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Abstract

Conventional non-negative algorithms restrict the weight coefficient vector under
non-negativity constraints to satisfy several inherent characteristics of a specific
system. However, the presence of impulsive noise causes conventional non-negative
algorithms to exhibit inferior performance. Under this background, a robust
non-negative least mean square (R-NNLMS) algorithm based on a step-size scaler is
proposed. The proposed algorithm uses a step-size scaler to avoid the influence of
impulsive noise. For various outliers, the step-size scaler can adjust the step size of the
algorithm, thereby eliminating the large error caused by impulsive noise.
Furthermore, to improve the performance of the proposed algorithm in sparse
system identification, the inversely-proportional R-NNLMS (IP-RNNLMS) algorithm is
proposed. The simulation result demonstrates that the R-NNLMS algorithm can
eliminate the influence of impulsive noise while showing fast convergence rate and
low steady-state error under other noises. In addition, the IP-RNNLMS algorithm has
faster convergence rate compared with the R-NNLMS algorithm under sparse system.

Keywords: Least mean square algorithm; Impulsive noise; Step-size scaler;
Non-negativity constraints

1 Introduction

Adaptive algorithms are widely used in adaptive control, denoising, channel equalization,
and system identification. The least mean square (LMS) and normalized LSM (NLMS) al-
gorithms are extensively used because of their robust performance and low computational
complexity. However, several problems in their implementation have been identified. The
least mean absolute third (LM AT) algorithm, which is superior to LMS for a noisy environ-
ment, is proposed. Furthermore, the robust normalized LM AT algorithms are proposed to
improve the filtering accuracy and the robustness of the LMAT algorithm [1]. In order to
improve the signal model and performance of the adaptive algorithm, bias-compensated
conception is proposed in the most recent study of adaptive algorithms. In comparison
with traditional adaptive algorithm models, bias-compensated algorithms consider the
influence of input and output noises simultaneously. Simulation results and performance
analysis suggest that bias-compensated algorithms exhibit better performance than tra-
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ditional adaptive algorithms [2—6]. The family of the kernel adaptive algorithm demon-
strates excellent performance in terms of online prediction and nonlinear problems [7, 8].

Under some specific system characteristics and noise environments, the performance
of traditionally adaptive algorithms degrades and they need to change framework. Based
on this idea, adaptive algorithms need to add different constraints in some applications.
In recent decades, the non-negativity constraint problem has been developed [9, 10].
These methods are helpful to construct non-negativity constraint framework. And the
non-negative LMS (NNLMS) algorithm is widely studied [11]. The two limitations of the
NNLMS algorithm are identified as the vulnerability to the occurrence of large coefficient
update spread and unbalanced convergence rates. Thus, the reweighting NNLMS and log-
arithmic reweighting NNLMS (LR-NNLMS) algorithms are proposed. Problems, such as
the large coefficient update spread and the unbalanced convergence rate, were completely
solved under sparse system identification [12, 13].

For the family of non-negativity algorithms, the most common problem in practical
application is the existence of impulsive measurement noise, which causes conventional
non-negativity algorithms to have inferior performance. In recent studies, many adaptive
algorithms have been proposed to address this problem [14—19]. For example, a family
of robust adaptive filtering algorithms based on sigmoid cost, which imbeds the conven-
tional cost function into the sigmoid framework, can smooth out large fluctuation caused
by the impulsive interferences. In this paper, a robust NNLMS algorithm based on a step-
size scaler in non-negative constraint condition is proposed. The proposed algorithm uses
a step-size scaler to eliminate the large estimation error caused by impulsive noise. The
simulation result demonstrates the remarkable performance of our method in the experi-
ments. To cope with the problem of unbalanced convergence of the R-NNLMS algorithm
under sparse system, caused by the weight vector, the IP-RNNLMS algorithm using the
inversely-proportional function is proposed in this paper.

The remainder of this work is organized as follows. Section 2 demonstrates the signal
model and the derivation of the algorithm. Section 3 presents the performance of the algo-
rithm in environments with non-impulsive noise and impulsive noise. Section 4 concludes
this paper.

