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Abstract
In this paper, we propose a simple network consisting of only two nodes and two
paths. The first node, which is called the source, has three competing firms that send
their quantities of load via the two paths to the second node, called the destination
node. The static game that describes the reaction among the three firms is
constructed. The Nash equilibrium point of the static game is discussed. Assuming a
gradient firm based rule we investigate the dynamic game which has the same Nash
equilibrium as in the static game. The local stability conditions of the Nash
equilibrium are obtained in terms of the reactivity parameters among the firms and
the nonlinear costs functions adopted by those firms. The obtained results are
supported by a numerical simulation that in turn gives routes where Nash equilibrium
may lose its stability. The simulation shows that Nash equilibrium loses its stability via
flip and fold bifurcations and then chaos exists.
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1 Introduction
Modeling competition among players over a finite set of resources whose cost change with
demand is a type of congestion games. Traditionally, such games may be known as cost
minimization games. The congestion game can be simply defined as a game of resources
where players can allocate some of these resources. Each resource should be accompanied
by certain costs. These costs depend on the load each player wants to induce. Such games
are considered quite simple; however, they have enough structure for interesting situations
spanning from oligopoly, migration and the internet to possibly be modeled [1]. Such types
of games always have a Nash equilibrium in pure strategies as cited by Rosenthal in [2]. In
the literature, there is a variety of work that has studied such games. The applicability of
those games makes researchers investigate them more and hence new directions are being
explored and discussed. For instance, in [3], the worst-case price of anarchy that is defined
as the ratio between summation of players’ costs in a Nash equilibrium and in a minimum
cost outcome of congestion games has been studied. This summation is used to measure
social cost. That polynomial latency functions could be used as the transportation costs
along the network has been proved for two different congestion games in [4]. A general-
ization of oligopolistic games via networks has been studied in [5]. This game was known
as a type of atomic game. In [6], it has been proved that the price of anarchy of a dynamic
Cournot game under coalition information was bounded by the number of players.
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In the current paper, we focus on the dynamic case and the properties of a Nash equi-
librium point. Our investigation starts with modeling the suggested congestion game and
then it is studied as statically. Moving from the static to the dynamic versions we assume
that the three firms adopt a gradient rule by which they can react with each other. This
gradient approach has been intensively studied in the literature. It has been studied in
the context of monopoly, duopoly and triopoly [7–12]. In addition, it has been investi-
gated by Perc and many coauthors in other contexts such as in the prisoner’s dilemma and
public good games (see [13–16]). Indeed, in our paper we have got a unique Nash equi-
librium for the dynamical system describing the suggested congestion game. According
to the gradient mechanism we generate our system and study its complex dynamics. The
first finding we get is that the stability of the Nash equilibrium is influenced by the volume
of resources and the nonlinearity of the cost functions. We stress in our investigation the
role of destabilization that the Nash equilibrium may face. The destabilization is obtained
via two types of bifurcation, which are period-doubling and fold bifurcations. Interest-
ingly, our numerical simulation experiments show the presence of irregular fluctuations
near the Nash equilibrium. Those kinds of fluctuations around Nash equilibrium are not
normally distributed as supported by the simulation and empirical literature [1].

Now, we summarize the current paper as follows. In Sect. 2, we introduce a congested
triopoly model. We give some definitions related to congestion games. This also includes
the type of nonlinear costs functions adopted by each firm with the amount of quantities
that must be transferred via paths of the network. Hence, in Sect. 3 we present some theo-
retical investigations on setting the dynamical system that describes the congestion game
handled in this paper. Furthermore, in Sect. 3, we follow the standard direction to discuss
the conditions of stability of the Nash equilibrium. In Sect. 4, we perform an intensive
numerical simulation to validate the obtained results that include bifurcation, time series,
and 2D-bifurcation analysis.

