +
√

λ

4
[cot

√
λζ ± csc

√
λζ ],

v22 (x, t) =
λ

4
+

λ

4
cot

√
λζ [cot

√
λζ ± csc

√
λζ ].

(5.37)

Result 3

a0 = ±1
4
√

–λ – 16ζ1, a1 = –
1
4

, b1 = ±1
4

√
λ2σ – μ2

λ
,

α0 =
1
4
λ, α1 = 0, α2 =

1
4

, β1 = –
1
4
μ, β2 = ∓1

4

√
λ2σ – μ2

λ
,

w = ±1
2
√

–λ – 16ζ1, ζ1 = ζ1, ζ2 = 0.

(5.38)

From result, we have other trigonometric function solutions of (5.1):

u3(x, t) = ±1
4
√

–λ – 16ζ1 –
√

λ

4
A1 cos

√
λζ – A2 sin

√
λζ

A1 sin
√

λζ + A2 cos
√

λζ + μ/λ

± 1
4
√

λ

√
λ2σ – μ2

A1 sin
√

λζ + A2 cos
√

λζ + μ/λ
,

v3(x, t) =
λ

4
–

1
4

μ

A1 sin
√

λζ + A2 cos
√

λζ + μ/λ

+
1
4

A1 cos
√

λζ – A2 sin
√

λζ

(A1 sin
√

λζ + A2 cos
√

λζ + μ/λ)2

× [
A1λ cos

√
λζ – A2λ sin

√
λζ ∓

√
λ2σ – μ2

]
,

(5.39)

where ζ = x ∓ 1
2
√

–λ – 16ζ1
tα
α

.
Similarly, By taking special values of the parameters we deduce many other periodic

wave solutions.
Case 3 When λ = 0, substituting (5.19) into (5.5), by (4.3), (4.8), and (4.9) system (5.5)

can be exposed as a polynomial in ψ and φ. Equating each coefficient of this polynomial
to zero, we obtain a system of algebraic equations, which is analyzed by applying Maple
software package, and get the following results:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a0 = a0, a1 = 0, b1 = ± 1
2

√
A2

1 – 2A2μ, w = 2a0 ∓ μ

2
√

A2
1–2A2μ

,

α0 = – 1
4

μ2

A2
1–2A2μ

, α1 = 0, α2 = 1
2 , β1 = – 1

2μ, β2 = 0,

ζ1 = –a2
0 + μ2±4a0μ

√
A2

1–2A2μ

8(A2
1–2A2μ) , ζ2 = ∓ μ3

8(A2
1–2A2μ)

√
A2

1–2A2μ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (5.40)

⎧
⎪⎨

⎪⎩

a0 = a0, a1 = 1
4 , b1 = ± 1

4

√
A2

1 – 2A2μ,
α0 = 0, α1 = 0, α2 = 1

4 , β1 = – 1
4μ, β2 = ± 1

4

√
A2

1 – 2A2μ,
w = 2a0, ζ1 = –a2

0, ζ2 = 0

⎫
⎪⎬

⎪⎭
, (5.41)

⎧
⎪⎨

⎪⎩

a0 = a0, a1 = – 1
4 , b1 = ± 1

4

√
A2

1 – 2A2μ,
α0 = 0, α1 = 0, α2 = 1

4 , β1 = – 1
4μ, β2 = ∓ 1

4

√
A2

1 – 2A2μ,
w = 2a0, ζ1 = –a2

0, ζ2 = 0

⎫
⎪⎬

⎪⎭
. (5.42)
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In this case the rational function solutions to the coupled BB (5.1) are:

u1(x, t) = a0 ±
√

A2
1 – 2A2μ

μζ 2 + 2A1ζ + 2A2
,

v1(x, t) = –
1
4

μ2

A2
1 – 2A2μ

+
1
2

(
μζ + A1

μ

2 ζ 2 + A1ζ + A2

)2

–
μ

μζ 2 + 2A1ζ + 2A2
,

(5.43)

where ζ = x – (2a0 ∓ μ

2
√

A2
1–2A2μ

) tα
α

;

