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Abstract
This work is concerned with the oscillatory behavior of solutions of fourth-order
neutral differential equations. By using the Riccati transformation and integral
averaging techniques we obtain some new Kamenev-type and Philos-type oscillation
criteria. Our results extend and improve some known results in the literature. An
example is given to illustrate our main results.
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1 Introduction
In this paper, we establish some oscillation criteria for the fourth-order neutral differential
equation of the form

L′
y + q(t)yβ

(
δ(t)

)
= 0, t ≥ t0, (1)

where Ly = r(t)(z′′′(t))γ and z(t) := y(t) + p(t)y(τ (t)). We suppose that:
(S1) γ and β are quotients of odd positive integers,
(S2) r, p, q ∈ C[t0,∞), r(t) > 0, r′(t) ≥ 0, q(t) > 0, 0 ≤ p(t) < p0 < 1, τ , δ ∈ C[t0,∞), τ (t) ≤

t, limt→∞ τ (t) = limt→∞ δ(t) = ∞. and

∫ ∞

t0

1
r1/γ (s)

ds = ∞. (2)

By a solution of (1) we mean a function y ∈ C3[ty,∞), ty ≥ t0, satisfying (1) on [ty,∞)
and such that r(t)(z′′′(t))γ ∈ C1[ty,∞). We consider only those solutions y of (1) that satisfy
sup{|y(t)| : t ≥ T} > 0 for all T ≥ ty.

A solution y of (1) is said to be nonoscillatory if it is ultimately positive or negative; oth-
erwise, it is said to be oscillatory. The equation itself is called oscillatory if all its solutions
are oscillatory.

Delay differential equations play an important role in applications of real-world life. One
area of active research in recent years is studying the sufficient conditions for oscillation
of delay differential equations, see [1–23] and the references therein.
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In particular, the Emden–Fowler delay differential equations have numerous applica-
tions in mathematical, theoretical, and chemical physics; see, for instance, [24–27].

Let us briefly comment on a number of related results, which motivated our study. The
authors in [28, 29] were concerned with oscillatory behavior of solutions of fourth-order
neutral differential equations and established some new oscillation criteria.

In [30, 31] the authors considered the equation

(
y(t) + p(t)y

(
τ (t)

))(n) + q(t)f
(
y
(
δ(t)

))
= 0 (3)

and established the criteria for the solutions to be oscillatory when 0 ≤ p(t) < 1.
Xing et al. [32] proved that the equation

(
r(t)

((
y(t) + p(t)y

(
τ (t)

))(n–1))γ )′ + q(t)yγ
(
δ(t)

)
= 0 (4)

is oscillatory if

(
δ–1(t)

)′ ≥ δ0 > 0, τ ′(t) ≥ τ0 > 0, τ–1(δ(t)
)

< t, (5)

and

lim inf
t→∞

∫ t

τ–1(δ(t))

q̂(s)
r(s)

(
sn–1)γ ds >

(
1
δ0

+
pγ

0
δ0τ0

)
((n – 1)!)γ

e
, (6)

where n is even, and q̂(t) := min{q(δ–1(t)), q(δ–1(τ (t)))}.
Moaaz et al. [33] proved that if there exist positive functions η, ζ ∈ C1([t0,∞), R) such

that the equations

ψ ′(t) +
(

μ(τ–1(η(t)))n–1

(n – 1)!r1/γ (τ–1(η(t)))

)γ

q(t)Pγ
n
(
δ(t)

)
ψ

(
τ–1(η(t)

))
= 0 (7)

and

φ′(t) + τ–1(ζ (t)
)
Rn–3(t)φ

(
τ–1(ζ (t)

))
= 0 (8)

are oscillatory, where

Pn(t) =
1

p(τ–1(t))

(
1 –

(τ–1(τ–1(t)))n–1

(τ–1(t))n–1p(τ–1(τ–1(t)))

)
,

Rn–3(t) =
∫ ∞

t
Rn–4(s)ds,

and

R0(t) =
(

1
r(t)

∫ ∞

t
q(s)Pγ

2
(
σ (s)

)
ds

)1/γ

, (9)

then (1) is oscillatory.
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Our aim in the present paper is employing the Riccati technique to establish some new
Kamenev-type and Philos-type conditions for the oscillation of all solutions of equation
(1) under condition (2).

The paper is organized as follows. In Sect. 2, we give four lemmas to prove the main
results. In Sect. 3, we establish new oscillation results for (1) by using Riccati transforma-
tion. In Sect. 4, we establish some new Kamenev-type oscillation criteria for (1). In Sect. 5,
we use the integral averaging technique to establish some new Philos-type conditions for
the oscillation of all solutions of equation (1). Finally, we present an example and some
conclusions to illustrate the main results.

