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Abstract
This paper is concerned with the asymptotic behavior of solutions to a
non-autonomous stochastic wave equation with additive white noise, for which the
nonlinear damping has a critical cubic growth rate. By showing the pullback
asymptotic compactness of the stochastic dynamic systems, we prove the existence
of a random attractor in H1

0 × L2.
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1 Introduction
This paper deals with the existence of random attractors for the following non-
autonomous stochastic wave equation with white noise in a bounded domain U ⊂ R3

with smooth boundary ∂U :

utt + q(u)ut + αut – �u + f (u, x) = g(x, t) + ah(x)Ẇ (t), (1)

u(x, t)|x∈∂U = 0, t ≥ τ , τ ∈ R, (2)

u(x, τ ) = u0τ (x), ut(x, τ ) = u1τ (x), x ∈ U , τ ∈ R, (3)

for (x, t) ∈ U × (τ , +∞) with τ ∈ R, where h ∈ H1
0 (U) ∩ H2(U) and α ≥ 0 is the damping

coefficient. Here u(x, t) is a real-valued function on U × [τ , +∞); g(x, ·) ∈ Cb(R, H1
0 (U))

is a time-dependent driving force; Cb(R, H1
0 (U)) denotes the set of continuous bounded

functions from R into H1
0 (U); and W (t) is a two-sided real-valued Wiener processes on the

probability space (Ω ,F , P). In addition, the function q : R → R and the nonlinear function
f satisfy the following assumptions:

(H1) The function q ∈ C1 is not identically equal to zero, and there exist three constants
α1, α2, α3 and α2 ≥ |α1| such that

–α < α1 ≤ q(s) ≤ α2 < +∞,
∣
∣q′(s)

∣
∣ ≤ α3, ∀s ∈ R. (4)
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(H2) Let f (u, x) = f1(u, x) + f2(u, x) and Fi =
∫ u

0 fi(r, x) dr, where f1(·, x) ∈ C2(R, R), f2(·, x) ∈
C1(R, R). Furthermore, f1, f2 meet conditions that there exist constants c1, c2, c3, c4 >
0 and functions φi(x) ∈ L1(U), i = 1, 2, such that

f ′
1,u(0, x) = 0, f1(u, x)u ≥ 0,

∣
∣f ′′

1,u(u, x)
∣
∣ ≤ c1

(

1 + |u|), (5)

f2(0, x) = 0,
∣
∣f ′

2,u(u, x)
∣
∣ ≤ c2

(

1 + |u|p), 0 ≤ p ≤ 2, (6)

c3u4 – φ1(x) ≤ Fi(u, x) ≤ c4ufi(u, x) + φ2(x), ∀u ∈ R, x ∈ U . (7)

In the deterministic damped wave equation (i.e., a = 0), global attractors have been stud-
ied by many authors, such as [1–3] and the reference therein. In addition, uniform attrac-
tors and pullback attractors also attracted many experts’ attention, cf. [4–8]. If the func-
tion g does not depend on time, (1)–(3) is an autonomous stochastic wave equation, and
its random attractors have been explored in [9–13]. For many problems, such as wave
propagation through the atmosphere or the ocean, the more realistic models must take
the random fluctuation into account. So it is important and interesting to study random
attractors. For non-autonomous random dynamical systems, Wang established an effica-
cious theory about the existence of random attractors [14–17]. Particularly, Li [18] stud-
ied the asymptotic dynamics for a stochastic damped wave equation with multiplicative
noise defined on unbounded domains and proved the existence of random attractors. For
the non-autonomous stochastic strongly damped wave equation, the existence of random
attractors is proved in [19–21]. Lv and Wang [10] also studied the existence of random
attractors for the stochastic wave equation and showed the upper semicontinuous depen-
dence of the random attractor on parameters. The authors in [22] studied the asymptotic
behavior of a class of non-autonomous nonlocal fractional stochastic parabolic equations
driven by multiplicative white noise on the entire space Rn.

In this paper, (1)–(3) is a non-autonomous stochastic system where the external term g is
time-dependent. We shall transform the stochastic wave equation into a deterministic one
with random parameter and random initial data through an Ornstein–Uhlenbeck process
z(θtω), then prove the existence of a random attractor for the random dynamical system
generated by (1)–(3). It is well known that the key step in proving the existence of attractors
in both deterministic and random systems is to establish the compactness of the system
in some sense. Motivated by [23], we will work out this problem.

The paper is arranged as follows. In Sect. 2, we collect some basic concepts and back-
ground material about random attractor for the random dynamical system generated by
(1)–(3), then the existence and uniqueness of solutions is established in Sect. 3. In Sect. 4,
we consider the concrete bounds of the solution and decompose the solution of (12)–(13)
into two parts. In Sect. 5, we establish the asymptotic compactness of the random dynam-
ical system and obtain the existence of the random attractor.

2 Random dynamical systems
In this section, we collect some basic definitions and known results about general random
dynamical systems (see [17, 24, 25] for details).

Let (Ω ,F , P) be a probability space, where Ω = {ω ∈ C(R, R) : ω(0) = 0} is endowed with
compact-open topology. F is the Borel σ -algebra on Ω and P is the corresponding Wiener
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measure on F . For any t, let (θt)t∈R on Ω via

θtω(·) = ω(· + t) – ω(t), t ∈ R,

thus (Ω ,F , P, (θt)t∈R) is an ergodic metric dynamical system [24]. In the following, X labels
as a Banach or Hilbert space with the Borel σ -algebra B(X).

Definition 2.1 Let {θt}t∈R be a family of (B(R × F ),F )-measurable mappings, θt : R ×
Ω → Ω such that θ0(·) is the identity on Ω , θs+t(·) = θt(·) ◦ θs(·) for all t, s ∈ R and Pθt = P
for all t ∈ R.

Definition 2.2 Let (Ω ,F , P, (θt)t∈R) be a parametric dynamical system. A mapping Φ :
R+ × R × Ω × X → X is called a continuous cocycle on X over R and (Ω ,F , P, (θt)t∈R) if,
for all τ ∈ R, ω ∈ Ω , and t, s ∈ R+, the following conditions (i)–(iv) are satisfied:

(i) Φ(·, τ , ·, ·) : R+ × Ω × X → X is a (B(R+) ×F × B(X), B(X))-measurable mapping;
(ii) Φ(0, τ ,ω, ·) is the identity on X ;

(iii) Φ(t + s, τ ,ω, ·) = Φ(t, τ + s, θsω, ·) ◦ Φ(s, τ ,ω, ·);
(iv) Φ(t, τ ,ω, ·) : X → X is continuous.