2 The model
Suppose we have three firms (players) that send their productions from a source node (S)
to a destination node (T). Those two nodes are connected by only two paths, path 1 and
path 2. Each firm, indexed by i = 1, 2, 3, must send a di unit via these paths from their
source node to the destination node as follows:

x11 + x12 = d1,

x21 + x22 = d2,

x31 + x32 = d3,

(1)

or it can be rewritten in the simple form,

2∑

j=1

xij = di; i = 1, 2, 3, (2)

where di, i = 1, 2, 3, refers to the total unit sent from firm i to the destination node (T)
through the two paths {1, 2}. Since we have a simple network with two nodes and two
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paths, the three players will provide a total load on each path as follows:

x1 = x11 + x21 + x31,

x2 = x12 + x22 + x32,
(3)

or

3∑

i=1

xij = xj; j = 1, 2. (4)

Indeed, each firm will get a cost of total load on each path. We denote by �1(x1) and
�2(x2) the cost on path 1 and path 2, respectively. We follow [1] and restrict these two
costs to the following form:

�1(x1) = (x11 + x21 + x31)p1 ,

�2(x2) = (x12 + x22 + x32)p2 ,
(5)

or

�j(xj) =

( 3∑

i=1

xij

)pj

; j = 1, 2, (6)

where the convexity of the above costs is guaranteed under the condition pj ≥ 1; j = 1, 2
and pj ∈ N. Now, the cost of each player for a given strategy profile X = (xi)i∈N can be
written in the following form:

c1(X) = x11�1(x1) + x12�2(x2),

c2(X) = x21�1(x1) + x22�2(x2),

c3(X) = x31�1(x1) + x32�2(x2),

(7)

which each player wants to minimize. The aim of this paper is to study the dynamics be-
longing to this game. This requires one to model the behaviors of the competing play-
ers within the game by repeating their behaviors in a discrete time dynamic game. These
competing players (or firms) have some preferences to be maximized. The following utility
functions are used to describe those preferences:

U1(X) = –c1(X) = –x11(x11 + x21 + x31)p1 – x12(x12 + x22 + x32)p2 ,

U2(X) = –c2(X) = –x21(x11 + x21 + x31)p1 – x22(x12 + x22 + x32)p2 ,

U3(X) = –c3(X) = –x31(x11 + x21 + x31)p1 – x32(x12 + x22 + x32)p2 .

(8)

These utilities can be simplified using (1) and the variables, x, y and z for x11, x21 and
x31, respectively, as follows:

U1(x, y, z) = –x(x + y + z)p1 – (d – x)(3d – x – y – z)p2 ,

U2(x, y, z) = –y(x + y + z)p1 – (d – y)(3d – x – y – z)p2 ,

U3(x, y, z) = –z(x + y + z)p1 – (d – z)(3d – x – y – z)p2 ,

(9)
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where we assume also di = d, i = 1, 2, 3, to reduce the number of game parameters. Now,
we assume that the three players adjust their works over time proportionally to their
marginals. This means that the change in their choices at any time t and the next one
will be governed by the following relation:

Xt+1 = Xt + γ (Xt)
∂U
∂Xt

, (10)

where Xt refers to the firm’s choice at any period t.

Proposition 1 The suggested game above admits a unique Nash equilibrium point whose
variables satisfy the condition

Cp1 Xp1 = Cp2 (d – X)p2 , Cpi = 3pi + 3pi–1pi; i = 1, 2.

Proof It is similar to [1]. �

Proposition 2 The static equilibrium point of the above congested game is an increasing
function of the variables x∗(p1, p2) if the following conditions are satisfied:

x∗ < e(–c–1
p1

dcp1
dp1

),

d – x∗ > e(–c–1
p2

dcp2
dp2

).

Proof A Nash equilibrium should satisfy the condition

cp1 xp1 = cp2 (d – x)p2 , cpi = 3pi + 3pi–1pi, i = 1, 2.