u2(x, t) = a0 +
μζ + A1

2μζ 2 + 4A1ζ + 4A2
±

√
A2

1 – 2A2μ

2μζ 2 + 4A1ζ + 4A2
,

v2(x, t) = –
μ

2μζ 2 + 4A1ζ + 4A2

+
1
4

μζ + A1

( μ

2 ζ 2 + A1ζ + A2)2 ×
[
μζ + A1 ±

√
A2

1 – 2A2μ
]
,

(5.44)

where ζ = x – 2a0
tα
α

; and

u3(x, t) = a0 –
μζ + A1

2μζ 2 + 4A1ζ + 4A2
±

√
A2

1 – 2A2μ

2μζ 2 + 4A1ζ + 4A2
,

v3(x, t) = –
μ

2μζ 2 + 4A1ζ + 4A2

+
1
4

μζ + A1

( μ

2 ζ 2 + A1ζ + A2)2 ×
[
μζ + A1 ∓

√
A2

1 – 2A2μ
]
,

(5.45)

where ζ = x – 2a0
tα
α

.
These solutions are generalized further and also contain extra free parameters. The defi-

nite values of these parameters yield some solutions available in the literature as particular
cases. This modification validates the achieved results.

5.2 The nonlinear time-fractional coupled WBK equations
In this section, we use transformation (5.3) to reduce system (5.2) into the following ODEs:

wU ′ – UU ′ – V ′ – cU ′′ = 0,

wV ′ – (UV )′ – bU ′′′ + cV ′′ = 0.
(5.46)

Integrating Eq. (5.46), we get

wU –
1
2

U2 – V – cU ′ + ζ1 = 0,

wV – UV – bU ′′ + cV ′ + ζ2 = 0.
(5.47)

By balancing theory, from V and U2 and from U ′′ and UV appearing in (5.47) we get
N = 1 and S = 2. Therefore the formal solutions to Eq. (5.47) are of the following form:

U(ζ ) = α0 + α1
(
G′/G

)
, α1 �= 0,

V (ζ ) = β0 + β1
(
G′/G

)
+ β2

(
G′/G

)2, β2 �= 0.
(5.48)
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Substituting (5.48) into (5.47) and applying the same procedure discussed in Sect. 3, we
get the following results:

α0 = ∓λ
√

c2 + b + w, α1 = ∓2
√

c2 + b,

β0 = 2μ
(∓c

√
c2 + b – c2 – b

)
, β1 = 2λ

(∓c
√

c2 + b – c2 – b
)
,

β2 = 2
(∓c

√
c2 + b – c2 – b

)
, w = w,

ξ1 =
1
2
(
λ2 – 4μ

)(
c2 + b

)
–

1
2

w2, ξ2 = 0.

(5.49)

By substituting (5.49) and general solutions of Eq. (3.5) into (5.48) with (5.3) we deduce
three types of solitary wave solutions of the coupled WBK Eq. (5.2).

Type I: When (λ2 – 4μ) > 0, we acquire the hyperbolic function solutions of (5.2):

u1(x, t) = w ∓
√(

λ2 – 4μ
)(

c2 + b
)
(B1 cosh

√
λ2 – 4μ

ζ

2 + B2 sinh
√

λ2 – 4μ
ζ

2

B1 sinh
√

λ2 – 4μ
ζ

2 + B2 cosh
√

λ2 – 4μ
ζ

2

)
,

v1(x, t) =
λ2 – 4μ

2
(∓c

√
c2 + b – c2 – b

)

×
[(B1 cosh

√
λ2 – 4μ

ζ

2 + B2 sinh
√

λ2 – 4μ
ζ

2

B1 sinh
√

λ2 – 4μ
ζ

2 + B2 cosh
√

λ2 – 4μ
ζ

2

)2

– 1
]

,

(5.50)

where ζ = x – w tα
α

.
Here B1 and B2 are integral constants. Therefore we can randomly select their values.