Definition 2.3
(1) Let 2X be the collection of all subsets of X . A set-valued mapping

(τ ,ω) → D(τ ,ω) : R × Ω → 2X is called measurable with respect to F in Ω if
D(τ ,ω) is a (usually closed) nonempty subset of X and the mapping
ω ∈ Ω → d(x, D(τ ,ω)) is (F ,B(R))-measurable for every fixed x ∈ X and τ ∈ R,
then D = D(τ ,ω) : τ ∈ R,ω ∈ Ω is called a random set.

(2) Let D be a collection of random sets in a Polish space X . A continuous cocycle Φ is
said to be pullback D-asymptotically compact (D-a.c.) in X if, for any τ ∈ R, ω ∈ Ω ,
D ∈D and any sequences tn → +∞, xN ∈ D(τ – tn, θ–tnω), the sequence
Φ(tn, τ – tn, θ–tnω, xn) has a convergent subsequence in X .

(3) Let K = K(τ ,ω) : τ ∈ R,ω ∈ Ω ∈ D. Then K is called a pullback D-absorbing set for
Φ if, for all τ ∈ R, ω ∈ Ω and for every D ∈D, there exists t0(K , τ ,ω) > 0 such that
Φ(t, τ – t, θ–tω, D(τ – t, θ–tω)) ⊂ K(τ ,ω) for any t ≥ t0.

(4) A family C = C(τ ,ω) : τ ∈ R,ω ∈ Ω ∈D is said to be pullback D-attracting if
limt→+∞ d(Φ(t, τ – t, θ–tω, D(τ – t, θ–tω), C(τ ,ω))) = 0 for all D ∈D.

(5) A compact set A = {A(τ ,ω) : τ ∈ R,ω ∈ Ω} ∈D is called a pullback D-attractor for
Φ if A attracts every B ∈D and A is invariant in the sense that
Φ(t, τ ,ω, A(τ ,ω)) = A(τ + t, θtω) for every t ≥ 0, τ ∈ R, and ω ∈ Ω .

In addition, if there exists T > 0 such that A(τ + T ,ω) = A(τ ,ω) for any τ ∈ R, ω ∈ Ω ,
then A is periodic with period T .

Proposition 2.1 Let D be a neighborhood-closed collection of (τ ,ω)-parametrized families
of nonempty subsets of X and Φ be a continuous cocycle on X over R and (Ω ,F , P, {θt}t∈R).
Then Φ has a pullback D-attractor A in D if and only if Φ is pullback D-asymptotically
compact in X and Φ has a closed F -measurable pullback D-absorbing set K in D. The
unique pullback D-attractor A = A(τ ,ω) is given by

A(τ ,ω) =
⋂

r≥0

⋃

t≥r
Φ(t, τ – t, θ–tω), K(τ – t, θ–tω), τ ∈ R,ω ∈ Ω .
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Proposition 2.2 Let D be a neighborhood-closed collection of (τ ,ω)-parametrized families
of nonempty subsets of X. If Φ is a continuous τ -periodic cocycle with period T > 0 on X
over R and (Ω ,F , P, {θt}t∈R) and if Φ has a pullbackD-attractor A ∈ D, then A is τ -periodic
with period T if and only if Φ has a closed F -measurable pullback D-absorbing set K ∈ D
with K = K(τ ,ω) being periodic in τ with period T for each ω ∈ Ω .

Notation Set E = H1
0 (U) × L2(U) with its inner product and norm as follows:

(z1, z2)E =
(

(u1, u2)
)

+ (v1, v2), ‖z‖E = (z, z)
1
2
E

for all zi = (ui, vi)T , i = 1, 2, and z = (u, v)T in E.

(u, v) =
∫

U
u(x)v(x) dx, ‖u‖ = ‖u‖L2 = (u, u)

1
2

for all u, v ∈ L2(U), and

(

(u, v)
)

=
∫

U
∇u(x)∇v(x) dx, ‖u‖1 = ‖u‖H0

1
=

(

(u, u)
) 1

2

for all u, v ∈ H1
0 (U). More generally, denote Es = W s,2(U) ∩ H1

0 × W s–1,2(U) for s ∈ R.
The letters c and ci (i = 1, 2, . . . ) are generic positive constants which do not depend on

ω, τ , t, a.

3 Existence and uniqueness of solutions
In this section, motivated by [26, 27], we establish the existence and uniqueness of so-
lutions for Eqs. (1)–(3). Let λ be the first eigenvalue of the operator A := –� on U
with Dirichlet boundary conditions. Note that A : H1

0 (U) ∩ H2(U) → L2(U), so D(A) =
H1

0 (U) ∩ H2(U). In the following, we convert problem (1)–(3) into a random system
without noise terms. Identify ω(t) with W (t), i.e., ω(t) = W (t), t ∈ R, and let z(θtω) :=
–

∫ 0
–∞ es(θtω)(s) ds (t ∈ R) be a Ornstein–Uhlenbeck stationary process which solves the

Itô equation dz + z dx = dW (t).
Let ε = (α+α1)λ1

2(α+α2)2+3λ1
. By the transformation

ϕ1 = u, ϕ2 = ut + εu – ah(x)z(θtω),

Equations (1)–(3) are equivalent to the following determined system with random param-
eters in E:

dϕ1

dt
= ϕ2 – εϕ1 + ah(x)z(θtω), (8)

dϕ2

dt
= �ϕ1 + ε(α – ε)ϕ1 + (ε – α)ϕ2 – q(ϕ1)(ϕ2 – εϕ1)

–
(

q(ϕ1) + α – ε – 1
)

ah(x)z(θtω) – f (ϕ1, x) + g(x, t), (9)

ϕ1(x, t)|∂U = 0, (10)

ϕ1(τ , τ , x) = uτ (x), ϕ2(τ , τ , x) = vτ (x) = u1τ + εuτ (x) – ah(x)z(θτω). (11)
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Then (8)–(11) can also be rewritten as a vector form:

ϕ̇ + L(ϕ) = G(ϕ, θtω, t), (12)

ϕ(τ ,ω) = ϕτ (ω) =
(

uτ , u1,τ + εuτ – ah(x)z(θτω)
)T , τ ∈ R, t ≥ τ , (13)

where

ϕ =

(

ϕ1

ϕ2

)

, L =

(

εI –I
A – ε(α – ε)I (α – ε)I

)

(14)

and

G(ϕ, θtω, t)

=

(

ah(x)z(θtω)
–q(ϕ1)(ϕ2 – εϕ1) – [q(ϕ1) + α – ε – 1]ah(x)z(θtω) – f (u, x) + g(x, t)

)

. (15)

It is known from [28] that –L is the infinitesimal generator of a C0-semigroup e–Lt

on E. By assumption (H2) and the embedding relation H1
0 (U) ↪→ L6(U), the function

G(ϕ, θtω, t) : E → E is Lipschitz with respect to ϕ for t in a bounded interval and ω ∈ Ω ,
continuous in (ϕ, t), and measurable in ω w.r.t F . Thus, by the classical semigroup theory
on the local existence and the uniqueness of solutions of evolution differential equations
in [25], we have the following theorem.

