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1 Introduction and preliminaries
The familiar Voigt functions K (x, y) and L(x, y) were introduced and investigated by Voigt
in 1899. Mainly due to their applications in diverse research areas, such as astrophysical
spectroscopy, neutrons physics, statistical communication theory, and plasma physics, the
Voigt functions and their various generations have been intensively and extensively inves-
tigated by many authors. For a review of the (unification) generalizations of Voigt func-
tions introduced from time to time, see Srivastava and Miller [17], Klusch [6], Srivastava
and Chen [15], Gupta et al. [4], Pathan and Shahwan [10], Goyal and Mukherjee [2], Pathan
et al. [9], Srivastava et al. [18], Pathan et al. [8], Gupta and Gupta [3], Khan et al. [5], etc.
We recall here the generalized Voigt function defined by Srivastava et al. [18, p. 53,
Eq. (1.27)] needed for the present investigation:
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where ]lff . (z) is the well-known Bessel-Maitland function defined as follows (see [7]):
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Note that on setting z = 1 in equation (1), the generalized Voigt function defined by Sri-
vastava and Chen [15] can be retrieved. If we set A =0 and p = 1 in equation (1), then
it reduces to the generalized Voigt function given by Klusch [6], which, on taking z = %,
further reduces to the Voigt function introduced by Srivastava and Miller [17].

The paper aims at presenting a new extension of the Voigt function defined by equa-
tion (1) in a slightly modified form by involving the confluent hypergeometric function as
follows:

A’;ff[x,y,z] f/ PV ACT B; —yD)],; (xt) dt
(x,y,z, w,a, B ERT ;R +v+24) > —1), (3)

where 1F1(a; b;z) is the confluent hypergeometric function defined as follows (see [16,
p- 36, Eq. (3)]):

(@) 2"
lFl(a;b;Z):nX:O:(b)n ; (4)

If we set a = b, then equation (4) reduces to
1Fi(a;a;2) = . (5)

For « = B, our extended Voigt function defined by equation (3) reduces to the Voigt func-
tion defined by Srivastava et al. [18, p. 53, Eq. (2.7)].

2 A series representation

In order to derive the explicit representation of our extended Voigt function in terms of
the familiar special functions of the mathematical physics, we make use of the series rep-
resentation of the confluent hypergeometric function and Bessel-Maitland function de-
fined by equation (4) and equation (2), respectively. Reversing the order of summation and
integration (under the given conditions), we get
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e, _ Q_C 2 (_1)m(a)n(x/2)2m(_y)n
Ay B2l = (2) « TG+ m+ DI+ 2+ pm + D(B)n!

00
% / tn+u+2k+2m+ne—zt2 dt. (6)
0

Applying the following integral, which is easily deducible from the familiar Euler gamma

function,
o 1 A+1 A+1
/ tre dt = —F( - )z‘( hl )
0 2 2 2
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to the integral in equation (6), we obtain
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On splitting the n-series into even and odd terms, we obtain
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For a = B, equation (9) reduces to the explicit representation of Voigt function defined
by Srivastava et al. [18, p. 55, Eq. (2.4)].

On using the definition of Kampé de Fériet function F%,% (see [16, p. 63]) in equation (9),
we arrive at the following explicit representation of our extended Voigt function A% 7,
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(10)
where P = '7+"+22’\+1 and A(m;a) abbreviates the array of m parameters £, 41, @il
m>1.

For the case B = «, equation (10) reduces to the representation defined by Srivastava et
al. [18] in a slightly modified form (i.e., in terms of the parameters p and 1)
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(%321 € RERA) > -LR(W +A) > —1,R(P) >0). (11)

On setting y = 0 in equation (10) and equation (11), respectively, we get the following
(presumably new) interesting result:

A1y, 0,2]

=2}, [%0.2]
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(x, zZ, ) €ENRTRA) > -1, R +A) >-1,R(P) > 0), (12)

where ,F, is the generalized hypergeometric function (see [12, p. 73]).
Thus, we obtain

Al;gf [er:Z] = -Q,’:v‘k[x,O,z], (13)

where .Q ,, corresponds to the generalized Voigt function given in equation (1) (see, for
details, [18]).

we,p
Anvl

We begin by recalling here the following known result (see [14, p. 8, Eq. (1.3)]):

3 Partly bilateral and partly unilateral representation of

exp|:s+t——] Z Z%I;lﬁ[ -p;m + L;x), (14)

m=-00 p=0

where 1 Fj is the confluent hypergeometric function defined by equation (4).