2 Signal model and the NNLMS algorithm
2.1 Signal model
In consideration of the following signal model, the input signal x; = [x},%5,...,%.]” refers
to the time-delay vector of L taps. The number of taps is usually equal to the esti-
mated parameter dimension. The unknown system weight vector is represented by wy =
(w1, wa,...,wr]T. v is the system noise, and w(k) is the adaptive algorithm estimation vec-
tor at iteration k.

Figure 1 shows the desired output signal of the unknown system, which is obtained by

di = x " wo + v, (1)

where the output signal cannot be noise-free data because it will be corrupted by vari-
ous noises. Common noises have Gaussian and impulsive noise. Impulsive noise causes
the adaptive algorithm to be misadjusted. Thus, the purpose of the novel algorithm is to
eliminate the influence of impulsive noise.
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Figure 1 Adaptive algorithm signal model

The error of the system is obtained by
er = dk — XkTW(k). (2)

2.2 Review of the NNLMS algorithm

The conventional non-negative algorithms restrict the weight coefficient vector under
non-negativity constraints to satisfy several inherent characteristics of a specific system.
Therefore, the NNLMS algorithm is expressed as the optimization problem to receive

non-negative weight:

w* = argminJ(w) @)
3

subjecttow; >0, j=1,2,...,L,

where w* is the desired weight vector of the algorithm, and w; is the jth element of the
iteration weight vector.
The Lagrange multiplier method is used to obtain the optimization weight vector of

Formula (3). Thus, Formula (3) can be transformed into the following equation:
J(w, L) = J(w) — Aw. (4)

The inequality term of Formula (3), the Karush—Kuhn—-Tucker (KKT) condition is con-

sidered as follows:

wi[a*];=0, j=12..,L (5)

where A is Lagrange multiplier vector. [A*]; is the jth element of 1*.
The first-order partial derivative of Eq. (4) should be considered to determine the opti-
mal weight vector w* and the desired parameter vector A*. Taking the first-order partial

derivative of Eq. (4) yields

8w](VV; )\) = aw](w) -2,

dJ(W*) —A*=0.
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Combining Egs. (5) and (6) yields

w;[8] (w*)]; = 0. 7)
The form of the fixed-point iteration algorithm can be obtained as follows:

wk + 1) = w (k) + (W) wy ()-8 (w°) (®)

where the function fj(w(k)) is an arbitrary positive function of w(k). The iteration formula
of the algorithm can be obtained by

w(k +1) = w(k) + uf (w(K)) Dy (k) [0y (W(K)) ], &)

where 1 is a positive step size. Dy, (k) is a diagonal matrix, in which the diagonal elements
equal the single elements in the iteration vector w(k).
The cost function of the NNLMS algorithm is expressed as follows:

J(w) = E[|di — xTw(k)|*]. (10)
Formula (9) can be rewritten as follows:
wi(k + 1) = w(k) + pwexDy(k)w(k). (11)

The impulsive noise commonly has high amplitude, which will affect the value of the
output signal and cause a large error. In Formula (11), the presence of e, causes the al-
gorithm imbalance during the iteration. In order to solve this problem, the cost function
based on the tanh function is proposed in what follows.

3 Proposed algorithms

3.1 The R-NNLMS algorithm

The presence of impulsive noises will cause a large estimation error that will cause perfor-
mance degradation. The tanh cost function will approach the finite value when the value
of the argument is extremely large or small. The cost function J(w) uses the tanh func-
tion, which can solve the large estimation error problem. The cost function J(w) will be
transformed into the following form:

J(w) = %tanh(g(ek/nxknf), (12)

where B is the key parameter of shape adjustment that affects the performance of the cost
function, meanwhile B8 > 0. When the estimation error is oversized, the cost function J(w)
will approach %, thereby eliminating the influence of impulsive noise. Therefore, the cost
function J(w) is

Jw) = %tanh(é(ek/uxku)z)

_ 1 1—exp(=Blex/lIxl)))
B 1+ exp(~Ble/IIxcl)?)