Remark 1.1 All functional inequalities considered in this paper are assumed to hold even-
tually, that is, they are satisfied for all t large enough.

Remark 1.2 Without loss of generality, we can deal only with the positive solutions of (1).

Notation For convenience, we use the following notation:

A1(t) = q(t)(1 – p0)βMβ–γ
(
δ(t)

)
,

A2(t) = γ ε
δ2(t)ζ δ′(t)

r1/γ (t)
,

Ã1(t) =
∫ ∞

t
A1(s) ds, B1(t) =

π ′(t)
π (t)

,

B2(t) = π (t)q(t)(1 – p0)βMβ–γ
(
δ(t)

)
,

and

B3(t) = γ ε
δ2(t)ζ δ′(t)

(π (t)r(t))1/γ . (10)

2 Some auxiliary lemmas
We will employ the following lemmas:

Lemma 2.1 ([34], Lemma 2.1) Let γ ≥ 1 be the ratio of two odd numbers, and let V > 0
and U be constants. Then

Uy – Vy(γ +1)/γ ≤ γ γ

(γ + 1)γ +1
Uγ +1

V γ
. (11)

Lemma 2.2 ([1, Lemma 2.2.3]) Let y ∈ Cn([t0,∞), (0,∞)). Assume that y(n)(t) is of
fixed sign and not identically zero on [t0,∞) and that there exists t1 ≥ t0 such that
y(n–1)(t)y(n)(t) ≤ 0 for all t ≥ t1. If limt→∞ y(t) �= 0, then for every μ ∈ (0, 1), there exists
tμ ≥ t1 such that

y(t) ≥ μ

(n – 1)!
tn–1∣∣y(n–1)(t)

∣
∣ for t ≥ tμ. (12)

Lemma 2.3 ([35]) Let y(t) be a positive and n-times differentiable function on an interval
[T ,∞) with its nth derivative y(n)(t) nonpositive on [T ,∞), not identically zero on any in-
terval of the form [T ′,∞), T ′ ≥ T , and such that y(n–1)(t)y(n)(t) ≤ 0, t ≥ ty. Then there exist
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constants 0 < θ < 1and N > 0 such that

y′(θ t) ≥ Ntn–2y(n–1)(t) (13)

for all sufficient large t.

Lemma 2.4 Assume that y is an eventually positive solution of (1). Then

(
r(t)

(
z′′′(t)

)γ )′ ≤ –q(t)(1 – p0)βzβ
(
δ(t)

)
. (14)

Proof Let y be an eventually positive solution of (1). Then there exists t1 ≥ t0 such that
y(t) > 0, y(τ (t)) > 0 and y(δ(t)) > 0 for t ≥ t1. Since r′(t) > 0, we have

z(t) > 0, z′(t) > 0, z′′′(t) > 0, z(4)(t) < 0,
(
r(t)

(
z′′′(t)

)γ )′ ≤ 0 (15)

for t ≥ t1. From the definition of z we get

y(t) ≥ z(t) – p0y
(
τ (t)

) ≥ z(t) – p0z
(
τ (t)

)

≥ (1 – p0)z(t),

which, together with (1), gives

(
r(t)

(
z′′′(t)

)γ )′ + q(t)(1 – p0)βzβ
(
δ(t)

) ≤ 0. (16)

The proof is complete. �

3 Oscillation criteria
In this section, we establish new oscillation results for (1) by using the Riccati transforma-
tion.

Lemma 3.1 Let y be an eventually positive solution of (1). If there exist constants ε ∈ (0, 1)
and ζ > 0such that

ϕ(t) :=
r(t)(z′′′(t))γ

zγ (ζ δ(t))
, (17)

then

ϕ′(t) + A1(t) + A2(t)ϕ(γ +1)/γ (t) ≤ 0. (18)

Proof Let y be an eventually positive solution of (1). Using Lemma 2.4, we obtain that (14)
holds. From (17) we see that ϕ(t) > 0 for t ≥ t1, and using (14), we obtain

ϕ′(t) ≤ –q(t)(1 – p0)βzβ (δ(t)).
zγ (ζ δ(t))

– γ
r(t)(z′′′(t))γ z′(ζ δ(t))ζ δ′(t)

zγ +1(ζ δ(t))
. (19)

From Lemma 2.3 we have

ϕ′(t) ≤ –q(t)(1 – p0)βzβ–γ
(
δ(t)