By differentiating this condition with respect to p1 and p2, respectively, we get

xp1
dcp1

dp1
+ cp1

(
log x∗ +

p1

x∗
∂x∗

∂p1

)
xp1 = cp2 p2(d – x)p2–1

(
–

∂x∗

∂p1

)
,

cp1 p1xp1–1
(

∂x∗

∂p2

)
=

dcp2

dp2
(d – x)p2 + cp2

(
log(d – x) –

(
p2

d – x

)
∂x∗

∂p2

)
,

(11)

where

∂

∂p1

(
cp1 xp1

)
= xp1

(
log x∗ +

p1

x∗
∂x∗

∂p1

)
,

∂

∂p2

(
cp2 (d – x)p2

)
= (d – x)p2

(
log(d – x) –

(
p2

d – x

)
∂x∗

∂p2

)
.

With simple calculations (11) can be rewritten in the following form:

∂x∗

∂p1
= –xp1

cp1 log x∗+
dcp1
dp1

cp1 p1xp1–1 + cp2 p2(d – x)p2–1 ,

∂x∗

∂p2
= (d – x)p2

dcp2
dp2

+ cp2 log(d – x)
cp1 p1xp1–1 + cp2 p2(d – x)p2–1 ,

(12)
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which are positive if

cp1 log x∗ +
dcp1

dp1
< 0,

dcp2

dp2
+ cp2 log(d – x) > 0,

and then the proof is completed. �

Proposition 3 In the case of a small asymmetry (p2 = p1 + ε) where ε is very small then

x
d

=
1

1 + ε
p1

+ d– ε
p1

+ o(ε), or

x
d

=
1 + ε

p1
+ d– ε

p1

( ε
p1

)(1 + ε
p1

)

[
2 –

( ε
p1

)(1 + ε
p1

)

(1 + ε
p1

+ d– ε
p1 )2

]
+ o(ε).

Proof Since we know that x(p1, p2) is the only solution of

cp1 xp1 = cp2 (d – x)p2 ,

by setting p2 = p1 + ε we get

cp1 xp1 = cp1+ε(d – x)p1+ε ,

which can be simplified to

xp1 = (d – x)p1+ε , (13)

where limε→0
cp1

cp1+ε
= 1. Now, (13) can be rewritten as

x = d1+ ε
p1

(
1 –

x
d

)1+ ε
p1

= d1+ ε
p1

[
1 –

(
1 +

ε

p1

)(
x
d

)
+

1
2

(
1 +

ε

p1

)(
ε

p1

)(
x
d

)2

+ o(ε)
]

; (14)

with simple calculations, (14) takes the following form:

1
2

(
1 +

ε

p1

)(
ε

p1

)(
x
d

)2

–
(

1 +
ε

p1
+ d– ε

p1

)(
x
d

)
+ 1 = 0;

as ε is very small we obtain

x
d

=
1 + ε

p1
+ d– ε

p1

( ε
p1

)(1 + ε
p1

)

[
1 ±

√√√√1 –
2( ε

p1
)(1 + ε

p1
)

(1 + ε
p1

+ d– ε
p1 )2

]
,
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which can be simplified to

x
d

=
1 + ε

p1
+ d– ε

p1

( ε
p1

)(1 + ε
p1

)

[
1 ±

(
1 –

( ε
p1

)(1 + ε
p1

)

(1 + ε
p1

+ d– ε
p1 )2

+ o(ε)
)]

.

This completes the proof. �

3 Stability of the dynamic model
This section is organized to study the dynamic characteristics of the congested game de-
scribed in the previous section. We assume that the firms’ allocations choices can be mod-
eled according to the following bounded rationality rule:

xt+1 = xt + γ (Xt)
∂U1

∂x
,

yt+1 = yt + γ (Xt)
∂U2

∂y
,

zt+1 = zt + γ (Xt)
∂U3

∂z
,

(15)

which can be written in the form

xt+1 = xt + γ
[
–(xt + yt + zt)p1 – p1xt(xt + yt + zt)p1–1

+ (3d – xt – yt – zt)p2 + (d – xt)p2(3d – xt – yt – zt)p2–1],

yt+1 = yt + γ
[
–(xt + yt + zt)p1 – p1yt(xt + yt + zt)p1–1

+ (3d – xt – yt – zt)p2 + (d – yt)p2(3d – xt – yt – zt)p2–1],

zt+1 = zt + γ
[
–(xt + yt + zt)p1 – p1zt(xt + yt + zt)p1–1

+ (3d – xt – yt – zt)p2 + (d – zt)p2(3d – xt – yt – zt)p2–1],

(16)

where we assume that γ (Xt) = γ as a constant parameter in order to make the above system
admits a unique Nash equilibrium obtained above. Now, to study the stability of the Nash
equilibrium we need to calculate the Jacobian of the dynamical system (16),