Thus, if we select B1 = 0, B2 �= 0, then we accomplish the kink and bell-shape solitary wave
solutions of (5.2) of the form

u11 (x, t) = w ∓
√(

λ2 – 4μ
)(

c2 + b
)

tanh

(√
λ2 – 4μ

ζ

2

)
,

v11 (x, t) =
λ2 – 4μ

2
(±c

√
c2 + b + c2 + b

)
sech2

(√
λ2 – 4μ

ζ

2

)
.

(5.51)

Moreover, if we select B2 = 0, B1 �= 0, then we obtain the singular solitary wave solutions
of (5.2):

u12 (x, t) = w ∓
√(

λ2 – 4μ
)(

c2 + b
)

coth

(√
λ2 – 4μ

ζ

2

)
,

v12 (x, t) =
λ2 – 4μ

2
(∓c

√
c2 + b – c2 – b

)
csch2

(√
λ2 – 4μ

ζ

2

)
.

(5.52)

In addition, if we select B2 �= 0, B2
2 > B2

1, then we get the solitary wave solutions of (5.2):

u13 (x, t) = w ∓
√(

λ2 – 4μ
)(

c2 + b
)

tanh

(
ζ0 +

√
λ2 – 4μ

ζ

2

)
,

v13 (x, t) =
λ2 – 4μ

2
(±c

√
c2 + b + c2 + b

)
sech2

(
ζ0 +

√
λ2 – 4μ

ζ

2

)
,

(5.53)

where ζ0 = tanh–1 B1
B2

.
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However, if we select B1 �= 0, B2
1 > B2

2, then we carry out the solitary wave solutions of
(5.2):

u14 (x, t) = w ∓
√(

λ2 – 4μ
)(

c2 + b
)

coth

(
ζ0 +

√
λ2 – 4μ

ζ

2

)
,

v14 (x, t) =
λ2 – 4μ

2
(∓c

√
c2 + b – c2 – b

)
csch2

(
ζ0 +

√
λ2 – 4μ

ζ

2

)
,

(5.54)

where ζ0 = tanh–1 B2
B1

.
Type II. When (λ2 – 4μ) < 0, we get trigonometric function solutions of (5.2) of the form

u2(x, t) = w ∓
√(

4μ – λ2
)(

c2 + b
)
(–B1 sin

√
4μ – λ2 ζ

2 + B2 cos
√

4μ – λ2 ζ

2

B1 cos
√

4μ – λ2 ζ

2 + B2 sin
√

4μ – λ2 ζ

2

)
,

v2(x, t) =
4μ – λ2

2
(∓c

√
c2 + b – c2 – b

)

×
[(–B1 sin

√
4μ – λ2 ζ

2 + B2 cos
√

4μ – λ2 ζ

2

B1 cos
√

4μ – λ2 ζ

2 + B2 sin
√

4μ – λ2 ζ

2

)2

+ 1
]

.

(5.55)

We might accept B1 = 0, B2 �= 0, Since B1 and B2 are integral constants, we find the
following periodic wave solutions of (5.2):

u21 (x, t) = w ∓
√(

4μ – λ2
)(

c2 + b
)

cot

(√
4μ – λ2 ζ

2

)
,

v21 (x, t) =
4μ – λ2

2
(∓c

√
c2 + b – c2 – b

)
csc2

(√
4μ – λ2 ζ

2

)
.

(5.56)

In addition, if we put B2 = 0, B1 �= 0, then we find the following the periodic wave solu-
tions of (5.2):

u22 (x, t) = w ±
√(

4μ – λ2
)(

c2 + b
)

tan

(√
4μ – λ2 ζ

2

)
,

v22 (x, t) =
4μ – λ2

2
(∓c

√
c2 + b – c2 – b

)
sec2

(√
4μ – λ2 ζ

2

)
.