)
– γ

r(t)(z′′′(t))γ εδ2(t)z′′′(δ(t))ζ δ′(t)
zγ +1(ζ δ(t))

, (20)
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which is

ϕ′(t) ≤ –q(t)(1 – p0)βzβ–γ
(
δ(t)

)
– γ ε

r(t)δ2(t)ζ δ′(t)(z′′′(t))γ +1

zγ +1(ζ δ(t))
. (21)

Using (17) we have

ϕ′(t) ≤ –q(t)(1 – p0)βzβ–γ
(
δ(t)

)
– γ ε

δ2(t)ζ δ′(t)
r1/γ (t)

ϕ(γ +1)/γ (t). (22)

Since z′(t) > 0, there exist t2 ≥ t1 and a constant M > 0 such that

z(t) > M. (23)

Then (22) turns into

ϕ′(t) ≤ –q(t)(1 – p0)βMβ–γ
(
δ(t)

)
– γ ε

δ2(t)ζ δ′(t)
r1/γ (t)

ϕ(γ +1)/γ (t), (24)

that is,

ϕ′(t) + A1(t) + A2(t)ϕ(γ +1)/γ (t) ≤ 0. (25)

The proof is complete. �

Theorem 3.1 Assume that (2) holds. If

lim inf
t→∞

1
Ã1(t)

∫ ∞

t
A2(s)Ã

γ +1
γ

1 (s) ds >
γ

(γ + 1)
γ +1
γ

, (26)

then (1) is oscillatory.

Proof Let y be an eventually positive solution of (1). Then there exists t1 ≥ t0 such that
y(t) > 0, y(τ (t)) > 0, and y(δ(t)) > 0 for t ≥ t1. By Lemma 3.1 we get that (18) holds.

Integrating (18) from t to l , we get

ϕ(l) – ϕ(t) +
∫ l

t
A1(s) ds +

∫ l

t
A2(s)ϕ

γ +1
γ (s) ds ≤ 0. (27)

Letting l → ∞ and using ϕ > 0 and ϕ′ < 0, we have

ϕ(t) ≥ Ã1(t) +
∫ ∞

t
A2(s)ϕ

γ +1
γ (s) ds. (28)

This implies

ϕ(t)
Ã1(t)

≥ 1 +
1

Ã1(t)

∫ ∞

t
A2(s)Ã

γ +1
γ

1 (s)
(

ϕ(s)
Ã1(s)

) γ +1
γ

ds. (29)



Bazighifan Advances in Difference Equations        (2020) 2020:201 Page 6 of 12

Let λ = inft≥T ϕ(t)/Ã1(t). Then obviously λ ≥ 1. Thus from (26) and (29) we see that

λ ≥ 1 + γ

(
λ

γ + 1

)(γ +1)/γ

(30)

or

λ

γ + 1
≥ 1

γ + 1
+

γ

γ + 1

(
λ

γ + 1

)(γ +1)/γ

, (31)

which contradicts the admissible values of λ ≥ 1 and γ > 0. Therefore the proof is com-
plete. �

4 Kamenev-type criteria
In this section, we establish new Kamenev-type oscillation criteria for (1).

Lemma 4.1 Let y be an eventually positive solution of (1), and suppose that (15) holds. If
there exist a function π ∈ C1([t0,∞), R+) and constants ε ∈ (0, 1) and ζ > 0 such that

� (t) := π (t)
r(t)(z′′′(t))γ

zγ (ζ δ(t))
, (32)

then

� ′(t) – B1(t)� (t) + B2(t) + B3(t)� (γ +1)/γ (t) ≤ 0. (33)

Proof Let y be an eventually positive solution of (1). Using Lemma 2.4, we obtain that (14)
holds. From (32) we see that � (t) > 0 for t ≥ t1, and using (14), we obtain

� ′(t) ≤ π ′(t)
r(t)(z′′′(t))γ

zγ (ζ δ(t))
+ π (t)

–q(t)(1 – p0)βzβ (δ(t))
zγ (ζ δ(t))

– γπ (t)
r(t)(z′′′(t))γ z′(ζ δ(t))ζ δ′(t)

zγ +1(ζ δ(t))
.

