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Abstract
This paper is concerned with the finite-time synchronization of coupled networks
with time-varying delays. We work without applying the finite-time stability theorem,
which is widely used in finite-time synchronization for complex networks or
finite-time consensus problems for multi-agent systems. We construct a novel
Lyapunov functional and apply some new analytical techniques. Sufficient conditions
are obtained to ensure synchronization within a setting time with no Zeno behaviors.
The obtained conditions do not contain any uncertain parameter. The controllers are
presented based on event-driven strategies, which can significantly reduce the
communication consumption and the frequency of the controller updates. And the
setting time is related to initial values of the network. Finally, numerical examples are
examined to illustrate the effectiveness of the analytical results.
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1 Introduction
A coupled system is a suitable model for many distributed phenomena in communication
engineering, economics and biological science [1–3]. And asymptotic synchronization of
coupled complex network systems has been studied widely in the last few decades [4–9].

In practical engineering, it is often expected that one might realize synchronization as
fast as possible. In terms of secure communication, it is an important application of syn-
chronization. As is well known, the range of time during which the chaotic oscillators are
not synchronized corresponds to the range of time during which the encoded message
can unfortunately not be recovered [10]. That is, asymptotic synchronization is not op-
timal because machines’ and human’s life spans are limited [11]. Therefore, finite-time
control technique has been introduced in the continuous systems [12, 13]. And it has bet-
ter robustness and disturbance rejection properties when the system is stabilized within
a setting time. Thus, the finite-time control technique has been extensively used to syn-
chronize networks [11, 14–17].

Moreover, almost all the aforementioned works assume that the Markovian switching
(or chain) is homogeneous, that is, the transition probabilities are time-invariant. How-
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ever, in many real-world applications, the homogeneity assumption may not be scientific
or cannot be verified. For example, the random component failure phenomenon is con-
sidered in descriptor systems. Usually, it is often assumed that the component failure rates
(or probabilities) are time-independent and independent of system state. In other words,
the underlying Markovian chain used to model random failures is homogeneous. But this
assumption is often violated and the failure rate of a component usually depends on many
factors in reality such as its age, working time [18]. In most cases, it is reasonable to as-
sume that if a component has more influencing factors, it is more likely to fail. Most of the
research results are based on the known transition probabilities for the Markovian jump
systems (MJSs). On the other hand, estimation errors, also referred to as transition proba-
bility uncertainties, may lead to instability or at least degraded system performances. And
this kind of estimation errors has been studied in [19, 20]. But the Markovian chain in
[19, 20] is also homogeneous. Thus, considering time-varying uncertainties leads to non-
homogeneous Markovian chains. Therefore, we just consider a nonhomogeneous Marko-
vian chain, and it will be more realistic to describe the real world.

However, traditional finite-time synchronization problems are based on sliding mode
controllers (containing sign function), and utilize finite-time stability theorem, which
cause the chattering phenomenon [16]. The chattering phenomenon may shock appara-
tuses in the network and consequently shorten the service life of the apparatuses. Taking
account of this, the authors of [15] designed the new controller, which utilize the 1 norm
to avoid the chattering phenomenon in realizing finite-time synchronization of coupled
networks without time delays.

It is well known that time delays inevitably appear in the process of information storage
and transmission in real coupled complex networks due to the finite speed of transmission
as well as traffic congestion [21, 22]. Unfortunately, time delays often lead to system insta-
bility, oscillation, or bad performance, which is very harmful to the applications of coupled
network systems [23]. If the existence of time delays is not considered, which will bring
more conservativeness to the actual applications [24]. Therefore, there are many impor-
tant results on stability analysis and synchronization of coupled complex networks with
time-varying delays [25–28]. However, as for finite-time synchronization problems, most
of the existing results focused on non-delayed network systems by using finite-time stabil-
ity theorem [11, 14, 17]. When time delays exist in the coupled networks, the finite-time
stability theorem in the existing results cannot directly be applied to the finite-time syn-
chronization problem of coupled complex networks with time-varying delays [29]. This
problem is therefore worthy of studying from the point of view of theory and engineer-
ing.