(13)
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The first-order partial derivative of Eq. (13) is identified and can be expressed as follows:
dnJ(w) = —s(B,exl| kll) i ”2 €k (14)

where

2
s(,B,ek/llkuI) _ 46Xp(—,3(€/</||xk||) ) ) (15)

(1 + exp(—=Blex/Ixc)?)’

Equation (9) and Egs. (14) and (15) are combined, and the iteration formula is adjusted

as follows:
wik +1) = w(k) + pus(B, ex/ I xil)f (w(k)) D (k )||)zk||2 ¢
X
— W) + ps(Br el xa ) (w(k)) Ds(K) ”‘iii)z ex. (16)

We take a value of the function f(w(k)) as 1 in Eq. (16). Thus, the iteration algorithm can
be rewritten as follows:

w(k +1) =w(k) + us(ﬂ ek/||xk||) Dy (kyw(k), (17)

lIx <II2

where Dy (k) is a diagonal matrix, in which the diagonal elements are equal to the input
signal x¢. s(B, ex/||xk||) is a step-size scaler, which is the algorithm based on step-size scaler
against impulsive noise. When the value of estimation error is oversized, the step size
approaches zero. On the contrary, the estimation error is not an outlier; thus, the step size
will be a finite value, which will not affect the iteration algorithm.

3.2 The IP-RNNLMS algorithm

The correction e, Dy (k)w(k) is to keep the non-negativity of the algorithm in Eq. (17). How-
ever, it was observed that the occurrence of the weight w(k) will affect the convergence
rate of the iteration in Eq. (17). When the desired weight w* approaches zero, the conver-
gence will slow down or stall, which causes the unbalanced convergence of the algorithm.
Meanwhile, the values of the desired weight and the initial iteration weight will introduce
difficulties for step size selection. In order to solve this problem, Eq. (17) introduces the
inversely-proportional function. From the above, f(w(k)) is an arbitrary positive function
of w(k). The paper uses the inversely-proportional function to replace corresponding item
in Eq. (16), we can get

1

Silwk) = Wik +

(18)

The weight w(k) and function f(w(k)) are combined, the iteration formula (17) will be
rewritten:

wik +1) = w(k) + us(B, ex/ lIxi|l) |2D o (k)X (19)
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where the diagonal elements of the diagonal matrix D, (k) are of the following form:

w;(k)

§(vR) = o

(20)

In the IP-RNNLMS algorithm, the unbalanced convergence problem can be solved well.
Meanwhile, the non-negativity and the robustness of the algorithm can be maintained
under impulsive noise.

4 Simulation

The performance of the proposed algorithms is validated by the system identification sim-
ulation under various noises. The proposed algorithms are compared with other algo-
rithms under the non-negativity condition. The estimated error is used to evaluate the
performance of the algorithm, which is defined as follows:

10log o (E[[w(k) - w* [;1/]w*5). 1)

The system input is randomly generated, and the tap number L is 10. The system param-
eter vector was set to wo = [0.8,0.6,0.5,0.4,0.3,0.2,0.1,-0.1,—0.3,—0.6]” in simulation; in
addition, the initial iteration weight is drawn from a uniform distribution with unit power.

The experiments are conducted to validate the improvement of the R-NNLMS algo-
rithm. The experiments need to verify the robustness of the R-NNLMS algorithm under
different noises. Hence, the performance experiment was divided into two parts. The rest
of this section compares the performance of the R-NNLMS and the IP-RNNLMS algo-
rithms under two types of noise.