From Lemma 2.3 we have

� ′(t) ≤ π ′(t)
r(t)(z′′′(t))γ

zγ (ζ δ(t))
– π (t)q(t)(1 – p0)βzβ–γ

(
δ(t)

)

– γπ (t)
r(t)(z′′′(t))γ εδ2(t)z′′′(δ(t))ζ δ′(t)

zγ +1(ζ δ(t))
,

which is

� ′(t) ≤ π ′(t)
r(t)(z′′′(t))γ

zγ (ζ δ(t))
– π (t)q(t)(1 – p0)βzβ–γ

(
δ(t)

)

– γ επ (t)
r(t)δ2(t)ζ δ′(t)(z′′′(t))γ +1

zγ +1(ζ δ(t))
.
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By (32) we have

� ′(t) ≤ π ′(t)
π (t)

� (t) – π (t)q(t)(1 – p0)βzβ–γ
(
δ(t)

)

– γ ε
δ2(t)ζ δ′(t)

(π (t)r(t))1/γ � (γ +1)/γ (t).

Since z′(t) > 0, there exist t2 ≥ t1 and M > 0 such that

z(t) > M. (34)

Hence we obtain

� ′(t) ≤ π ′(t)
π (t)

� (t) – π (t)q(t)(1 – p0)βMβ–γ
(
δ(t)

)

– γ ε
δ2(t)ζ δ′(t)

(π (t)r(t))1/γ � (γ +1)/γ (t),

that is,

� ′(t) – B1(t)� (t) + B2(t) + B3(t)� (γ +1)/γ (t) ≤ 0. (35)

The proof is complete. �

Theorem 4.1 Assume that (2) holds. If there exist a function π ∈ C1([t0,∞), R+) such that

lim sup
t→∞

1
tn

∫ t

t0

(t – s)n
(

B2(t) –
r(s)

(γ + 1)γ +1
(π ′(s))γ +1

(επ (s)δ2(t)ζ δ′(s))γ

)
ds = ∞, (36)

then (1) is oscillatory.

Proof Let y be a nonoscillatory solution of (1) on [t0,∞). Without loss of generality, we
can assume that u is eventually positive. Using Lemma 4.1, we get that (33) holds. From
Lemma 2.1 we set

U = π ′/π , V = γ εδ2(t)ζ δ′(t)/
(
π (t)r(t)

)1/γ and y = � (t). (37)

Thus we have

� ′(t) ≤ –B2(t) +
r(t)

(γ + 1)γ +1
(π ′(t))γ +1

(επ (t)δ2(t)ζ δ′(t))γ
(38)

and

–
∫ t

t0

(t – s)n � ′ (s)ds ≥
∫ t

t0

(t – s)n

(

B2 (t) –
r (s)

(γ + 1)γ +1

(
π ′ (s)

)γ +1

(
επ (s) δ2 (t) ζ δ′ (s)

)γ

)

ds.

(39)
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Since

∫ t

t0

(t – s)n� ′(s) ds = n
∫ t

t0

(t – s)n–1ϕ(s) ds – (t – t0)n� (t0), (40)

we get

(
t – t0

t

)n

� ′ (t0) –
n
tn

∫ t

t0

(t – s)n–1 � (s)ds

≥ 1
tn

∫ t

t0

(t – s)n
(

B2(t) –
r(s)

(γ + 1)γ +1
(π ′(s))γ +1

(επ (s)δ2(t)ζ δ′(s))γ

)
ds.

Hence

1
tn

∫ t

t0

(t – s)n
(

B2(t) –
r(s)

(γ + 1)γ +1
(π ′(s))γ +1

(επ (s)δ2(t)ζ δ′(s))γ

)
ds ≤

(
t – t0

t

)n

� (t0) , (41)

and so

lim sup
t→∞

1
tn

∫ t

t0

(t – s)n
(

B2(t) –
r(s)

(γ + 1)γ +1
(π ′(s))γ +1

(επ (s)δ2(t)ζ δ′(s))γ

)
ds → � (t0), (42)

which contradicts (36), and this completes the proof. �

5 Philos-type oscillation result
In the section, we employ the integral averaging technique to establish a Philos-type os-
cillation criterion for (1).

Definition Let

D =
{

(t, s) ∈ R2 : t ≥ s ≥ t0
}

and D0 =
{

(t, s) ∈ R2 : t > s ≥ t0
}

. (43)

A kernel function H ∈ C(D, R) is said to belong to the function class 	, written as H ∈ 	,
if

(i) H(t, s) = 0 for t ≥ t0, H(t, s) > 0, (t, s) ∈ D0;
(ii) H(t, s) has a continuous and nonpositive partial derivative ∂H/∂s on D0, and there

exist functions π ∈ C1([t0,∞), (0,∞)) and h ∈ C(D0, R) such that

∂

∂s
H(t, s) +

π ′(s)
π (s)

H(t, s) = h(t, s)Hγ /(γ +1)(t, s). (44)