In some real-world networks, the connected nodes share information over a digital plat-
form, which leads one to investigate the synchronization problems by using the limited
communication network resource effectively. That is, the nodes communicate to their
neighbors only at certain discrete-time instants [30]. Classical time-driven control was
proposed by sampling the systems at a pre-specified time interval [31]. This can cause the
problem of synchronization of sampling instants, and the simultaneous transmission of all
the information over the network. Conversely, event-triggered control (ETC) can prevent
unnecessary control updates with respect to the traditional periodic control [32]. Recently,
by using different types of ETC, a great number of significant results on asymptotic syn-
chronization of networked systems have become available in the literature [33–36]. How-
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ever, to the best of the authors’ knowledge, finite-time synchronization problems have not
yet been addressed for the coupled complex networks in terms of time-varying delays by
using ETC. And the important issue is how to design the ETR (event-trigger rule) for each
node to achieve finite-time synchronization of the coupled networks and meanwhile to
prevent Zeno behavior.

Motivated by the above discussion, in this paper, we study finite-time synchronization
for coupled networks with time-varying delays by using event-triggered control. The main
novelties of this note are: (1) by constructing the new ETR of each node, designing new
Lyapunov functional and using matrix inequalities, sufficient conditions are derived to
guarantee the finite-time synchronization without Zeno behavior; (2) we do not use the
well-known finite-time stability theorem in [12], and the setting time can be easily ob-
tained.

Notation Throughout this paper, a graph is defined as a pair G = (V ,A) consisting of a
set of nodes V = {1, 2, . . . , N} and a time-varying matrix A(t) = {aij(t) ≥ 0} ∈ RN×N , A(t)
is piecewise-constant, that is, aij(t) ≥ 0 is piecewise-constant for all i, j ∈ V . Rn and Rn×m

denote respectively, the set of n × 1 real vectors and the set of all n × m real matrices. D+

stands for Dini derivative. The superscript “T” denotes the transpose and the notation X ≥
Y (respectively, X > Y ) where X and Y are symmetric matrices, means that X –Y is positive
semi-definite (respectively, positive definite); IN is the identity matrix with compatible
dimension. ‖ · ‖1 refers to the 1-norm of a row (column) vector or a matrix, i.e., ‖x‖1 =
∑n

i=1 |xi| for x = (x1, x2, . . . , xn) (x = (x1, x2, . . . , xn)T ∈ Rn) and ‖A‖1 = maxj
∑n

i=1 |aij| for A =
(aij)n×n ∈ Rn×n.

2 System description
Considering the coupled network composed of N identical nodes, each node is an n-
dimensional delayed dynamical system described by

ẋi(t) = f
(
xi(t)

)
+ c1

N∑

j=1

aijxj(t) + c2

N∑

j=1

bijxj
(
t – τ (t)

)
, i = 1, 2, . . . , N , (1)

where xi(t) = [xi1(t), xi2(t), . . . , xin(t)]T ∈ Rn represent the state vectors of the ith node, τ (t)
is the time-varying delay of node i, f (xi(t)) = (f1(xi(t)), f2(xi(t)), . . . , fn(xi(t)))T ∈ Rn is a con-
tinuous vector-valued function, and ui(t) = [ui1(t), ui2(t), . . . , uin(t)]T ∈ Rn are the control
inputs. For simplicity, we take the network model (1) as the drive system and consider the
response coupled network system described as follows:

ẏi(t) = f
(
yi(t)

)
+ c1

N∑

j=1

aijyj(t) + c2

N∑

j=1

bijyj
(
t – τ (t)

)
+ ui(t), (2)

where yi(t) denote the states of the response system, ui(t) denote the control inputs to
realize finite-time synchronization, and the rest variables and parameters are the same as
those in the drive system (1).

Definition 1 The complex networked system (1) is said to be synchronized with the drive
system (2) in finite time if there exists a constant 0 ≤ T ≤ +∞, which depends on the initial
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values for arbitrary solutions of system (1) and system (2), such that limt→T ‖e(t)‖1 = 0 and
‖e(t)‖1 ≡ 0 for ∀t > T , where T is called the setting time.

We need the following assumptions to study the finite-time synchronization of the sys-
tem (1).