⎡

⎢⎢⎣

1 + γ
∂2U1
∂x2 γ

∂2U1
∂y ∂x γ

∂2U1
∂z ∂x

γ
∂2U2
∂x ∂y 1 + γ

∂2U2
∂y2 γ

∂2U2
∂z ∂y

γ
∂2U3
∂x ∂z γ

∂2U3
∂y ∂z 1 + γ

∂2U3
∂z2

⎤

⎥⎥⎦ .

So to calculate the Jacobian, the following proposition is given.

Proposition 4 For the above discussed Nash equilibrium, the Jacobian can be written in
the following simple form:

⎡

⎣
1 – γ (c̄1xp1–1 + c̄2(d – x)p2–1) –γ (ĉ1xp1–1 + ĉ2(d – x)p2–1) –γ (ĉ1xp1–1 + ĉ2(d – x)p2–1)
–γ (ĉ1xp1–1 + ĉ2(d – x)p2–1) 1 – γ (c̄1xp1–1 + c̄2(d – x)p2–1) –γ (ĉ1xp1–1 + ĉ2(d – x)p2–1)
–γ (ĉ1xp1–1 + ĉ2(d – x)p2–1) –γ (ĉ1xp1–1 + ĉ2(d – x)p2–1) 1 – γ (c̄1xp1–1 + c̄2(d – x)p2–1)

⎤

⎦,
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where

c̄1 = 2p13p1–1 + p1(p1 – 1)3p1–2,

c̄2 = 2p23p2–1 + p2(p2 – 1)3p2–2,

ĉ1 = p13p1–1 + p1(p1 – 1)3p1–2,

ĉ2 = p23p2–1 + p2(p2 – 1)3p2–2.

Proof See the Appendix. �

In order to study the stability of the Nash equilibrium of our model we need to investigate
which types of bifurcations would have influence on the stability. So we need to recall the
stability conditions which are known as Routh–Hurwitz conditions. The characteristic
equation of the above Jacobian takes the form

λ3 + A1λ
2 + A2λ + A3 = 0,

where

A1 = 3
[
γ c̄1xp1–1 + γ c̄2(d – x)p2–1 – 1

]
,

A2 = 3
[
γ (c̄1 – ĉ1)xp1–1 + γ (c̄2 – ĉ2)(d – x)p2–1 – 1

]

× [
γ (c̄1 + ĉ1)xp1–1 + γ (c̄2 + ĉ2)(d – x)p2–1 – 1

]
,

A3 =
[
γ (c̄1 + 2ĉ1)xp1–1 + γ (c̄2 + 2ĉ2)(d – x)p2–1 – 1

]

× [
γ (c̄1 – ĉ1)xp1–1 + γ (c̄2 – ĉ2)(d – x)p2–1 – 1

]2.

Hence, the eigenvalues are

λ1 = 1 – γ
[
(c̄1 + 2ĉ1)xp1–1 + (c̄2 + 2ĉ2)(d – x)p2–1],

λ2,3 = 1 – γ
[
(c̄1 – ĉ1)xp1–1 + (c̄2 – ĉ2)(d – x)p2–1],

which are real and lie within the unit circle if

γ
[
(c̄1 + 2ĉ1)xp1–1 + (c̄2 + 2ĉ2)(d – x)p2–1] < 2,

γ
[
(c̄1 – ĉ1)xp1–1 + (c̄2 – ĉ2)(d – x)p2–1] < 2.