Theorem 5.1 Assume that (2) holds. If there exist a positive function π ∈ C1([t0,∞), R)
such that

lim sup
t→∞

1
H(t, t1)

∫ t

t1

(
H(t, s)B2(s) –

hγ +1(t, s)
(γ + 1)γ +1

π (s)r(t)
(γ εδ2(s)ζ δ′(s))γ

)
ds = ∞, (45)

then (1) is oscillatory.
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Proof Let y is a nonoscillatory solution of (1) on [t0,∞). Without loss of generality, we can
assume that u is eventually positive. From Lemma 4.1 we get that (33) holds. Multiplying
(33) by H(t, s) and integrating the resulting inequality from t1 to t, we find that

∫ t

t1

H(t, s)B2(s) ds ≤ � (t1)H(t, t1) +
∫ t

t1

(
∂

∂s
H(t, s) + B1(s)H(t, s)

)
� (s) ds

–
∫ t

t1

B3(s)H(t, s)�
γ +1
γ (s) ds.

From (44) we get

∫ t

t1

H(t, s)B2(s) ds ≤ � (t1)H(t, t1) +
∫ t

t1

h(t, s)Hγ /(γ +1)(t, s)� (s) ds

–
∫ t

t1

B3(s)H(t, s)�
γ +1
γ (s) ds.

Using Lemma 2.1 with V = B3(s)H(t, s), U = h(t, s)Hγ /(γ +1)(t, s), and y = � (s), we get

h(t, s)Hγ /(γ +1)(t, s)� (s) – B3(s)H(t, s)�
γ +1
γ (s)

≤ hγ +1(t, s)
(γ + 1)γ +1

π (s)r(t)
(γ εδ2(s)ζ δ′(s))γ

,

which implies that

1
H(t, t1)

∫ t

t1

(
H(t, s)B2(s) –

hγ +1(t, s)
(γ + 1)γ +1

π (s)r(t)
(γ εδ2(s)ζ δ′(s))γ

)
ds ≤ � (t1), (46)

a contradiction to (45).
Theorem 5.1 is proved. �

Corollary 5.1 If condition (45) in Theorem 5.1 is replaced by the conditions

lim sup
t→∞

1
H(t, t1)

∫ t

t1

H(t, s)B2(s) ds = ∞ (47)

and

lim sup
t→∞

1
H(t, t1)

∫ t

t1

hγ +1(t, s)
(γ + 1)γ +1

π (s)r(t)
(γ εδ2(s)ζ δ′(s))γ

ds < ∞, (48)

then (1) is oscillatory.

Example Consider the differential equation

(
t
(

y(t) +
1
2

y
(

t
3

))′′′)′
+

q0

t4 y
(

t
2

)
= 0, (49)
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where q0 > 0 is a constant. Note that γ = β = 1, r(t) = t, p0(t) = 1/2, q(t) = q0/t4, δ(t) = t/2,
and τ (t) = t/3. If we set π (t) = t2, then

∫ ∞

t0

1
r(s)

ds =
∫ ∞

t0

1
s

ds = ∞ (50)

and

B2(t) = π (t)q(t)(1 – p0)βMβ–γ δ(t) =
q0

4t
. (51)

Thus we get

lim sup
t→∞

1
tn

∫ t

t0

(t – s)n
(

B2(t) –
r(s)

(γ + 1)γ +1
(π ′(s))γ +1

(επ (s)δ2(t)ζ δ′(s))γ

)
ds

lim sup
t→∞

1
t2

∫ t

t0

(t – s)2 1
s

(
q0

4
– 8

)
ds = ∞.

Therefore by Theorem 4.1 all solutions of (49) are oscillatory if q0 > 32.

Remark 5.1 We can easily see that the results obtained in [32, 33] cannot be applied to
(36), so our results are new.

Remark 5.2 We can generalize our results by studying the equation

(
r(t)

(
z′′′(t)

)γ )′ +
j∑

i=1

qi(t)yβ
(
δi(t)

)
= 0, t ≥ t0, j ≥ 1. (52)

For this, we leave the results to interested researchers.

Remark 5.3 For interested researchers, there is a good problem of finding new results for
(1) where

z(t) := y(t) – p(t)y
(
τ (t)

)
. (53)

6 Conclusions
The aim of this paper was to provide a study of asymptotic nature for a class of fourth-
order neutral delay differential equations. We used a Riccati substitution and the integral
averaging technique to ensure that every solution of the studied equation is oscillatory.
The results presented complement some of the known results reported in the literature.

A further extension of this paper is using our results to study a class of systems of higher-
order neutral differential equations, including those of fractional order. Some research in
this area is in progress.
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