Assumption 1 There exists a matrix θ = (θij)n×n, in which θij ≥ 0, such that

∣
∣fi

(
x(t)

)
– fi

(
y(t)

)∣
∣ ≤

n∑

j=1

θij
∣
∣xj(t) – yj(t)

∣
∣, (3)

∀x = (x1, x2, . . . , xn)T ∈ Rn, y = (y1, y2, . . . , yn)T ∈ Rn, i = 1, 2, . . . , n.

Assumption 2 There exist two constants τ and ξ , such that ξ < 1, τ̇ (t) ≤ ξ , 0 < τ (t) ≤ τ .

3 Main results
It is well known that time delays are unavoidable for complex network modeling. There-
fore, it is very important to consider the dynamics for the complex networks with time
delays, and finite-time synchronization analysis is obviously one of the most important
problems. In order to achieve the finite-time synchronization defined in Definition 1, the
controllers should be designed and brought in cooperation to the nodes of system (1). The
following controllers of the paper are considered for t ∈ [ti

k , ti
k+1):

ui(t) =

⎧
⎨

⎩

–k1ei(ti
k) – k2

ei(ti
k )

‖e(ti
k )‖1

– k3 sign(ei(ti
k))Ξi, if ‖e(ti

k)‖1 
= 0,

0, if ‖e(ti
k)‖1 = 0,

(4)

where Ξi =
∑N

j=1 |bijej(t
j
k –τ (t))|, k1, k2 and k3 are positive designed parameters. Time ti

k are
events of node i when signal ui(t) change values. And the control signals ui(t) are piecewise
functions, since they hold different values over each interval [ti

k , ti
k+1). The measurement

errors for node i are introduced as êi(t) = ei(t) – ei(ti
k), ẽi(t) = ei(t – τ (t)) – ei(ti

k – τ (t)),
t ∈ [ti

k , ti
k+1).

The time sequence ti
k is described by the ETR

ti
k+1 = inf

{
t > ti

k | ĝi(t) > 0 or g̃i(t) > 0
}

, (5)

where the trigger functions for node i are designed as ĝi(t) = ‖êi(t)‖1 – ρ̂‖ei(t)‖1, g̃i(t) =
|ẽi(t)| – ρ̃|ei(t – τ (t))|, and 0 < ρ̂ < 1, 0 < ρ̃ < 1.

Remark If ĝi(t) = |êi(t)| – ρ̂|ei(t)| > 0, then ĝi(t) = ‖êi(t)‖1 – ρ̂‖ei(t)‖1 > 0 can be deduced.
However, the converse is not necessarily true. Therefore, the trigger condition (5) in this
paper is weaker and easier to implement.
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Subtracting (1) from (2) based on the controller (4), the following error dynamical sys-
tems are obtained in the following form for i = 1, 2, . . . , N :

ėi(t) = F
(
ei(t)

)
+ c1

N∑

j=1

aijej(t) + c2

N∑

j=1

bijej
(
t – τ (t)

)
– k1ei

(
ti
k
)

– k2
ei(ti

k)
‖e(ti

k)‖1
– k3 sign

(
ei

(
ti
k
)) N∑

j=1

∣
∣bijej

(
tj
k – τ (t)

)∣
∣, (6)

where F(ei(t)) = f (yi(t)) – f (xi(t)).
Based on the controller (4) and the error system (6), the following result is derived.

Theorem 1 Let Assumptions 1–2 be satisfied. If
⎧
⎨

⎩

‖θ‖1 + c1‖A‖1 + 1
1–ξ

‖B‖1 ≤ k1(1 – ρ̂),

(ρ̃ – 1)k3 ≤ 1 – c2,
(7)

hold, then the drive coupled system (1) and the response coupled system (2) are finite-time
synchronized under the controller (4). Furthermore, the setting time T is estimated as

T ≤ 1
k2

( N∑

i=1

∥
∥ei(0)

∥
∥

1 +
1

1 – ξ

N∑

i=1

N∑

j=1

∫ 0

–τ0

∣
∣bijej(s)

∣
∣ds

)

– τ0, (8)

where τ0 = τ (0), ‖A‖1 = maxj
∑N

i=1 |aij| and ‖B‖1 = maxj
∑N

i=1 |bij|.