(17)

Proposition 5 The Nash equilibrium is stable if and only if the following conditions are
satisfied:

1 + A1 + A2 + A3 > 0,

1 – A1 + A2 – A3 > 0,

A2
3 < 1,

(
1 – A2

3
)2 – (A2 – A1A3)2 > 0.
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Proof The first condition can be simplified to

γ 3((c̄1 + 2ĉ1)xp1–1 + (c̄2 + 2ĉ2)(d – x)p2–1)((c̄1 – ĉ1)xp1–1 + (c̄2 – ĉ2)(d – x)p2–1)2,

which is always positive due to (17). The second condition can be simplified to

(
2–γ

(
(c̄1 +2ĉ1)xp1–1 +(c̄2 +2ĉ2)(d –x)p2–1))(γ

(
(c̄1 – ĉ1)xp1–1 +(c̄2 – ĉ2)(d –x)p2–1)–2

)2.

It is also positive due to (17). The third condition can be simplified to

(
γ
(
(c̄1 + 2ĉ1)xp1–1 + (c̄2 + 2ĉ2)(d – x)p2–1)) – 1)2

× (
γ
(
(c̄1 – ĉ1)xp1–1 + (c̄2 – ĉ2)(d – x)p2–1) – 1

)4.

Also, this condition is satisfied (becomes less than 1) if (17) holds. The last condition is
satisfied if

γ 5((c̄1 + 2ĉ1)xp1–1 + (c̄2 + 2ĉ2)(d – x)p2–1))2((c̄1 – ĉ1)xp1–1 + (c̄2 – ĉ2)(d – x)p2–1)4

– 6γ 4((c̄1 + 2ĉ1)xp1–1 + (c̄2 + 2ĉ2)(d – x)p2–1))
(
(c̄1 + ĉ1)xp1–1 + (c̄2 + ĉ2)(d – x)p2–1)

× (
(c̄1 – ĉ1)xp1–1 + (c̄2 – ĉ2)(d – x)p2–1)3 + 9γ 3((c̄1 – ĉ1)xp1–1 + (c̄2 – ĉ2)(d – x)p2–1)2

× [
2
(
c̄1xp1–1 + c̄2(d – x)p2–1)2 + 4

(
c̄1xp1–1 + c̄2(d – x)p2–1)(ĉ1xp1–1 + ĉ2(d – x)p2–1)

+
(
ĉ1xp1–1 + ĉ2(d – x)p2–1)2] – 2γ 2((c̄1 – ĉ1)xp1–1 + (c̄2 – ĉ2)(d – x)p2–1)

× (
(4c̄1 – ĉ1)xp1–1 + (4c̄2 – ĉ2)(d – x)p2–1)((4c̄1 + 5ĉ1)xp1–1 + (4c̄2 + 5ĉ2)(d – x)p2–1)

+ γ
(
30

(
c̄1xp1–1 + c̄2(d – x)p2–1)2 – 12

(
ĉ1xp1–1 + ĉ2(d – x)p2–1)2)

– 12
(
c̄1xp1–1 + c̄2(d – x)p2–1) > 0. �

4 Numerical simulations
The above discussion tells us that the main parameters γ , p1, p2 and d have a serious
impact on the stability of the Nash equilibrium point. So we carry out some numerical
experiments in order to investigate more the influences of those parameter values on the
behavior of system (16). Our analysis includes some tools such as bifurcations, time series
and the basin of attractions.

Let us first set our parameter values as follows: xo = 1.5, yo = 1.5, zo = 1.5, d = 2, p1 = 1.66
and p2 = 2. It is worth mentioning here that the reader should observe that we begin with
values for the parameter p1 less than p2. Later on we investigate the dynamic character-
istics of (16) when p1 ≥ p2. This setting shows the influence of the parameter γ on the
equilibrium point. Figure 1(a) shows the bifurcation diagram of system (16) when vary-
ing the parameter γ in the interval [0, 0.0616]. It is clear that this parameter has no effect
on the Nash equilibrium point up to the point 0.04586 where the first period-doubling
occurs. This is also seen in the Lyapunov exponent that corresponds to the bifurcation di-
agram. After that value, the periods of the cycles increase when varying the value of γ . For
instance, at γ = 0.056 a stable period-2 cycle appears. Its phase portrait is given in Fig. 1(b)
with the time series. It is obvious that the period-2 cycle lies on the diagonal due to the
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Figure 1 The complex analysis of the system (16) via bifurcations, phase portrait of the period cycles and
chaotic attractor, time series and Lyapunov exponent when varying the parameter values of γ , p1, p2 and d
separately