4.1 Performance in non-impulsive noise

The estimated error of the R-NNLMS and NNLMS algorithms under non-impulsive noise
was calculated to assess the performance of the algorithm. Figure 2 displays the estimated
error curve with the Gaussian noise of SNR = 10. Figure 3 illustrates the performance of the
algorithm under uniformly distributed noise. The amplitude of the uniformly distributed
noise is between +1. The signal-to-noise ratio (SNR) of the output signal is calculated as
follows:

E(Yﬁ)), (22)

SNR = 10log (—
10 E(Vi)

The two experiments evaluate the performance of the R-NNLMS algorithm with non-
impulsive noise. Figures 2 and 3 show that the R-NNLMS algorithm has fast conver-
gence rate and low steady-state error. The two curves almost coincide under the non-
negativity condition. This means that the R-NNLMS algorithm can perform well under
non-impulsive noise.

4.2 Performance in impulsive noise

The impulsive noise g is added to the system output signal y; with a background noise
of SNR = 10 dB. g is generated as gk = axux, where ay is the binomial distribution of
Pr(w = 0) = 0.1 (the probability of w = 0 is 0.1), and u is a zero-mean white Gaussian dis-
tribution with the variance of o7 = 10000,
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Figure 2 Estimated error of the NNLMS and R-NNLMS algorithms under the environment of non-impulsive
noise with background noise SNR = 10 dB
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Figure 3 Estimated error of the NNLMS and R-NNLMS algorithms under non-impulsive noise with the
uniformly distributed background noise in between =£1

In this section, the performance of the R-NNLMS algorithm is investigated under im-
pulsive noise. Additionally, Fig. 4 and Fig. 5 illustrate the performance comparison among
R-NNLMS, NNLMS, sigmoid least mean square algorithm (SLMS), and generalized max-
imum correntropy criterion (GMCC). Figures 4 and 5 show that the R-NNLMS algorithm
obtained a lower estimated error compared with other algorithms. The NNLMS algo-
rithm does not perform similarly to the adaptive algorithm under impulsive noise. The
SLMS and GMCC algorithms can converge but with high steady-state error under non-
negativity constraints. The R-NNLMS algorithm can eliminate the influence of impulsive

noise.

4.3 Performance comparison
This section validates the robustness of the IP-RNNLMS algorithm under sparse system.
The experiment is conducted under different noises. The system input and impulse noise

settings are consistent with the previous experiments. With the output using the Gaussian
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Figure 4 Estimated error of the R-NNLMS and other algorithms in an additional environment of impulsive
noise (Pr(w = 0) = 0.1) with the background noise of SNR = 10 dB
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Figure 5 Estimated error of the R-NNLMS and other algorithms in an additional environment of impulsive
noise (Pr(w = 0) = 0.5) with the background noise of SNR = 10 dB

noise of SNR=10, the unknown 30-coefficient sparse system is

1-0.05j, j=1,...,20,
[wolj =10, j=21,...,25, (23)
-0.01(j — 25), j=26,...,30.

As analyzed above, the IP-RNNLMS algorithm is to solve the problem of unbalanced
convergence and to improve estimation accuracy. Figure 6 and Fig. 7 illustrate perfor-
mance curves of the IP-RNNLMS algorithm under the Gaussian noise and impulsive noise
Pr(w = 0) = 0.5, respectively. Figure 6 and Fig. 7 show that the I>-RNNLMS algorithm has
obviously faster convergence rate under different noises. Meanwhile, the IP-RNNLMS al-

gorithm still can eliminate the influence of impulsive noise.

5 Conclusion

In this work, the R-NNLMS algorithm based on a step-size scaler is proposed under non-
negative constraints. The influence of impulsive noise can be removed by the step-size
scaler. The simulation result shows the effectiveness of the R-NNLMS algorithm under im-
pulsive noise. The R-NNLMS algorithm performs well under non-impulsive noise. Mean-
while, the IP-RNNLMS algorithm solves the problem of unbalanced convergence well in
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Figure 6 Estimated error of the IP-RNNLMS and R-NNLMS algorithms in SNR = 10dB
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Figure 7 Estimated error of the IP-RNNLMS and R-NNLMS algorithms under impulsive noise (Pr(w = 0) = 0.5)

spare system identification. The performance analysis of the proposed algorithm and the
research in practical applications will be carried out in future studies.
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