Proof Consider the following Lyapunov–Krasovskii functional:

V (t) =
2∑

l=1

Vl(t), (9)

where V1(t) =
∑N

i=1 ‖ei(t)‖1, V2(t) = 1
1–ξ

∑N
i=1

∑N
j=1

∫ t
t–τ (t) |bijej(s)|ds. Differentiating V (t)

and considering the controller (4), we get

V̇ (t) =
2∑

l=1

V̇l(t),

where

V̇1(t) =
N∑

i=1

lᵀn diag
(
sign

(
ei(t)

))
[

F
(
ei(t)

)
+ c1

N∑

j=1

aijej(t) + c2

N∑

j=1

bijej
(
t – τ (t)

)

– k1ei
(
ti
k
)

– k2
ei(ti

k)
‖e(ti

k)‖1
– k3 sign

(
ei

(
ti
k
)) N∑

j=1

∣
∣bijej

(
tj
k – τ (t)

)∣
∣

]

. (10)

In addition, the trigger function (5) implies ‖êi(t)‖1 ≤ ρ̂‖ei(t)‖1, which implies ‖êi(t)‖1 ≤
‖ei(t)‖1 due to 0 < ρ̂ < 1. Then, since

ei
(
ti
k
)

= ei(t) – êi(t),
∥
∥êi(t)

∥
∥

1 ≤ ∥
∥ei(t)

∥
∥

1 (11)
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implies sign(ei(t)) = sign(ei(ti
k)) for t ∈ [ti

k , ti
k+1), we thus have

lᵀn diag
(
sign

(
ei(t)

))
F
(
ei(t)

) ≤ ‖θ‖1
∥
∥ei(t)

∥
∥

1,

lᵀn diag
(
sign

(
ei(t)

))
c1

N∑

j=1

aijej(t) ≤ c1‖A‖1
∥
∥ei(t)

∥
∥

1,

lᵀn diag
(
sign

(
ei(t)

))
c2

N∑

j=1

bijej
(
t – τ (t)

) ≤ c2

N∑

j=1

∣
∣bijej

(
t – τ (t)

)∣
∣,

lᵀn diag
(
sign

(
ei(t)

))
= lᵀn diag

(
sign

(
ei

(
ti
k
)))

.

(12)

From (10) and (12), we can get

V̇1(t) ≤
N∑

i=1

[

‖θ‖1
∥
∥ei(t)

∥
∥

1 + c1‖A‖1
∥
∥ei(t)

∥
∥

1 + c2

N∑

j=1

∣
∣bijej

(
t – τ (t)

)∣
∣

– k1
∥
∥ei

(
ti
k
)∥
∥

1 – k2
‖ei(ti

k)‖1

‖e(ti
k)‖1

– k3

N∑

j=1

∣
∣bijej

(
tj
k – τ (t)

)∣
∣

]

. (13)

Since

c2

N∑

j=1

∣
∣bijej

(
t – τ (t)

)∣
∣ – k3

N∑

j=1

∣
∣bijej

(
tj
k – τ (t)

)∣
∣ (14)

= c2

N∑

j=1

∣
∣bijej

(
t – τ (t)

)∣
∣ + k3

N∑

j=1

∣
∣bijej

(
t – τ (t)

)∣
∣ – k3

N∑

j=1

∣
∣bijej

(
t – τ (t)

)∣
∣

– k3

N∑

j=1

∣
∣bijej

(
tj
k – τ (t)

)∣
∣

≤ (c2 – k3)
N∑

j=1

∣
∣bijej

(
t – τ (t)

)∣
∣ + k3

N∑

j=1

|bij|
∣
∣ej

(
t – τ (t)

)
– ej

(
tj
k – τ (t)

)∣
∣

≤ (
c2 + (ρ̃ – 1)k3

) N∑

j=1

∣
∣bijej

(
t – τ (t)

)∣
∣, (15)

based on the trigger function (5), the above inequality (14) follows since

∣
∣ej

(
t – τ (t)

)∣
∣ –

∣
∣ej

(
tj
k – τ (t)

)∣
∣ ≤ ∣

∣ej
(
t – τ (t)

)
– ej

(
tj
k – τ (t)

)∣
∣ ≤ ρ̃

∣
∣ej

(
t – τ (t)

)∣
∣.