symmetry in system (16). Now, we go forward to the next period-doubling by fixing the
previous parameter values and changing the value of γ to 0.057. This small change in the
parameter gives rise to the stable period-4 cycle as shown in Fig. 1(c). This figure shows
the four period points in the phase portrait and they lie in the diagonal because of the
symmetry of the system. Increasing the parameter γ further to the point 0.059 gives birth
to the stable period-8 cycle as shown in Fig. 1(d). More experiments are carried out to dis-
cover the period-6 cycle but the simulation gives nothing. For any values of the parameter
γ in the interval [0.057, 0.059) we get only a stable period-4 cycle. There is no indication of
a period-6 cycle. Changing this parameter slightly to 0.0591 the system’s behavior jumps
to stable period-16 cycles and no indication of a period-10 cycle exists. The phase portrait
of this periodic cycle is given in Fig. 1(e). Interestingly, when increasing the value of the
parameter γ with 0.0001 simulation gives birth to 8 pieces of chaotic attractors as shown
in Fig. 1(f ). Pieces of chaotic attractors still exist for any increase of γ ; then they turn to
a stable period-10 cycle at the value γ = 0.05998 as presented in Fig. 1(g). Increasing this
parameter value gives different types of periodic cycles and pieces of chaotic attractor till
the value 0.0617, where we only witness the birth of a one-piece chaotic attractor. We end
this part of simulation analysis by giving the influences of the other parameters p1, p2 and
d via plotting their bifurcation diagrams. Those bifurcations are presented in Fig. 1(h),
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Fig. 1(i) and Fig. 1(j). It is obvious that those parameters have a destabilization impact on
the system’s Nash equilibrium when varying them. In addition, we give a 2D-bifurcation
diagram for the parameters γ versus d. We also plot the basin of attraction for x versus y
for the stable period-32 cycle at the parameter values zo = 1.5, γ = 0.05913, d = 2, p1 = 1.66
and p2 = 2 in Fig. 1(k) and Fig. 1(l), respectively.

The gray color in Fig. 1(k) refers to the stable period-1 cycle and the other colors are
for different periodic cycles. Furthermore, the 2D-bifurcation diagram between γ and d
includes some regions where periodic cycles with odd order can be found. For instance,
at the parameter values γ = 0.05626133 and d = 2.294044, another stable period-5 cycle
arises. At γ = 0.0561244 and d = 2.262711, a stable period-5 cycle arises. Now, we study
the case when the two parameters p1 and p2 are equal. We set the parameter values to
xo = 1.5, yo = 1.5, zo = 1.5, d = 2, p1 = 2 and p2 = 2. The bifurcation diagram when varying
the parameter γ is given in Fig. 2(a). The Jacobian of the system (16) at those values of the
parameters and for γ = 0.033333 takes the form

⎡

⎢⎣
0.066676 –0.533328 –0.533328

–0.533328 0.066676 –0.533328
–0.533328 –0.533328 0.066676

⎤

⎥⎦ ,

whose eigenvalues are

μ1 = μ3 = 0.600004,

μ2 = –0.99998,

where |μ1,3| < 1 and |μ2| ≈ 1, which means that the Nash equilibrium may lose its stability
via a fold bifurcation type. Keeping the other parameter values fixed and reducing γ to
0.033 we get a situation where the Nash equilibrium of system (16) becomes stable. This
is depicted in Fig. 2(b) and as one can see from the time series the Nash equilibrium point
becomes stable. The influence of the other parameters, d, p1 and p2, are also important
and we give only here their bifurcations just to reduce our analysis. The interesting reader