(5.57)

Besides, if we set B2 �= 0, B2
2 > B2

1, then we achieve the following periodic wave solutions
of (5.2):

u23 (x, t) = w ∓
√(

4μ – λ2
)(

c2 + b
)

cot

(
ζ0 +

√
4μ – λ2 ζ

2

)
,

v23 (x, t) =
4μ – λ2

2
(∓c

√
c2 + b – c2 – b

)
csc2

(
ζ0 +

√
4μ – λ2 ζ

2

)
,

(5.58)

where ζ0 = tan–1 B1
B2

.
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Additionally, if we set B1 �= 0, B2
1 > B2

2, then we achieve the periodic wave solutions of
(5.2):

u24 (x, t) = w ∓
√(

4μ – λ2
)(

c2 + b
)

tan

(
ζ0 –

√
4μ – λ2 ζ

2

)
,

v24 (x, t) =
4μ – λ2

2
(∓c

√
c2 + b – c2 – b

)
sec2

(
ζ0 –

√
4μ – λ2 ζ

2

)
,

(5.59)

where ζ0 = tan–1 B2
B1

.
Type III: When (λ2 – 4μ) = 0, we find the following rational function solutions of (5.2):

u3(x, t) = w ∓ 2B2
√

c2 + b
B1 + B2ζ

,

v3(x, t) = 2
(∓c

√
c2 + b – c2 – b

)
(

B2

B1 + B2ζ

)2

.
(5.60)

Now we examine the coupled WBK equations by means of the (G′/G, 1/G)-expansion
method. For the balance number attained in the earlier section for this equation, the shape
of the solution is of the form

U(ζ ) = a0 + a1φ + b1ψ ,

V (ζ ) = α0 + α1φ + α2φ
2 + β1ψ + β2φψ ,

(5.61)

where a0, a1, b1, α0, α1, α2, β1, and β2 are constants to be determined. Now we take into
account the following three cases.

Case 1: When λ < 0, inserting (5.61) into (5.47), by (4.3)–(4.5) system (5.47) will be trans-
figured to a polynomial in ψ and φ. A system of algebraic equations can be obtained by
equalizing the coefficients of this polynomial for the unknown a0, a1, b1, α0, α1, α2, β1, β2,
w, λ, μ, σ , ζ1, and ζ2. Solving the algebraic equations via Maple software package, we get
three different sets of solution.

Result 1

a0 = w, a1 = 0, b1 = b1, α0 =
b2

1
4σ

, α1 = 0,

α2 =
b2

1
2λσ

, β1 = 0, β2 = b1c, b = –
4c2λσ + b2

1
4λσ

,

w = w, μ = 0, ζ1 = –
2σw2 + b2

1
4σ

, ζ2 = 0.

(5.62)

From (4.4), (5.61), and (5.62), with the help of (5.3), we deduce the following hyperbolic
function solutions of (5.2):

u1(x, t) = w +
b1

A1 sinh
√

–λζ + A2 cosh
√

–λζ
,

v1(x, t) =
b2

1
4σ

–
A1b1 cosh

√
–λζ + A2b1 sinh

√
–λζ

(A1 sinh
√

–λζ + A2 cosh
√

–λζ )2

×
[

b1

2σ
(A1 cosh

√
–λζ + A2 sinh

√
–λζ ) – c

√
–λ

]
,

(5.63)

where ζ = x – w tα
α

and σ = A2
1 – A2

2.
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In particular, by taking A1 = 0 and A2 �= 0 in (5.63), we attain the following solitary wave
solution:

u11 (x, t) = w +
b1

A2
sech

√
–λζ ,

v11 (x, t) = –
b2

1
4A2

2
+

b1

A2
tanh

√
–λζ

[
b1

2A2
tanh

√
–λζ + c

√
–λ sech

√
–λζ

]
.

(5.64)

When A2 = 0 and A1 �= 0, we obtain the previously mentioned wave solutions

u12 (x, t) = w +
b1

A1
csch

√
–λζ ,

v12 (x, t) =
b2

1
4A2

1
–

b1

A1
coth

√
–λζ

[
b1

2A1
coth

√
–λζ – c

√
–λ csch

√
–λζ

]
.

(5.65)

Result 2

a0 = w, a1 = a1, b1 = ±a1

√

–
λ2σ + μ2

λ
,

α0 = –a1λ(a1 – c), α1 = 0, α2 = –a1(a1 – c),

β1 = a1μ(a1 – c), β2 = ∓a1(a1 – c)
√

–
λ2σ + μ2

λ
,

b = a2
1 – c2, w = w, ζ1 = –

1
2
(
w2 + λa2

1
)
, ζ2 = 0.