The replacement of s, £, and x by s&2, t£2, and x£2, respectively, and further multiplying
both sides of the resulting identity by £7e7% ACE B;—wE)J}); (g€) and integrating both
sides of the last resulting identity with respect to & from 0 to 0o, and interchanging the

summations and integration gives
* XL\ 2 0
§lexp| —|z—s—t+— &% hFi(os B5-wE)],, (g6) ds
0

Z Z;;Z/ §"+2m+2pefzg 1F1(o; B; —wE)

m=-00 p=0

x . (q€)1Fi[-pim + L;xE%] dE. (15)

On comparing equation (15) and equation (3), we get

xt
A’n‘ff[q,w,z—s—t+—:|
s
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Expanding the confluent hypergeometric function ;F;(«; 8;—wé) and Bessel-Maitland
function J}', (¢§) in equation (16) in their defining series, interchanging the integration
and summations, and finally integrating the involved integral with the help of the follow-
ing known integral formula (see [1, p. 337, Eq. (9)]):

/Oooxs_le_““zll-"l (a; b; ,sz) dx = 5 _5/21’(2)2&( —; b; g)
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At [q,w, —s—t+ —:|

v+2k+2

q o0 oo E
z
2v+2x+2zp Z XO: m!

(@)i(=% )(4Z)JF(P+M+P+J+ 1)
XUX;O BT +j+ 1) (v+ A+ pj+ 1)

i X
szl(—p,P+m+p+]+E;m+1;—>, (18)
z

where P = w For o = B, equation (18) reduces to the known result of Srivastava et

al. [18, p. 59, Eq. (3.5)].
Now expanding the hypergeometric function o F; in its defining series, separation of i-
series into its even and odd terms, and a little simplification leads us to
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F(P 1)
- +p+m+ =
fﬂ 2
P+m+p+3:1,1,1):(a+1,2);(1,1);(-p, 1);
« FLLL1 W d s
0221 42’4z z
—:(B+1,1),3,1); (A +1,1), (v + A + 1, w); (m + 1,1);
(%32 0, B € RER(A) > =1, K(v) > 0,R(P) > 0), (19)

where Fffb c: is the well-known Srivastava and Daoust function [16, p. 64].
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On setting @ = § in equation (19), and after some simplification, we get the represen-
tation (partly bilateral and partly unilateral) of the Voigt function given in [18, p. 59,
Eq. (3.6)].

4 Generating functions
In this section, we give a set of (presumably) new generating functions which are partly
bilateral and partly unilateral.

A generating relation between the Kampé de Fériet function and Srivastava and Daoust
function can be obtained by expanding the L.H.S. of equation (19) with the help of equa-
tion (10). We have indeed

P P:1;A(2;x);
z 1:1;2 612 w?
2 F(P)FO:/HI;B Tizph’ 4z
—: A+ LA(u; v+ A+ 1); A(2; /3),2,

P+%:1;A(2;a+1);
aw P+ 1 F112 AW
ﬁ«/— 0:p+1;3 Zpl’ 47

—:A+1,A(u;v+k+1);A(2;,8+1),%;
N O
- Z Z m!

m=—00 p=0 p!
P+m+p:1,1,1): («,2);(1,1); (—p, 1);
x iF(P+m+p)Fé§§:§§% [ Z——Z—}
-:(8,2,(3, 1A+ L,1), (v + A+ 1, ) (m + 1,1)
———F(P+p+m+l)
N 2
(P+m+p+ :1,1,1) : (@ + 1,2);(1,1); (—p, 1);

—:(B+ 12,310+ L1),(v+ A +1,u);(m+1,1);

(q, w,z, Z, i, a, B € RR(A) > -1, 0(v) > 0,NR(a) > -1,R(B) > -1, R(P) > 0), (20)

where Z=z—-s—t+7% L and P = (M)

IfwesetB=o, A= 0, and u = 1 in equation (20), then it reduces to the know result given
in [18, p. 62, Eq. (4.1)].

On setting g = 0 in equation (20), we obtain a (presumably) new relation between the
generalized hypergeometric function and Kampé de Fériet function given by

NG P, A(2;);
(Z) I'(P)3F5 i
A2 B), 55
P+ ,A(2;a + 1);
_ ﬂp(p+ 1>3p3 w?
4z
Pz 2 AGBE

M2
K
- N
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P+m+p:AQ2;a);—p;
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&l
N R

(w,x, z,a, B € RYNR(P) > O). (21)
For 8 =«, A =0, and u = 1, equation (20) and equation (21) reduce to the known results
(4.1) and (4.2), respectively, of Srivastava et al. [18, p. 62].