Theorem 1 Consider the initial value problem (12)–(13), if assumptions (H1) and (H2)
hold, then for each τ ∈ R, ω ∈ Ω and any ϕτ ∈ E, there exists T > 0 such that Eqs. (12)–(13)
have a unique mild function ϕ(·) = ϕ(·, τ ,ω,ϕτ ) ∈ C([τ , τ + T); E), where ϕ(τ , τ ,ω,ϕτ ) = ϕτ

and ϕ(t) satisfies the integral equation

ϕ(t, τ ,ω,ϕτ ) = e–L(t–τ )ϕτ (ω)

+
∫ t

τ

e–L(t–r)G
(

ϕ(r, τ ,ω,ϕτ ), θrω, r
)

dr, ∀t ≥ τ . (16)

System (12)–(13) generates a continuous random dynamical system over R and
(Ω ,F , P, (θt)t∈R)

Φ : R+ × R × Ω × E → E, (t, τ ,ω,ϕτ ) → Φ(t, τ ,ω,ϕτ ), (17)

where

Φ
(

t, τ ,ω,ϕτ (ω)
)

= ϕ
(

t + τ , τ , θ–τω,ϕτ (θ–τω)
)

=

(

u(t + τ , τ , θ–τω,ϕ–τ (θ–τω))
ut(t + τ , τ , θ–τω,ϕ–τ (θ–τω)) + εu(t + τ , τ , θ–τω,ϕ–τ (θ–τω)) – ah(x)z(θtω)

)

,
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Φ(0, τ ,ω,ϕτω)

= ϕτ (θ–τω)

=

(

u(τ , τ , θ–τω,ϕτ (θ–τω))
ut(τ , τ , θ–τω,ϕτ (θ–τω) + εu(τ , τ , θ–τω,ϕτ (θ–τω) – ah(x)z(ω)

)

,

and

Φ
(

t, τ – t, θ–tω,ϕτ–t(θ–tω)
)

= ϕ
(

τ , τ – t, θ–τω,ϕτ–t(θ–τω)
)

.

So we have Γ (t, τ ,ω, Zτ ) = R–1
ε,θtωΦ(t, τ ,ω,ϕτ )Rε,θtω : Zτ → Z(t + τ , τ , θ–τω, Zτ ). Next, we

use the transformation

ψ1 = u, ψ2 = ut + εu.

By using

ψ =

(

ψ1

ψ2

)

, G̃(ψ) =

(

0
g(x, t) – f (u, x) + ah(x)z(θtω)

)

(18)

and

H(ψ) =

(

εψ1 – ψ2

Aψ1 – ε(α – ε)ψ1 + (α – ε)ψ2 + q(ψ1)(ψ2 – εψ1)

)

, (19)

Eqs. (1)–(3) can be rewritten as

ψ̇ + H(ψ) = G̃(ψ), ψτ (ω) = (uτ , u1,τ + εuτ )T . (20)

Thus

Ψ (t, τ ,ω,ψτ ) = TεΓ (t, τ ,ω, Zτ )T–ε : ψτ → ϕ(t + τ , τ , θ–τω,ψτ ), (21)

where

Ψ (t, τ ,ω,ψτ ) = ψ(t + τ , τ , θ–τω,ψτ )

= ϕ
(

t + τ , τ , θ–τω,ϕτ (θ–τω)
)

+
(

0, ah(x)z(θtω)
)T . (22)

Since Rε,θtω : (a, b)T → (a, b + εa – ah(x)z(θtω))T is an isomorphism of E, then Φ , Γ , Ψ are
equivalent to each other in dynamics.

Therefore, the existence of random attractors in any of these stochastic dynamical sys-
tems means that random attractors also exist in other dynamical systems. We will consider
the existence of a random attractor for RDS Φ in the following.
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4 Pullback absorbing set
Let ϕ = (ϕ1,ϕ2)T be a solution of system (12)–(13). Rewriting system (12)–(13) as

ϕ̇ + Qϕ = Ḡ(ϕ, θtω), ϕ(–τ ,ω) =
(

u0, u1 + εu0 – ah(x)z(θ–τω)
)T , (23)

where

Qϕ =

(

εϕ1 – ϕ2

Aϕ1 – ε(α – ε)ϕ1 + (α – ε)ϕ2 + q(ϕ1)(ϕ2 – εϕ1)

)

and

Ḡ(ϕ, θtω) =

(

ah(x)z(θtω)
–(q(ϕ1) + α – ε – 1)ah(x)z(θtω) – f (ϕ1, x) + g(x, t)

)

,

we have the following lemmas.

Lemma 1 ([26, 27]) For any ϕ = (ϕ1,ϕ2)T ∈ E, (Qϕ,ϕ)E ≥ ε
2‖ϕ‖2

E + ε
4‖ϕ1‖H0

1
+ α+α1

2 ‖ϕ2‖2
L2 .

Lemma 2 If assumptions (H1)–(H2) hold, then for any τ ∈ R, ω ∈ Ω , there exists a tem-
pered variable M0(ω) (independent of τ ) such that, for any set B ∈ D(E) and ϕτ–t(θ–τω) ∈
B(τ – t, θ–tω), there exists T = T(τ ,ω, B) ≥ 0 such that, for t ≥ T , the solution ϕ(τ , τ – t,
θ–τω,ϕτ–t(θ–τω)) ∈ E of (12)–(13) satisfies

∥
∥ϕ

(

τ , τ – t, θ–τω,ϕτ–t(θ–τω)
)∥
∥

2
E ≤ M2

0(ω), ∀t ≥ T(τ ,ω, B). (24)

Proof For any τ ∈ R, ω ∈ Ω , let ϕ(r) = ϕ(r, τ – t, θτ–tω,ϕτ–t(θ–τω)) = (ϕ1,ϕ2)T ∈ E (r > τ – t)
be a solution of (12)–(13) with

ϕ(τ – t) = ϕτ–t(θ–τω) =
(

uτ–t , u1,τ–t + εuτ–t – ah(x)z(θ–τω)
)T ∈ E.