(5.66)

From (4.4), (5.61), and (5.66) with (5.3) we find the following hyperbolic function solu-
tions of (5.2):

u2(x, t) = w +
a1

A1 sinh
√

–λζ + A2 cosh
√

–λζ + μ/λ

×
[

A1
√

–λ cosh
√

–λζ + A2
√

–λ sinh
√

–λζ ±
√

λ2σ + μ2
√

–λ

]
,

v2(x, t) = –a1λ(a1 – c) +
a1μ(a1 – c)

A1 sinh
√

–λζ + A2 cosh
√

–λζ + μ/λ

+
a1(a1 – c)(A1 cosh

√
–λζ + A2 sinh

√
–λζ )

(A1 sinh
√

–λζ + A2 cosh
√

–λζ + μ/λ)2

× [
A1λ cosh

√
–λζ + A2λ sinh

√
–λζ ∓

√
λ2σ + μ2

]
,

(5.67)

where ζ = x – w tα
α

.
In particular, if we substitute A1 = 0, μ = 0, and A2 > 0 into (5.67), we get the following

wave solutions:

u21 (x, t) = w + a1
√

–λ[tanh
√

–λζ ± i sech
√

–λζ ],

v21 (x, t) = –a1λ(a1 – c) + a1λ(a1 – c) tanh
√

–λζ [tanh
√

–λζ ± i sech
√

–λζ ].
(5.68)
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On the other hand, if we introduce A2 = 0, μ = 0, and A1 > 0, then we get the following
wave solutions:

u22 (x, t) = w + a1
√

–λ(coth
√

–λζ ± csch
√

–λζ ),

v22 (x, t) = –a1λ(a1 – c) + a1λ(a1 – c) coth
√

–λζ (coth
√

–λζ ± csch
√

–λζ ).
(5.69)

Result 3

a0 = a0, a1 = 0, b1 = –
2(a0 – w)(λ2σ + μ2)

λμ
,

α0 =
(a0 – w)2(λ2σ + 2μ2)

μ2 , α1 = 0,

α2 =
2(a0 – w)2(λ2σ + μ2)

λμ2 , β1 = –
2(a0 – w)2(λ2σ + μ2)

λμ
,

β2 = –
2c(a0 – w)(λ2σ + μ2)

λμ
, b = –

(a0 – w)2(λ2σ + μ2) + c2λμ2

λμ2 ,

w = w, ζ1 = –
a0(a0 – 2w)(2λ2σ – μ2) + 2λ2σw2

2μ2 , ζ2 = –
λ2σ (a0 – w)3

μ2 .

(5.70)

For the values of the parameters organized in (5.70), we carry out other hyperbolic func-
tion solutions of (5.2) given in the underneath:

u3(x, t) = a0 –
2(a0 – w)(λ2σ + μ2)

A1λμ sinh
√

–λζ + A2λμ cosh
√

–λζ + μ2
,

v3(x, t) =
1
μ2 (a0 – w)2(λ2σ + 2μ2)

–
2(a0 – w)2(λ2σ + μ2)

A1λμ sinh
√

–λζ + A2λμ cosh
√

–λζ + μ2

–
2
μ

(a0 – w)(λ2σ + μ2)(A1 cosh
√

–λζ + A2 sinh
√

–λζ )
(A1 sinh

√
–λζ + A2 cosh

√
–λζ + μ/λ)2

×
[

1
μ

(a0 – w)(A1 cosh
√

–λζ + A2 sinh
√

–λζ ) –
c√
–λ

]
,

(5.71)

where ζ = x – w tα
α

.
Similarly, by taking special values of the parameters we might attain many other solitary

wave solutions, but for simplicity, the solutions are not designated here.
Case 2: When λ > 0, in this case, solving the system of algebraic equations with Maple

software package, we obtain three different sets of results.
Result 1

a0 = w, a1 = 0, b1 = b1, α0 = –
b2

1
4σ

, α1 = 0,

α2 = –
b2

1
2λσ

, β1 = 0, β2 = b1c, b =
–4c2λσ + b2

1
4λσ

,

w = w, μ = 0, ζ1 =
–2σw2 + b2

1
4σ

, ζ2 = 0.