Further, on setting w = 0 and replacing P by c in equation (21), we get

ct+tm+p,—p;

m (typ
( ) Z Z ) 5 ) H (22)
m==00 p=0 m+1;
Now, by using the definition of Jacobi polynomials Pff"’s )(x) (see [12, p. 254])
(1+a) -ma+pf+n+1l;
PP (x) = 4,0[ "o F) L=, (23)
n!

o+ 1;

equation (22) reduces to the following known result of Pathan and Yasmeen [11, p. 242,

Eq. (2.2)]:
SO ey (225
( ) mzpz o+ ey ( z )
(x, z,Z € N5 NR(c) > 0). (24)

If we set w = 0 in equation (20), then we obtain the following new generating relation
between the generalized hypergeometric function and Kampé de Fériet function:

P, 1;

z P 2
= q
(Z ) 2Fn T azul

A+ 1L, A(u;v+ A+ 1);

e )G
- Z m! p! P

m=—00 p=0
P+m+p:1;—-p;
1:1;1 2
X FO:/L+1;1 _437’ f
— A+ LA+ A+1)m+1;
(q,x, z,Z € RERA) > -1, R () > 0,RN(P) > 0). (25)

For A =0 and u = 1, equation (25) reduces to the result (4.5) in [18, p. 63].
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On setting x = 0 in equation (25), we get the following generating function for the gen-
eralized hypergeometric function:

P, 1;

z\° 2
=)\ ,F __4q
(Zl) gt Azt

A+ LAY+ r+1);

=& () (L
=2 2

m=—00 p=0 P'
P+m+p:1;
2
X (P)m+p2F;L+l —457
A+ LAY+ A +1);
(9:2,Z1 € R RA) > -1,%(v) > 0,R(P) > 0), (26)

where P = &2“1 and Z; =z—-s—t.

On putting A = 0 and p = 1 in equation (26), we arrive at the following new generating
function for the confluent hypergeometric function ; F:

X X ()™ £ qz
Z Z Z Z Pl)m+p1F1|:P1+m+p;V+1——]
poury 4z
(q, 2,21 ERTNR(W) > -1, N(Py) > 0), (27)

where P; = %‘”1 and Z, =z—-s—t.

Further, on setting A = 0, u = 1, n = 0 and replacing v by 2v in equation (26), we get

1
vty 1 2
z 1F1 v+—;2v+1;—q—
Z 2 4z,

y 2
Z Z( )' G )P( %) 1F1|:v+%+m+P;2V+1;—Z_2:|~ (28)
m+p

m=—00 p=0

Now, using the following known result in equation (28) (see [16, p. 39, Eq. (21)]):

1 —v
1F1 [v + E;Zv + 1;—2x:| =I'(v+ 1)e"‘(§> I,(x), (29)

(where I, (x) is the modified Bessel function [16]), after a little simplification, we arrive at
the following interesting result for the modified Bessel function:

1 ﬁ

7> (Zl)v 2etn 1ezl)v = (Hm Ly
[v<8—Zl) '(v+1) Z Z m!

l
m=—00 p=0 p:

1 1 q°
X{v+ = Filv+ —+m+p;2v+1;——
2/ pmip 2 4z
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1
<q,z,21 € 91*;91(\) + 5) > O>. (30)

Further, using the following known result in equation (28) (see [16, p. 39, Eq. (20)]):
1 ) EAN
1F [v + 5;21) + 1;21x] =I'(v+ l)e’x<5> I, (%), (31)

(where i = ,/-1 and J, (x) is the Bessel function of the first kind [16]), we obtain a new

result for Bessel function of the first kind:

i\ _
(55 ) -

Ziyv+d i ig> \v oo oo
() 2e3% (145-

S t
16Z 2
r'(v+1) 1 Z Z oLl

1 1 q*
x\v+ = 1Filv+-+m+p;2v+ 1;——
2/ nip 2 4z

1
<q,z,Z1 ei}i+;iﬂ<v+§> >O>. (32)

If we expand 1 F) in its defining series in equation (30) and equation (32), respectively,

and arrange the resulting expressions into Kampé de Fériet function, then we get the fol-
lowing interesting relations between Bessel’s functions of the first kind and Kampé de

Fériet function:

q2

VARNTE DR v s
I q_2:(71)221621 i "
"\ 82, T'v+1) "

Vg Ami——;
x Fo0 t,_& (33)
—:—2v + 1);

and

q2

. Z1yv+d T v %) s
qu _ (7) e 1621 z ( )
]“(8_21> B T'v+1) Z .