Taking the inner product (·, ·)E of (12) with ϕ(r), according to Lemma 1, we have

1
2

d
dt

‖ϕ‖2
E +

ε

2
‖ϕ‖2

E +
ε

4
‖ϕ1‖2

H0
1

+
α + α1

2
‖ϕ2‖2

L2 ≤ (

Ḡ(ϕ, θr–τω, t),ϕ
)

E (25)

and

(

Ḡ(ϕ, θr–τω, t),ϕ
)

E

=
((

ah(x)z(θr–τω),ϕ1
))

–
((

α – ε – 1 + q(ϕ1)
)

ah(x)z(θr–τω),ϕ2
)

+
(

g(x, r),ϕ2
)

–
(

f (u, x),ϕ2
)

. (26)

By some simple computations, we obtain

((

ah(x)z(θr–τω),ϕ1
)) ≤ 1

σ

∣
∣az(θr–τω)

∣
∣
2∥
∥h(x)

∥
∥

2
1 +

σ

4
‖ϕ1‖2

1, (27)
(

–q(ϕ1)ah(x)z(θr–τ ),ϕ2
)

= δ‖ϕ2‖2
L2 + Cδ(α + α2)2|a|2∥∥h(x)

∥
∥

2
L2

∣
∣z(θr–τω)

∣
∣
2, (28)
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and

(

–(α – ε – 1)ah(x)z(θr–tω),ϕ2
)

≤ δ‖ϕ2‖2
L2 + Cδ(α – ε)2a2∥∥h(x)

∥
∥

2∣
∣z(θr–τω)

∣
∣
2, (29)

(

g(x, r),ϕ2
) ≤ 1

α
‖g‖2 +

α

2
‖ϕ2‖2, (30)

where ‖g‖2 = supr∈R ‖g(·, r)‖2 < ∞, ϕ2 = ut + εu – ah(x)z(θtω).
By (5)–(7), we have

(

f (u, x),ϕ2
)

=
(

f (u, x), ut + εu – ah(x)z(θr–τω)
)

=
d
dt

∫

U
F
(

u(r, x), x
)

dx + ε
(

f (u, x), u
)

–
(

f (u, x), ah(x)z(θr–τω)
)

. (31)

From assumption (H2), it is clear that

(

f (u, x), u
)

=
∫

U
f (u, x)u dx ≥ 1

c1

(∫

U
F
(

u(r, x), x
)

dx –
∫

U
φ2 dx

)

. (32)

With u4 ≤ 1
c2

F(u, x) + φ1 and |f (u, x)| ≤ c3(1 + u4), we get

(

f (u, x), ah(x)z(θr–τω)
)

≤ c4|a|∥∥h(x)
∥
∥
∣
∣z(θr–τω)

∣
∣ + c5|a|

(∫

U
|u|4 dx

) 3
4 ∥
∥h(x)

∥
∥

L4

∣
∣z(θr–τω)

∣
∣

≤ c4|a|‖h‖∣∣z(θr–τω)
∣
∣ +

ε

2c2
F̄(u, x)

+ c6

∫

U
φ1 dx + c7a4∥∥h(x)

∥
∥

4
1

∣
∣z(θr–τω)

∣
∣
4, (33)

here F̄(u, x) =
∫

U F(u, x) dx. By taking (26)–(33) into (25), we have

1
2

d
dt

[‖ϕ‖2 + 2F̄(u, x)
]

+
1
2
‖ϕ‖2

E +
ε

4
‖ϕ1‖2

H1
0

+
α + α2

2
‖ϕ2‖2

L2

+
ε

c1

[

F̄(u, x) – 2
∫

U
φ2(x) dx

]

+ c4|a|∥∥h(x)
∥
∥
∣
∣z(θr–τω)

∣
∣ +

ε

2c2
F̄(u, x)

+ c6

∫

U
φ1(x) dx + c7a4∥∥h(x)

∥
∥

4
1

∣
∣z(θr–τω)

∣
∣
4

≤ 1
ε

a2∣∣z(θr–τω)
∣
∣
2∥
∥h(x)

∥
∥

2
1 +

ε

4
‖u‖2

1 +
1
α

[‖g‖2 + a2∣∣z(θr–τω)
∣
∣
2∥
∥h(x)

∥
∥

2]

+
α

2
‖ϕ2‖2 + δ‖ϕ2‖2

L2 + Cδ(2α + α2)2a2∥∥h(x)
∥
∥

2
L2

∣
∣z(θr–τω)

∣
∣
2. (34)
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Let

β(θr–τω) = –
2ε

c1

∫

U
φ2(x) dx + c4|a|∥∥h(x)

∥
∥
∣
∣z(θr–τω)

∣
∣

+ c6

∫

U
φ1(x) dx + c7a4∥∥h(x)

∥
∥

4
1

∣
∣z(θr–τω)

∣
∣
4

+
1
α

[‖g‖2 + a2∣∣z(θr–τω)
∣
∣
2∥
∥h(x)

∥
∥

2]

+ Cδ(2α + α2)2a2∥∥h(x)
∥
∥

2
L2

∣
∣z(θr–τω)

∣
∣
2

= c8 + c9a4∣∣z(θr–τω)
∣
∣
4. (35)

By choosing δ small enough, we get

d
dt

y(r) + ρy(r) ≤ β(θr–τ ,ω), ∀r ≥ τ – t, (36)

where y(r) = ‖ϕ(r)‖2
E + 2F̄(u, x) and ρ = min{ ε+2

4 , α+α2+2
2 , 2ε

c1
}. By Gronwall’s inequality to

Eq. (36), we have

y
(

r, τ – t, θ–τω,ϕτ–t(θ–τω)
)

≤ y
(

τ – t, τ – t, θ–τω,ϕτ–t(θ–τω)
)

e–ρ(r+t–τ )

+
∫ r

τ–t
β(θs–τω)e–ρ(r–s) ds, (37)

where

y
(

τ – t, τ – t, θ–τω,ϕτ–t(θ–τω)
)

=
∥
∥ϕτ–t(θ–τω)

∥
∥

2
E + 2

∫

U
F
(

u(τ – t, x), x
)

dx

≤ ∥
∥ϕτ–t(θ–τω)

∥
∥

2
E + 2c10

(

|U| + ‖uτ–t‖4
1 + 2

∫

U
φ2(x) dx

)

, (38)

∫ r

τ–t
β(θs–τ )e–σ (r–s) ds =

c8

σ
+ c9a4

∫ r

τ–t

∣
∣z(θs–rω)

∣
∣
4e–σ (r–s) (39)

and

y
(

r, τ – t, θ–τω,ϕτ–t(θ–τω)
)