(5.72)
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For these values, the trigonometric function solutions of (5.2) are:

u1(x, t) = w +
b1

A1 sin
√

λζ + A2 cos
√

λζ
,

v1(x, t) = –
b2

1
4σ

–
A1b1 cos

√
λζ – A2b1 sin

√
λζ

(A1 sin
√

λζ + A2 cos
√

λζ )2

×
[

b1

2σ
(A1 cos

√
λζ – A2 sin

√
λζ ) – c

√
λ

]
,

(5.73)

where ζ = x – w tα
α

and σ = A2
1 + A2

2.
In particular, by taking A1 = 0 and A2 �= 0 in (5.73), we determine the following periodic

wave solutions:

u11 (x, t) = w +
b1

A2
sec

√
λζ ,

v11 (x, t) = –
b2

1
4A2

2
–

b1

A2
tan

√
λζ

[
b1

2A2
tan

√
λζ + c

√
λ sec

√
λζ

]
,

(5.74)

Alternatively, taking A2 = 0 and A1 �= 0, we determine the following periodic wave solu-
tions:

u12 (x, t) = w +
b1

A1
csc

√
λζ ,

v12 (x, t) = –
b2

1
4A2

1
–

b1

A1
cot

√
λζ

[
b1

2A1
cot

√
λζ – c

√
λ csc

√
λζ

]
.

(5.75)

Result 2

a0 = w, a1 = a1, b1 = ±a1

√
λ2σ – μ2

λ
,

α0 = –a1λ(a1 – c), α1 = 0, α2 = –a1(a1 – c),

β1 = a1μ(a1 – c), β2 = ∓a1(a1 – c)
√

λ2σ – μ2

λ
,

b = a2
1 – c2, w = w, ζ1 = –

1
2
(
w2 + λa2

1
)
, ζ2 = 0.

(5.76)

In this case, the trigonometric function solutions of (5.2) are:

u2(x, t) = w +
a1

A1 sin
√

λζ + A2 cos
√

λζ + μ/λ

×
[

A1
√

λ cos
√

λζ – A2
√

λ sin
√

λζ ±
√

λ2σ – μ2
√

λ

]
,

v2(x, t) = –a1λ(a1 – c) +
a1μ(a1 – c)

A1 sin
√

λζ + A2 cos
√

λζ + μ/λ

–
a1(a1 – c)(A1 cos

√
λζ – A2 sin

√
λζ )

(A1 sin
√

λζ + A2 cos
√

λζ + μ/λ)2

× [
A1λ cos

√
λζ – A2λ sin

√
λζ ±

√
λ2σ – μ2

]
,

(5.77)

where ζ = x – w tα
α

.
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For the values A1 = 0, μ = 0, and A2 > 0, of the parameters, we get the following periodic
wave solutions:

u21 (x, t) = w – a1
√

λ[tan
√

λζ ∓ sec
√

λζ ],

v21 (x, t) = –a1λ(a1 – c) – a1λ(a1 – c) tan
√

λζ [tan
√

λζ ∓ sec
√

λζ ].
(5.78)

Moreover, for the values A2 = 0, μ = 0, and A1 > 0, we get the following periodic wave
solutions:

u22 (x, t) = w + a1
√

λ[cot
√

λζ ± csc
√

λζ ],

v22 (x, t) = –a1λ(a1 – c) – a1λ(a1 – c) cot
√

λζ [cot
√

λζ ± csc
√

λζ ].
(5.79)

Result 3

a0 = a0, a1 = 0, b1 =
2(a0 – w)(λ2σ – μ2)

λμ
,

α0 = –
(a0 – w)2(λ2σ – 2μ2)

μ2 , α1 = 0,

α2 = –
2(a0 – w)2(λ2σ – μ2)

λμ2 , β1 =
2(a0 – w)2(λ2σ – μ2)

λμ
,

β2 =
2c(a0 – w)(λ2σ – μ2)

λμ
, b =

(a0 – w)2(λ2σ – μ2) – c2λμ2

λμ2 , w = w,

ζ1 =
a0(a0 – 2w)(2λ2σ + μ2) + 2λ2σw2

2μ2 , ζ2 =
λ2σ (a0 – w)3

μ2 .