Figure 2 The complex analysis of the system (16) via bifurcations and Lyapunov exponent when varying the
parameter values of γ , p2 and d separately for the cases when p1 = p2 and p1 > p2
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is advised to investigate further this case, as the previous case. Furthermore, we can see
from Fig. 2(d) that the 2D-bifurcation diagram of γ versus d indicates that there is only
period-2 cycle. Now, we study the case when we have p1 > p2. We set the parameter values
to xo = 1.5, yo = 1.5, zo = 1.5, d = 2, p1 = 2, p2 = 1.3 and γ = 0.085. The Jacobian matrix of
system (16) at these values takes the form

⎡

⎢⎣
–1.0471 –1.1573 –1.1573
–1.1573 –1.0471 –1.1573
–1.1573 –1.1573 –1.0471

⎤

⎥⎦ ,

whose eigenvalues are

η1 = η3 = –0.1102,

η2 = –3.3617,

which are real and |η2| > 1 means that the Nash equilibrium loses its stability via a period-
doubling bifurcation only. At those parameter values and when varying the parameter
γ , the Nash equilibrium becomes stable until the parameter approaches the value 0.066
where we see the birth of a period-2 cycle. After that it becomes unstable due to chaos as
shown in Fig. 2(e). Other numerical simulations for this case give interesting results but
we end our numerical analysis here and give the bifurcation diagrams for the parameters
d and p2 in Fig. 2(f ).

5 Conclusion
The current paper has investigated the chaotic characteristics of a congested triopoly
game, where three firms use a simple network to send their goods to the destination node.
The static framework of the congestion game has been introduced and studied. Moving to
the dynamic case it has been assumed that the three firms adopt the gradient rule in order
to react with the decisions made by their agents. Due to the symmetry of the discrete dy-
namic model describing this game, we have discussed the influence of the model’s param-
eters using experimental simulation. The simulation has shown that the game’s Nash equi-
librium may lose its stability using two types of bifurcations which are period-doubling and
fold bifurcation. However, the simulation has provided interesting results that support and
extend the results found in the literature [1], the complex phenomenon of strange chaotic
attractor has not existed before. Furthermore, the simulation has provided some irregular
fluctuations around the Nash equilibrium point.

Appendix
The proof of Proposition 4 is given below in detail.

Proof The partial derivatives in the Jacobian can be written as follows:

∂2U1

∂x2 =
[
–2p1(xt + yt + zt)p1–1 – p1(p1 – 1)xt(xt + yt + zt)p1–2

– 2p2(3d – xt – yt – zt)p2–1 – p2(p2 – 1)(d – xt)(3d – xt – yt – zt)p2–2],
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∂2U1