≥ ∥
∥ϕ

(

r, τ – t, θ–τω,ϕτ–t(θ–τω)
)∥
∥

2
E – 2

∫

U
φ1(x) dx. (40)

Thus by (37)–(40), for r ≥ τ – t, we have

∥
∥ϕ

(

r, τ – t, θ–τω,ϕτ–t(θ–τω)
)∥
∥

2
E

≤ y(r) + 2
∫

U
φ1(x) dx
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≤
(

∥
∥ϕτ–t(θ–τω)

∥
∥

2
E + 2c10

(

|U| + ‖uτ–t‖4
1 + 2

∫

U
φ2(x) dx

))

e–σ (r+t–τ )

+ 2
∫

U
φ1(x) dx + c11 + c12a4

∫ r

τ–t

∣
∣z(θs–rω)

∣
∣
4e–σ (r–s) ds. (41)

Therefore

∥
∥ϕ(r, τ – t, θ–τω),ϕτ–t(θ–τω)

∥
∥

2
E

≤
(

∥
∥ϕτ–t(θ–τω)

∥
∥

2
E + 2c10

(

|U| + ‖uτ–t‖4
1 + 2

∫

U
φ2(x) dx

))

e–σ t

+ 2
∫

U
φ1(x) dx + c11 + c12a4

∫ r

τ–t

∣
∣z(θs–rω)

∣
∣
4e–σ t ds. (42)

For any set B(τ ,ω) ∈ B ∈ D(E),

ϕτ–t(θ–τω)

=
(

uτ–t , u1,τ–t + εuτ–t – ah(x)z(θ–tω)
)T

∈ B(τ – t, θ–tω) ∈ D(E). (43)

We have

lim sup
t→+∞

(
∥
∥ϕτ–t(θ–τω)

∥
∥

2
E

+ 2c10

(

|U| + ‖uτ–t‖4
1 + 2

∫

U
φ2(x) dx

))

e–ρt = 0. (44)

Taking

M2
0(ω) = 2c11 + 2c12a4

∫ 0

–∞

∣
∣z(θsω)

∣
∣
4eρs ds < ∞,

which is a tempered random variable, B0(ω) = {ϕ ∈ E : ‖ϕ‖E ≤ M0(ω)} is a close measur-
able absorbing ball in D(E), and there exists T(τ ,ω, B) ≥ 0 for all t ≥ T(τ ,ω, B) such that

ϕ
(

τ , τ – t, θ–τω,ϕτ–t(θ–τω)
) ∈ B0(ω). (45)

B0(ω) is the random absorbing set for Φ . The proof is completed. �

5 Decomposition of the equations
In this section, for proving asymptotic compactness of the random dynamical system Φ ,
we decompose the solution of Eq. (12)–(13) with different initial data into a sum of two
parts, one part decays exponentially and another one is bounded in a higher regular space
by using the method in [4, 13].

For any τ ∈ R and ω ∈ Ω , assume that

B1(τ ,ω) =
⋃

t≥T(τ ,ω,B0)

ϕ
(

τ , τ – t, θ–tω, B0(θ–tω)
) ⊆ B0(ω).
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Let ϕ(r) = ϕ(r, τ – t, θ–τω,ϕτ–t(θ–τω)) be a solution of system (12)–(13), with ϕτ–t(θ–τω) ∈
B1(τ – t, θ–tω) ⊆ B0(θ–tω). Thus ϕ(r) ∈ B0(θr–τω) for all r ≥ τ – t. We decompose ϕ(r) into

ϕ(r) = ϕL(r) + ϕN (r), ϕL(r) = (uL, vL)T ,ϕN (r) = (uN ,ϕ2N )T ,

where ϕL(r) and ϕN (r) satisfy

{

ϕ̇L + QϕL +
( 0

f1(uL ,x)
)

= 0,
ϕL

(

r, τ – t, θ–τω,ϕτ–t(θ–τω)
)

= ϕL,τ–t = (uτ–t , u1,τ–t + εuτ–t)T (46)

and

{

ϕ̇N + QϕN +
( 0

f(u,x)–f1(u,x)
)

=
( ah(x)z(θtω)

–(q(u)+α–ε)ah(x)z(θtω)+g(x,r)
)

,

ϕN
(

r, τ – t, θ–τω,ϕτ–t(θ–τω)
)

=
(

0, –ah(x)z(θ–tω)
)T .

(47)

First, let us estimate the component ϕL which decays exponentially.

Lemma 3 Under assumptions (H1)–(H2), for any τ ∈ R, ω ∈ Ω , t ≥ 0, r ≥ τ – t, and
ϕτ–t(θ–τω) ∈ B0(θ–tω), the solution ϕL(r) = ϕL(r, τ – t,ϕL,τ–t) of (46) satisfies that

∥
∥ϕL(r, τ – t,ϕL,τ–t)

∥
∥

2
E ≤ M2

Le–2σ1(t+r–τ ) (48)

holds.

Proof Let ϕL = (ϕL,1,ϕL,2) = (uL, vL) = (uL, uL,t + εu). Taking the inner product (·, ·)E of
Eq. (46) with ϕL(r), we have

1
2

d
dt

∥
∥ϕL(r)

∥
∥

2
E + 2(QϕL,ϕL)E =

((

0,
–f1(uL, x)

)

,ϕL

)

, (49)

where
(( 0,

–f1(uL ,x)
)

,ϕL
)

= – d
dt

∫

U F(ϕL1, x) – ε
∫

U f (ϕL1, x)ϕL1. By Lemma 1, we see that

2
(

Q(ϕL),ϕL
) ≥ ε‖ϕL‖2

E +
ε

2
‖ϕL,1‖2

H2
0

+ (α + α1)‖ϕL,2‖2
L2 . (50)

By assumption (H2), we obtain

f (ϕL1, x),ϕL1) =
(

f (u, x), u
) ≥ 1

C4
F̄1(uL, x) – ε

∫

U
φ2(x) dx. (51)

Thus, by Eqs. (49)–(51), we have

d
dt

[‖ϕL‖2
E + 2F̄1(uL, x)

]

+ ε‖ϕL‖2
E +

ε

2
‖ϕL,1‖2

H2
0

+ (α + α1‖ϕL,2)‖2
L2 +

2ε

C4
F̄1(uL, x)

≤ 2ε

∫

U
φ2(x) dx. (52)
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Hence we can conclude that there exists σL = min{ 2ε
C4

, ε
2 , α+α2

2 } such that

d
dt

yL + σLyL(r) ≤ βL, (53)

where yL(r) = ‖ϕL(r)‖2
E + 2F̄L(uL, x) ≥ 0, βL = 2ε

∫

U φ2(x) dx. Since ϕτ–t(θ–τω) +
(0, ah(x)z(θ–tω))T ∈ B0(θ–tω), we have

‖ϕL,τ–t‖E ≤ M0(θ–tω) + |a|∥∥h(x)
∥
∥.