(5.80)

For the values in (5.80), we establish other trigonometric function solutions of (5.2):

u3(x, t) = a0 +
2(a0 – w)(λ2σ – μ2)

A1λμ sin
√

λζ + A2λμ cos
√

λζ + μ2
,

v3(x, t) = –
1
μ2 (a0 – w)2(λ2σ – 2μ2) +

2(a0 – w)2(λ2σ – μ2)
A1λμ sin

√
λζ + A2λμ cos

√
λζ + μ2

–
2
μ

(a0 – w)(λ2σ – μ2)(A1 cos
√

λζ – A2 sin
√

λζ )
(A1 sin

√
λζ + A2 cos

√
λζ + μ/λ)2

×
[

1
μ

(a0 – w)(A1 cos
√

λζ – A2 sin
√

λζ ) –
c√
λ

]
,

(5.81)

where ζ = x – w tα
α

.
If the parameters receive diverse definite values, then we might accomplish many other

periodic wave solutions, but for succinctness, these solutions are not displayed her.
Case 3 When λ = 0, in this case, solving the system of algebraic equations with Maple

software package, we get the following results:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a0 = w, a1 = ± b1√
A2

1–2A2μ
, b1 = b1, α0 = 0, α1 = 0,

α2 = ± b1c√
A2

1–2A2μ
– b2

1
A2

1–2A2μ
, β1 = ∓ b1μc√

A2
1–2A2μ

+ b2
1μ

A2
1–2A2μ

,

β2 = ∓ b2
1√

A2
1–2A2μ

+ b1c, b = b2
1

A2
1–2A2μ

– c2,

w = w, ζ1 = – 1
2 w2, ζ2 = 0.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (5.82)
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a0 = a0, a1 = 0, b1 = 2
μ

(a0 – w)(A2
1 – 2A2μ),

α0 = (a0 – w)2, α1 = 0, α2 = – 2
μ2 (a0 – w)2(A2

1 – 2A2μ),
β1 = 2

μ
(a0 – w)2(A2

1 – 2A2μ), β2 = 2c
μ

(a0 – w)(A2
1 – 2A2μ),

b = 1
μ2 (a0 – w)2(A2

1 – 2A2μ) – c2, w = w,
ζ1 = 3

2 a2
0 – 3a0w + w2, ζ2 = (a0 – w)3.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (5.83)

In this case, the rational function solutions of (5.2) are

u1(x, t) = w +
b1

μ

2 ζ 2 + A1ζ + A2
×

[
1 ± μζ + A1√

A2
1 – 2A2μ

]
,

v1(x, t) =
b1μ

μ

2 ζ 2 + A1ζ + A2
×

[
b1

A2
1 – 2A2μ

∓ c
√

A2
1 – 2A2μ

]

+
b1(μζ + A1)

( μ

2 ζ 2 + A1ζ + A2)2 ×
[

c ∓ b1 – cμζ – A1c
√

A2
1 – 2A2μ

–
b1(μζ + A1)
A2

1 – 2A2μ

]
,

(5.84)

where ζ = x – w tα
α

; and

u2(x, t) = a0 +
2
μ

(a0 – w)(A2
1 – 2A2μ)

μ

2 ζ 2 + A1ζ + A2
,

v2(x, t) = (a0 – w)2 +
2
μ

(a0 – w)2(A2
1 – 2A2μ)

μ

2 ζ 2 + A1ζ + A2

–
2
μ

(a0 – w)(A2
1 – 2A2μ)(μζ + A1)

( μ

2 ζ 2 + A1ζ + A2)2 ×
[

1
μ

(a0 – w)(μζ + A1) – c
]

,

(5.85)

where ζ = x – w tα
α

.
The solutions obtained are more general and useful to analyze the shallow water wave

profile.
Note: It is worth mentioning that all the solutions derived in this study were confirmed

using the Maple software package by returning them to the original equation and found
correct.