And by the trigger function (5), we get –‖êi(t)‖1 ≥ –ρ̂‖ei(t)‖1,

∥
∥ei

(
ti
k
)∥
∥

1 =
∥
∥ei(t) – êi(t)

∥
∥

1 ≥ ∥
∥ei(t)

∥
∥

1 –
∥
∥êi(t)

∥
∥

1 ≥ (1 – ρ̂)
∥
∥ei(t)

∥
∥

1. (16)
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From the inequalities (13)–(15), the following inequality is obtained:

V̇1(t) ≤
N∑

i=1

[

‖θ‖1
∥
∥ei(t)

∥
∥

1 + c1‖A‖1
∥
∥ei(t)

∥
∥

1 +
(
c2 + (ρ̃ – 1)k3

)

·
N∑

j=1

∣
∣bijej

(
t – τ (t)

)∣
∣ – k1(1 – ρ̂)

∥
∥ei(t)

∥
∥

1 – k2
‖ei(ti

k)‖1

‖e(ti
k)‖1

]

. (17)

Differentiating V2(t), we derive

V̇2(t) =
1

1 – ξ

N∑

i=1

N∑

j=1

(∣
∣bijej(t)

∣
∣ –

∣
∣bijej

(
t – τ (t)

)∣
∣
(
1 – τ̇ (t)

))
, (18)

From Assumption 2, one obtains τ̇ (t) ≤ ξ , then –(1 – τ̇ (t)) ≤ –(1 – ξ ). It follows from
(11) that

V̇2(t) ≤ 1
1 – ξ

N∑

i=1

N∑

j=1

∣
∣bijej(t)

∣
∣ –

N∑

i=1

N∑

j=1

∣
∣bijej

(
t – τ (t)

)∣
∣

≤ 1
1 – ξ

N∑

i=1

‖B‖1
∥
∥ei(t)

∥
∥

1 –
N∑

i=1

N∑

j=1

∣
∣bijej

(
t – τ (t)

)∣
∣. (19)

Substituting inequalities (16) and (18) into V̇ (t) yields

V̇ (t) ≤
N∑

i=1

[

‖θ‖1
∥
∥ei(t)

∥
∥

1 + c1‖A‖1
∥
∥ei(t)

∥
∥

1 +
(
c2 + (ρ̃ – 1)k3

) N∑

j=1

∣
∣bijej

(
t – τ (t)

)∣
∣

– k1(1 – ρ̂)
∥
∥ei(t)

∥
∥

1 – k2
‖ei(ti

k)‖1

‖e(ti
k)‖1

+
1

1 – ξ
‖B‖1

∥
∥ei(t)

∥
∥

1 –
N∑

j=1

∣
∣bijej

(
t – τ (t)

)∣
∣

]

=
N∑

i=1

[(

‖θ‖1 + c1‖A‖1 +
1

1 – ξ
‖B‖1 – k1(1 – ρ̂)

)
∥
∥ei(t)

∥
∥

1

+
(
c2 + (ρ̃ – 1)k3 – 1

) N∑

j=1

∣
∣bijej

(
t – τ (t)

)∣
∣

]

– k2

N∑

i=1

‖ei(ti
k)‖1

‖e(ti
k)‖1

. (20)

It can be obtained from (7) that

V̇ (t) ≤ –k2. (21)

Inspired by the method of proof in the finite-time synchronization problem investigated
in [15], V (t) is positive definite, it can be seen from inequality (20) that there exists a
nonnegative constant V ∗ such that

lim
t→+∞ V (t) = V ∗ and V (t) ≥ V ∗, ∀t ≥ 0 (22)
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On the other hand, integrating (20) from 0 to t, we can get