∣
∣z(θ–tω)

∣
∣.

Notice that ϕL,τ–t is independent of ω, so replacing ω by θ–tω, then

‖ϕL,τ–t‖E ≤ M0(ω) + |a|∥∥h(x)
∥
∥.

∣
∣z(ω)

∣
∣.

Applying Gronwall’s inequality to Eq. (53), we have

∥
∥ϕL(r, τ – t,ϕL,τ–t)

∥
∥

2
E ≤ yL(r, τ – t,ϕL,τ–t)

≤ y(τ – t, τ – t,ϕL,τ–t)e–σL(t+r–τ ) +
βL

σL

≤
(

‖ϕL,τ–t‖2
E + c10

(

|U| + ‖uτ–t‖4
1 +

∫

U
φ2 dx

))

e–σL(t+r–τ ) +
βL

σL

= M2
1(ω). (54)

Next, we consider Eq. (49). Due to (f1(uL, x), uL) ≥ 0, |f1(uL(r), x)| ≤ c13(|uL(r)|3 + |uL(r)|)
and assumption (H2), according to Sobolev embedding H1

0 (U) ⊂ L4(U) ⊂ L2(U), there
exists M2(ω) > 0 such that

0 ≤ F̄1
(

uL(r), x
) ≤ c14

(∥
∥uL(r)

∥
∥

4
L4 +

∥
∥uL(r)

∥
∥

2) ≤ M2(ω)
∥
∥uL(r)

∥
∥

2
1. (55)

That is, ‖uL(r)‖2
1 ≥ 1

M2(ω) F̄1(uL(r), x). From (49)–(50) and (55), for any r ≥ τ – t, we have

d
dt

[‖ϕL‖2
E + 2F̄1(uL, x)

]

+
ε

2
‖ϕL‖2

E +
ε

2M2(ω)
F̄1(uL, x) ≤ 0. (56)

So the inequality

d
dt

[‖ϕL‖2
E + 2F̄1(uL, x)

]

+ 2σ1(ω)
[‖ϕL‖2

E + 2F̄1(uL, x)
] ≤ 0

holds, where σ1 = min{ ε
4 , ε

8M2(ω) } > 0. Thus, we get

∥
∥ϕL(r, τ – t,ϕL,τ–t)

∥
∥

2
E ≤ [‖ϕL,τ–t‖2

E + 2F̄1(uL,τ–t , x)
]

e–2σ1(r+t–τ )

≤
(

‖ϕL,τ–t‖2
E + c10

(

|U| + ‖uτ–t‖4
1 +

∫

U
φ2 dx

))

e–2σ1(t+r–τ )

= M2
Le–2σ1(r+t–τ ). (57)

The proof is completed. �
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For the component ϕN , which is ultimately pullback bounded in a higher regular space,
we have the following estimate.

Lemma 4 If assumptions (H1)–(H2) hold, then for any τ ∈ R, ω ∈ Ω , and t ≥ 0, there exist
a positive constant ν ∈ (0, min{ 1

4 , 3–p
4 }) and a positive-value random variable MN (ω) > 0

such that the solution ϕN (r) = (ϕ1N (r),ϕ2N (r))T of Eq. (47) satisfies the following:

∥
∥AνϕN

(

r, τ – t, θ–τω,ϕτ–t(θ–τω)
)∥
∥

2
E ≤ M2

N (ω) (58)

for t ≥ 0 and ϕτ–t(θ–τω) ∈ B0(θ–tω).

Proof Taking the inner product of Eq. (47) in E with

A2νϕN =
(

A2νϕ1N , A2νϕ2N
)

=
(

A2νuN , A2νϕ2N
)

,

we have

1
2

d
dt

[

Aν‖ϕN‖2 + 2
∫

U

[

f (u, x) – f1(uL, x)
]

A2νuN dx
]

+
(

Q
(

ϕN , A2ν
))

+ ε

∫

U

[

f (u, x) – f1(uL, x)
]

A2νuN dx

–
∫

U

([

f ′
1,u(u, x) – f ′

1,u(uL, x)
]

ut + f ′
1,u(uL, x)uNt + f ′

2,u(u, x)ut
)

A2νuN dx

=
(

ah(x)z(θr–τω), A2νuN
)

1 –
(

f (u, x) – f1(uL, x), A2νah(x)z(θr–τω)
)

+
(

g(x, r) – (α – ε – 1)ah(x)z(θr–τω), A2νϕ2N
)

+
(

–q(ϕ1N )ah(x)z(θr–τω), A2νϕ2N
)

. (59)

Similar to (50), we get

ε

2
∥
∥AνϕN

∥
∥

2
E +

ε

4
∥
∥AνuN

∥
∥

2
H1

0
+

α + α1

2
∥
∥Aνϕ2N

∥
∥

2
L2 ≤ (

QϕN , A2νϕN
)

E . (60)

By some computations, we have

(

ah(x)z(θr–τω), A2νuN
) ≤ 2a2

ε
z2(θr–τω)

∥
∥h(x)

∥
∥

2
1 +

ε

8
∥
∥Aν+ 1

2 uN
∥
∥

2, (61)
(

f (u, x) – f1(uL, x), A2νah(x)z(θr–τω)
)

≤ K1(r, τ – t, θ–tω) + c15a2∥∥h(x)
∥
∥

2
1

∣
∣z(θr–τω)

∣
∣
2, (62)

and

(

g(x, r) – (α – ε – 1)ah(x)z(θr–τω), A2νϕ2N
)

≤ 2
α

[‖g‖2
1 + (α – ε – 1)2a2∥∥h(x)

∥
∥

2
2z2(θr–τω)

]

+
α

4
∥
∥Aνϕ2N

∥
∥

2, (63)
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where ‖g‖2
1 = supr∈R ‖g(·, r)‖2

1 < ∞. Thus, by taking (60)–(63) into (59), we obtain

1
2

d
dt

(
∥
∥AνϕN

∥
∥

2
E + 2

∫

U

[

f (u, x) – f1(uL, x)
]

A2νuN dx
)

+ σ2
∥
∥AνϕN

∥
∥

2
E

+ ε

∫

U

[

f (u, x) – f1(uL, x) · A2νuN dx
]

–
∫

U

([

f ′
1,u(u, x)

– f ′
1,u(uL, x)