6 Physical explanation and graphical representations
In this section, we present some 3-D and 2-D figures of some of the obtained solutions. The
figures are carried out by taking suitable values of the parameters to objectify the inward
contrivance of the incidents, which are analyzed through the time-fractional coupled BB
equations and the coupled WBK equations and are displayed in Figs. 1–6. For example,
Fig. 1 shows the kink-shaped soliton depicted from the solution (5.9) when λ = 7, μ = 12,
w = 0.5, ξ = x–t0.5, wherein the fractional order is α = 0.5 within the intervals –15 ≤ x ≤ 15
and 0.1 ≤ t ≤ 15. Solution (5.15) presents the singular periodic wave for λ = 4, μ = 4.25,
w = 1/3, ξ = x – (20/51)t0.85 with fractional order α = 0.85 and is sketched in Fig. 2 within
the limits –10 ≤ x ≤ 10 and 0.1 ≤ t ≤ 0.2. The modulus of solution (5.26) signifies the
cuspon for λ = –1, ξ1 = 0, w = 1/2, ξ = x – (10/19)t0.95 with fractional order α = 0.95 and is
shown in Fig. 3 within the range –50 ≤ x ≤ 50 and 0.01 ≤ t ≤ 0.5. Solution (5.51) indicates
the kink-shape soliton for λ = 3, μ = 2, c = 1, b = 1, w = 0.5, ξ = x – 2t0.5 with fractional
order α = 0.5 and is depicted in Fig. 4 within the intervals –90 ≤ x ≤ 90 and 0.1 ≤ t ≤ 90.
Solution (5.52) characterizes the singular kink wave for λ = 3, μ = 2, c = 1, b = 1, w = 1,
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Figure 1 Modulus plot of solution (5.9) which is a kink-shape soliton

Figure 2 Modulus plot of solution (5.15), which is a singular periodic wave

Figure 3 Modulus plot of solution (5.26) which is a cuspon

ξ = x – 2t0.5 with fractional order α = 0.5 and is plotted in Fig. 5 within the limits –100 ≤
x ≤ 100 and 0.1 ≤ t ≤ 1. Solution (5.64) represents the bell-shape soliton for λ = –1, b1 = 1,
A2 = 1, w = 1, ξ = x – 20

19 t0.95 with fractional order α = 0.95 and outlined in Fig. 6 within the
range –5 ≤ x ≤ 5 and 0.1 ≤ t ≤ 0.5.

7 Conclusion
By means of the basic (G′/G)-expansion method and the two-variable (G′/G, 1/G)-
expansion method, in this study, we have ascertained further general solitary wave so-
lutions to the time-fractional coupled Boussinesq–Burger equations and the coupled
Whitham—Broer–Kaup system as a linear combination of the exponential, rational, and
hyperbolic functions or separately including several free parameters. For definite values
of the associated parameters, some well-known solutions are extracted from the broad-
ranging solutions, which are available in the literature, and some fresh solutions are de-
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Figure 4 Modulus plot of solution (5.51) which is a kink-shape soliton

Figure 5 Modulus plot of solution (5.52) which is a singular kink-shape soliton

Figure 6 Modulus plot of solution (5.64) which is a bell-shape soliton

rived, which confirm the correctness and validity of the general solutions and the method.
We have exposed the graphical representations and discussed the physical significance
of the obtained solutions. Every nonlinear equation is distinct and atypical; therefore not
all equations can be examined through a single method. The greater the scope of appli-
cation of a method, the greater the acceptability of that method. Since this study shows
that the introduced methods are straightforward, compatible, and powerful mathematical
tools for obtaining abundant traveling wave solutions, to test the range of applicability and
consistency, the method can be implemented to other types of nonlinear fractional differ-
ential systems to analyze closed-form soliton solutions, and this is the concern of further
research. Numerical solutions to these equations can also be explored in the future by
following the effective schemes discussed in [60, 61].
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