Vg Ami——
1:0;0 t q
x Foon P Ry

—:=2v+ 1

1
(q, t,z,Z, € 5)’%*;?)’%(1) + 5)) (34)

On setting A = 0, u = 1, replacing by 21 and v by 2v in equation (26), we get

1
z l’]+U+2 1 2
— 1Filn+v + 320+ 1;— 4
Z 47,
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1 1 q*
X[n+v+ = Fln+v+-+m+p2v+1;,——|. (35)
2/ mip 2 4z

Now, by using the under mentioned definition of Whittaker function M, (x) (see [16,
p- 39, Eq. (23)]) in equation (35)

x 1
Mk,,l(x):x’“%e?lFl |:/L+k+ §;2u+1;—x:|, (36)

we arrive at the following (presumably) new result for the Whittaker function of the first
kind:

o0 00 s t
(;)m (;)p 1 e
3 S (reves) Ma()
1
(q,z,Zl € §)t+;§Ti(n +V+ 5) > O). (37)

Further, on setting A =0, u =1, v =3,and n = % in equation (26), and then by using the

1
2
definition of error function

13 JT
il 555547 ) = Terf(w),
1 1(2 : x) o " (%) (38)

we arrive at

g 1 Sy
erf(zﬁl)‘ NCZP IR D

m=-00 p=0

1 1 3 4
(—) 1F1|:—+m+p;—;—q—:|. (39)
2) 0 L2 2’ 4z

In equation (39), on expanding ; F; in a series form and arranging the resulting expression
into Kampé de Fériet function, we get

1
m+ ==
erf( q ) i (1) poo| ¢ g
2\/21 «/ZJTZ) m=—00 mt \2/,, o ._.3. v
Ty
(a.t,2,Z1 € R*). (40)

5 Recurrence relations
In this section, we present the following recurrence relations for our introduced extended
Voigt function A} e

(B~ Ay + Qo= Py AL — Al =0 (41)
BB DAL - BB- 1) A + ByALG, - y(B - ) AN = 0; (42)
(1+a— )ALl — Al 4 (g 1) Ak = 0; (43)
BAY = BAY AL =0 (44)
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0B e, we,f+1 o+l .
aﬂAn,v,k - lByAanl,v,A + y(ﬂ - a)AnH,v,k - Ol,BAn,U_)L = 0, (45)
o s -1, -1
(0 = 1)ALE —y AR (B—a) Al (B 1) Al < 0., (46)

Here, we omit the variables.

Proof We have the following recurrence relation of the confluent hypergeometric function
1F1 (see [13, p. 19]):

(b —a)1Fi(a - 1;b;x) + (2a — b)1Fi(a; b;x) + x1F1(a; b;x) — a1 F1(a + 1;b;x) = 0. (47)

By using the above relation, we can easily arrive at

(B - a)\/g/ t”e—ztzlpl(oc -1;8; —yt)]ffyk(xt) dt
0
+ (20— ﬁ)@ / £e " Fy (o3 B —yt)" (xt) dit
0
x [ n+l —zt2 . R. "
_y\/;‘/o t e 1F1(C(,ﬁ, —yt)]vy}h(xt)dt
- oz\/g/ e | Fi(a + 1; 8; —yB)],; (xt)dt = 0. (48)
0

Note here, on applying definition (3) in the above expression yields the first recurrence
relation (41).

A similar argument can establish the other formulas given in equations (42)—(46), re-
spectively, by using the following recurrence relations of ; F; (see [13, p. 19]):

b(b—1)1F1(a;b - 1;x) — b(b — 1)1 Fi(a; b; x) — bx1 F1(a; b; x)

+(b-a)xiFi(a; b+ 1;x) = 0; (49)
(1+a-b)1Fi(a;b;x) —a1F1(a+ 1;b;x) + (b—1)1Fi(a; b — 1;x) = 0; (50)
biFy(a; b;x) — biFi(a— 1;b;x) — %1 Fi(a; b + 1;x) = 0 (51)

ab1Fy(a; b;x) + bx1Fy(a; b;x) — (b — a)x1F1(a; b + 1;x) — abi1Fi(a + 1; b;x) = 0; (52)
(@ — 1)1Fi(a; b; x) + x1F1(a; b;x) + (b — a)1F1(a — 1; b; x)

- (b-11Fi(a;b-1;%)=0. (53)

6 Some recurrence type connection formulas

Here, we present some recurrence type connection formulas for our extended Voigt func-

tion A}’ A’S and the Voigt function £2,’ ; defined by Srivastava et al. [18] as follows:
agrl]l,v,)\ _y‘Qr’]il,v,A - aAlnl,,\(ile =0; (54')
Ol(Ol - I)Agﬁfl_l - O[(Ol - 1)9:;,1),)\ + ay'Q)l;Jrl,v,)L = O; (55)
2L —a A (@ - 1) Al = 0; (56)
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a2y, = BAY T+ y AL = 0; (57)
ag;lf,u,x _yQ#n,u,)\ - O‘Al;ﬁ;l’ﬂ =0; (58)
(Ol - I)Q#,v,k _yg:;:rl,v,k - (Ol - I)AZ,,S,’;_I = O; (59)

Here, we omit the variables.

Proof On taking = « in equation (48) and then using the definition of Voigt functions
given by equation (1) and equation (3), respectively, we get our first formula (54). The other
formulas can be established (in a similar way) by taking 8 = « in the integral representation
of relations (42), (43), (44), (45), and (46), respectively. |
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