]

ut + f ′
1,u(uL, x)uN ,t + f ′

2,u(u, x)ut
) · A2νuN dx

≤ K2(r, r – t, θ–tω) + c16a2z2(θr–τω). (64)

Let σ2 = min{ ε
4 , 2ε+α

4 }, then by Hölder’s inequality, we have

∣
∣
(

f ′
1,u(uL, x)uN ,t , A2νuN

)∣
∣

≤ c17

(∫

U

(

1 + u2
L
)3 dx

) 1
3
(∫

U

∣
∣A2νuN

∣
∣

6
1+4ν dx

) 1+4ν
6

(∫

u
|uN ,t| 6

3–4ν dx
) 3–4ν

6

≤ c18
∥
∥Aν+ 1

2 uN
∥
∥ · ∥∥AνuN ,t

∥
∥ (65)

for r > τ – t. We have

∣
∣
(

f ′
2,u(u, x)ut , A2νuN

)∣
∣

≤ c19

∫

U
|ut| ·

(

1 + |u|p) · ∣∣A2νuN
∣
∣dx

≤
(∫

U
|ut|2 dx

) 1
2
(∫

U

(

1 + |u|p) 6
2–4ν dx

) 2–4ν
6

(∫

U

∣
∣A2νuN

∣
∣

6
1+4ν

) 1+4ν
6

≤ ‖ut‖0
(

1 + ‖u‖p
1
)∥
∥Aν+ 1

2 uN
∥
∥ ≤ K3(r, τ – t, θ–tω)

∥
∥Aν+ 1

2 uN
∥
∥ (66)

and

∣
∣
([

f ′
1,u(u, x) – f ′

1,u(uL, x)
]

ut , A2νuN
)∣
∣

≤
∫

U
|ut|

(

1 + |uN | + |uL|
)|uN |∣∣A2νuN

∣
∣dx

≤
(∫

U
|ut|2 dx

) 1
2
(∫

u

(

1 + |uN | + |uL|
)6 dx

) 1
6

×
(∫

U
|uN | 6

3–4ν dx
) 3–4ν

6
(∫

U

∣
∣A2νuN

∣
∣

6
1+4ν dx

) 1+4ν
6

≤ K4(r, τ – t, θ–tω)
∥
∥Aν+ 1

2 uN
∥
∥. (67)

By putting the above inequalities into (64), we get

1
2

d
dt

(
∥
∥AνϕN

∥
∥

2
E + 2

∫

U

[

f (u, x) – f1(uL, x)
]

A2νuN dx
)

+ σ1

[
∥
∥AνϕN

∥
∥

2
E + 2

∫

U

[

f (u, x) – f1(uL, x)
]

A2νuN dx
]
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≤ c20
∥
∥Aν+ 1

2 uN
∥
∥
∥
∥AνuN ,t

∥
∥ + K2(r, τ – t, θ–tω) + c16a2z2(θr–τω)

+ ‖ut‖0
(

1 + ‖u‖p
1
∥
∥Aν+ 1

2 uN
∥
∥
)

+ K4(r, τ – t, θ–tω)
∥
∥Aν+ 1

2 uN
∥
∥. (68)

That is,

d
dt

y1
(

r, τ – t, θ–tω,ϕτ–t(θ–tω)
)

+ σ1y1
(

r, τ – t, θ–tω,ϕτ–t(θ–tω)
)

≤ K5(r, τ – t, θ–tω) + c21a2z2(θr–τω) (69)

and

y1(r) =
∥
∥AνϕN

∥
∥

2
E + 2

∫

U

[

f (u, x) – f1(uL, x)
]

A2νuN , (70)

β2(θr–τω) = K5(r, τ – t, θ–tω) + c21a2z2(θr–τω). (71)

It follows from (69) that

d
dt

y1(r) + σ1y1(r) ≤ β2(θr–τω), ∀r ≥ τ – t. (72)

Note that y1(τ – t, τ – t, θ–τω,ϕτ–tω) ≤ a2‖Aνh(x)‖2z2(θ–tω), then by applying Gronwall’s
inequality to (72) on [τ – t, r] (r ≥ τ – t), we have

y1(r, τ – t, θ–tω,ϕτ–tω)

≤ y1
(

τ – t, τ – t, θ–τω,ϕτ–t(θ–τω)
)

+
∫ r

τ–t
β2(θτ–tω)er–τ+t

≤ c21
∥
∥h(x)

∥
∥

2
1a2z2(θ–tω)er–τ+t +

∫ r

τ–t
β2(θτ–tω)er–τ+t

≤ a2M8(ω) + M9(τ ,ω) (73)

for
∣
∣
∣
∣

[∫

U
f (u, x) – f1(uL, x)

]∣
∣
∣
∣
A2νuN dx

=
∫

u

[

f2(u, x) + f1(u, x) – f1(uL, x)
]

A2νuN dx, (74)

where
∣
∣
∣
∣

∫

U
f2(u, x)A2νuN dx

∣
∣
∣
∣
≤ c31

∫

U

(

1 + |u|p)A2νuN dx

≤ c31

(∫

U

(

1 + |u|p) 6
5–4ν

) 5–4ν
6

(∫

u

∣
∣A2νuN

∣
∣

6
1+4ν

) 1+4ν
6

≤ K8(r, τ – t, θ–tω)
∥
∥Aν+ 1

2 uN
∥
∥

≤ K2
8 (r, τ – t, θ–tω) +

1
2
∥
∥Aν+ 1

2 uN
∥
∥

2 (75)
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and

∫

U

∣
∣
[

f1(u, x) – f1(uL, x)
]

A2νuN
∣
∣dx

≤ c32

∫

U

(

1 + |uN |2 + |uL|2
)|uN |∣∣A2νuN

∣
∣dx

≤ c33

(∫

U

(

1 + |uN |2 + |uL|2
)3

) 1
3
(∫

U
|uN | 6

3–4ν

) 3–4ν
6

×
(∫

U

∣
∣A2νuN

∣
∣

6
1+4ν

) 1+4ν
6

≤ K2
9 (r, τ – t, θ–tω) +

1
8
∥
∥Aν+ 1

2 uN
∥
∥

2. (76)

It follows from above that

y1(r) =
∥
∥AνϕN

∥
∥

2 + 2
∫

U

[

f (u, x) – f1(uL, x)
]

A2νuN dx,

where

∫

u

[

f (u, x) – f1(uL, x)
]

A2νuN dx

≤ K2
8 (r, τ – t, θ–tω) +

1
8
∥
∥Aν+ 1

2 uN
∥
∥

2

+ K2
9 (r, τ – t, θ–tω) +

1
8
∥
∥Aν+ 1

2 uN
∥
∥

2

≤ K2
10(r, τ – t, θ–tω) +

1
4
∥
∥Aν+ 1

2 uN
∥
∥

2. (77)