∂y ∂x
=

[
–p1(xt + yt + zt)p1–1 – p1(p1 – 1)xt(xt + yt + zt)p1–2

– p2(3d – xt – yt – zt)p2–1 – p2(p2 – 1)(d – xt)(3d – xt – yt – zt)p2–2],

∂2U1

∂z ∂x
=

[
–p1(xt + yt + zt)p1–1 – p1(p1 – 1)xt(xt + yt + zt)p1–2

– p2(3d – xt – yt – zt)p2–1 – p2(p2 – 1)(d – xt)(3d – xt – yt – zt)p2–2],

and

∂2U2

∂y2 =
[
–2p1(xt + yt + zt)p1–1 – p1(p1 – 1)yt(xt + yt + zt)p1–2

– 2p2(3d – xt – yt – zt)p2–1 – p2(p2 – 1)(d – yt)(3d – xt – yt – zt)p2–2],

∂2U2

∂x ∂y
=

[
–p1(xt + yt + zt)p1–1 – p1(p1 – 1)yt(xt + yt + zt)p1–2

– p2(3d – xt – yt – zt)p2–1 – p2(p2 – 1)(d – yt)(3d – xt – yt – zt)p2–2],

∂2U2

∂z ∂y
=

[
–p1(xt + yt + zt)p1–1 – p1(p1 – 1)yt(xt + yt + zt)p1–2

– p2(3d – xt – yt – zt)p2–1 – p2(p2 – 1)(d – yt)(3d – xt – yt – zt)p2–2],

and

∂2U3

∂z2 =
[
–2p1(xt + yt + zt)p1–1 – p1(p1 – 1)zt(xt + yt + zt)p1–2

– 2p2(3d – xt – yt – zt)p2–1 – p2(p2 – 1)(d – zt)(3d – xt – yt – zt)p2–2],

∂2U3

∂x ∂z
=

[
–p1(xt + yt + zt)p1–1 – p1(p1 – 1)zt(xt + yt + zt)p1–2

– p2(3d – xt – yt – zt)p2–1 – p2(p2 – 1)(d – zt)(3d – xt – yt – zt)p2–2],

∂2U3

∂y ∂z
=

[
–p1(xt + yt + zt)p1–1 – p1(p1 – 1)zt(xt + yt + zt)p1–2

– p2(3d – xt – yt – zt)p2–1 – p2(p2 – 1)(d – zt)(3d – xt – yt – zt)p2–2].

At the Nash equilibrium the above can be simplified to

∂2U1

∂x2 =
[
–2p1(3xt)p1–1 – p1(p1 – 1)xt(3xt)p1–2

– 2p2(3d – 3xt)p2–1 – p2(p2 – 1)(d – xt)(3d – 3xt)p2–2],

∂2U1

∂y ∂x
=

[
–p1(3xt)p1–1 – p1(p1 – 1)xt(3xt)p1–2

– p2(3d – 3xt)p2–1 – p2(p2 – 1)(d – xt)(3d – 3xt)p2–2],

∂2U1

∂z ∂x
=

[
–p1(3xt)p1–1 – p1(p1 – 1)xt(3xt)p1–2

– p2(3d – 3xt)p2–1 – p2(p2 – 1)(d – xt)(3d – 3xt)p2–2],
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and

∂2U2

∂y2 =
[
–2p1(3xt)p1–1 – p1(p1 – 1)xt(3xt)p1–2

– 2p2(3d – 3xt)p2–1 – p2(p2 – 1)(d – xt)(3d – 3xt)p2–2],

∂2U2

∂x ∂y
=

[
–p1(3xt)p1–1 – p1(p1 – 1)xt(3xt)p1–2

– p2(3d – 3xt)p2–1 – p2(p2 – 1)(d – xt)(3d – 3xt)p2–2],

∂2U2

∂z ∂y
=

[
–p1(3xt)p1–1 – p1(p1 – 1)xt(3xt)p1–2

– p2(3d – 3xt)p2–1 – p2(p2 – 1)(d – xt)(3d – 3xt)p2–2]

and

∂2U3

∂z2 =
[
–2p1(3xt)p1–1 – p1(p1 – 1)xt(3xt)p1–2

– 2p2(3d – 3xt)p2–1 – p2(p2 – 1)(d – xt)(3d – 3xt)p2–2],

∂2U3

∂x ∂z
=

[
–p1(3xt)p1–1 – p1(p1 – 1)xt(3xt)p1–2

– p2(3d – 3xt)p2–1 – p2(p2 – 1)(d – xt)(3d – 3xt)p2–2],

∂2U3

∂y ∂z
=

[
–p1(3xt)p1–1 – p1(p1 – 1)xt(3xt)p1–2

– p2(3d – 3xt)p2–1 – p2(p2 – 1)(d – xt)(3d – 3xt)p2–2],

which can be simplified further to

∂2U1

∂x2 = –
(
2p13p1–1 + p1(p1 – 1)3p1–2)xp1–1

t –
(
2p23p2–1 + p2(p2 – 1)3p2–2)(d – xt)p2–1,

∂2U1

∂y ∂x
= –

(
p13p1–1 + p1(p1 – 1)3p1–2)xp1–1

t –
(
p23p2–1 + p2(p2 – 1)3p2–2)(d – xt)p2–1,

∂2U1

∂z ∂x
=

∂2U1

∂y ∂x
=

∂2U2

∂x ∂y
=

∂2U2

∂z ∂y
=

∂2U3

∂x ∂z
=

∂2U3

∂y ∂z
;
∂2U2

∂y2 =
∂2U3

∂z2 =
∂2U1

∂x2 ,

which completes the proof. �
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