So we obtain

∥
∥AνϕN

∥
∥ =

∥
∥Aν+ 1

2 uN
∥
∥

2 +
∥
∥AνuN ,t

∥
∥

2

≤ y1
(

r, τ – t, θ–tω,ϕτ–t(θ–tω)
)

+ K2
10(r, τ – t, θ–tω)

≤ α2M8(ω) + M9 + K2
10(r, τ – t, θ–tω) ≤ M2

N (ω). (78)

The proof is completed. �

Lemma 5 For any τ ∈ R, ω ∈ Ω , and t > 0, assume that Bν(τ ,ω) ⊆ B1(τ ,ω) ⊆ B0(ω) and
Bν(τ ,ω) ∈ DEν , where ν is as in Lemma 4, then if assumptions (H1)–(H2) hold, then there
exist a random variable tν(ω) > 0 and a tempered random variable Mν(ω) > 0 such that, for
any t ≥ tν(ω), ϕτ–t(θ–tω) ⊂ Bν(τ – t, θ–tω) ⊆ B0(θ–tω) ∩ D(Eν), the solution ϕ of Eqs. (12)–
(13) satisfies

∥
∥ϕ

(

τ , τ – t, θ–τω,ϕτ–t(θ–τω)
)∥
∥

2
Eν

=
∥
∥Aνϕ

(

τ , τ – t, θ–τω,ϕτ–t(θτ–tω)
)∥
∥

2
E ≤ M2

ν(ω). (79)
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Proof Taking the inner product of Eqs. (12)–(13) in E with A2νϕ = (A2νu, A2νv)T , then for
any r ≥ τ – t, we have

1
2

d
dt

(
∥
∥A2νϕ

∥
∥

2
E + 2

∫

U
f (u, x)A2νu dx

)

+
(

Qϕ, A2νϕ
)

E

+ ε
(

f (u, x), A2νϕ
)

+
(

f (u, x), aA2νh(x)z(θr–τω)
)

=
(

ah(x)z(θr–τω), A2νu
)

+
(

g(x, r)

+ (ε – α + 1)ah(x)z(θr–τω), A2νv
)

. (80)

The same to (75), the following inequality holds:

∣
∣
∣
∣

∫

U
f (u, x)A2νu dx

∣
∣
∣
∣
≤ c3

∫

U

∣
∣
(

1 + u4)∣∣
∣
∣A2νu

∣
∣dx

≤ c3

(∫

U

(

1 + u4) 6
5–4ν dx

) 5–4ν
6

(∫

U

∣
∣A2νu

∣
∣

6
1+4ν

) 1+4ν
6

≤ c3M6(θr–τω) +
μ

4
∥
∥Aν+ 1

2 u
∥
∥

2. (81)

Similar to (72), by (80) and (81), we get

d
dt

y2 + σ1y2 ≤ β3(θr–τω), (82)

where

y2 =
∥
∥Aνϕ(r)

∥
∥

2
E + 2

∫

U
f (u, x)A2ν dx ≥ 1

2
∥
∥Aνϕ(r)

∥
∥

2
E – c3M6(θr–τω), (83)

β3 = K11(r, τ – t, θtω) + c22a2z2(θr–τω), (84)

y2(r) ≤ y2(τ – t)e–σ1(r+t–τ ) +
∫ r

τ–t
β3(θξ–τω)e–σ1(r–ξ ) dξ . (85)

By applying Gronwall’s inequality to (82) on [τ – t, r], one has

∥
∥Aνϕ

(

τ , τ – t, θ–τω,ϕτ–t(θ–τω)
)∥
∥

≤ 2y2
(

τ , τ – t, θ–τω,ϕτ–t(θ–τω)
)

+ c3M6(ω)

≤ 2y2(τ – t)e–σ1t + 2
∫ r

τ–t
β3(θξ–tω)e–σ1(τ–ξ ) dξ + 4c3M6(ω)

≤ 2y2(τ – t)e–σ1t + 2
[∫ 0

–τ

(K11(r, τ – t, θtω) + c22a2z2(θr–τω)
]

eσ1ξ dξ

+ 4c3M6(ω). (86)

From (81), (83), (85), and ϕτ–t(θ–τω) ∈ B0(θ–tω) ∩ D(E), it is clear that as t → +∞,

y2(τ – t)e–σ1t ≤
(

3
2
∥
∥Aνϕτ–t

∥
∥

)2

E
+ 2c3M6(θ–tω)e–σ1t → 0.
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Taking

M2
ν = 4c

∫ 0

–∞
(K11(r, τ – t, θtω) + c22a2z2(θr–τω)]eσ1ξ dξ + 8c3M6(ω),

then the proof is completed. �

6 Existence of random attractor
Lemma 6 If assumptions (H1)–(H2) hold, then for any τ ∈ R, ω ∈ Ω , there exist Tν(ω) ≥ 0,
a random bounded ball B̂1 of E, a positive number ρ̂ , and a tempered random variable
Q̂(ω) such that, for any t ≥ Tν(ω) and ϕτ–t(θ–τω) ∈ B1(τ – t, θ–tω), the solution ϕ of (12)–
(13) satisfies

dE
(

ϕ
(

τ , τ – t, θ–τω, B1(τ – t, θ–tω)
)

, B̂1(ω)
) ≤ Q̂(θ–tω)e–ρ̂t . (87)

By Lemma 7.6 in [2], Lemma 3, and Lemma 4, one can prove Lemma 6. Since the proof
of Lemma 6 is similar to that of Lemma 3.8 in [29], we omit it here. From Lemmas 5 and
6, it is easy to see the existence of a random attractor for the cocycle Φ .

Theorem 2 If assumptions (H1) and (H2) hold, then the cocycle Φ associated with (12)–
(13) possesses a D(E)-pullback random attractor A ∈ D(E) such that, for any τ ∈ R, ω ∈ Ω ,
A(τ ,ω) ⊆ B̂1(ω) ∩ B0(ω), where B0(ω) and B̂1(ω) are as in (45) and Lemma 6, respectively.

Proof For any τ ∈ R and ω ∈ Ω , by Lemma 6 and the compactness of embedding Eν → E,
B̂1(ω) is a compact measurable D(E)-pullback attracting ball in E. By Proposition 2.1, the
cocycle Φ has a D(E)-pullback random attractor A ∈ D(E) such that, for any τ ∈ R, ω ∈ Ω ,
A(τ ,ω) ⊆ B̂1(ω) ∩ B0(ω). The proof is completed. �
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