V (t) – V (0) ≤ –k2t, (23)

if
∑N

i=1 ‖ei(t)‖1 + 1
1–ξ

∑N
i=1

∑N
j=1

∫ t
t–τ (t) |bijej(s)|ds = 0 at an instant T ∈ (0, +∞), then we can

proceed with the discussion from (23). If
∑N

i=1 ‖ei(t)‖1 + 1
1–ξ

∑N
i=1

∑N
j=1

∫ t
t–τ (t) |bijej(s)|ds >

0, ∀t ∈ [0, +∞), then from k2 > 0, we get –k2t < 0 for all t ∈ [0, +∞). Then (23) means
that limt→+∞ V (t) = –∞. This contradicts (21) and (22), and it is not true for t → +∞.
Therefore, there exists T ∈ (0, +∞) such that

lim
t→T

V (t) = V ∗ and V (t) ≡ V ∗, ∀t ≥ T . (24)

It is obvious that V (e(t0)) = 0 and V (e(t)) ≡ 0, ∀t ≥ t0, where t0 = T + τ0. From (19), it
can be concluded that

V̇ (t) ≤ –k2, t ∈ [0, t0). (25)

Integrating both sides of the inequality (24) from 0 to t0, we can obtain t0 ≤ V (e(0))
k2

. There-
fore, one can get T ≤ t0 – τ0 = V (e(0))

k2
– τ0, then

T ≤ 1
k2

( N∑

i=1

∥
∥ei(0)

∥
∥

1 +
1

1 – ξ

N∑

i=1

N∑

j=1

∫ 0

–τ0

∣
∣bijej(s)

∣
∣ds

)

– τ0. (26)

The proof is hence completed. �

Through the following theorem, it is proved that the system under the controller (4)
shows no Zeno behavior.

Theorem 2 Consider the drive coupled network system (1) and the response system (2)
under the event-triggered controller (4) with trigger functions (5). Assume that the condition
(7) is satisfied in Theorem 1, then, for a node i with ‖ei(ti

k)‖1 
= 0 and ei(ti
k – τ (t)) 
= 0, t ∈

[ti
k , ti

k+1).

Proof V̇ (t) ≤ –k2 < 0, for all t ∈ [ti
k , ti

k+1). Then when t ∈ [ti
k , ti

k+1), one has V (t) ≤ V (ti
k),

which yields ‖ei(t)‖1 ≤ V (ti
k). Then, when t ∈ [ti

k , ti
k+1), one can get

D+∥
∥êi(t)

∥
∥

1

=
∥
∥˙̂ei(t)

∥
∥

1 ≤ ∥
∥ėi(t)

∥
∥

1

= lᵀn diag
(
sign

(
ei(t)

))
(

F
(
ei(t)

)
+ c1

N∑

j=1

aijej(t) + c2

N∑

j=1

bijej
(
t – τ (t)

)
+ ui

(
ti
k
)
)

≤ ‖θ‖1
∥
∥ei(t)

∥
∥

1 + c1‖A‖1
∥
∥ei(t)

∥
∥

1 + c2

N∑

j=1

∣
∣bijej

(
t – τ (t)

)∣
∣ + k1

∥
∥ei

(
ti
k
)∥
∥

1

+ k2
‖ei(ti

k)‖1

‖e(ti
k)‖1

+ k3

N∑

j=1

∣
∣bijej

(
tj
k – τ (t)

)∣
∣
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≤
(

‖θ‖1 + c1‖A‖1 +
1

1 – ξ
‖B‖1 + k1(1 – ρ̂)

)
∥
∥ei(t)

∥
∥

1

+
(
c2 + (ρ̃ – 1)k3 – 1

) N∑

j=1

∣
∣bijej

(
t – τ (t)

)∣
∣ + k2

‖ei(ti
k)‖1

‖e(ti
k)‖1

≤
(

‖θ‖1 + c1‖A‖1 +
1

1 – ξ
‖B‖1 + k1(1 – ρ̂)

)

V
(
ti
k
)

+
(
1 – c2 + (1 – ρ̃)k3

)‖B‖1 max
j,τ̂∈[0,τ ]

∣
∣ej(t – τ̂ )

∣
∣ + k2

‖ei(ti
k)‖1

‖e(ti
k)‖1

� L
(
i, ti

k , t
)
. (27)

Since êi(ti
k) = 0, we obtain

∥
∥êi(t)

∥
∥

1 ≤
∫ t

ti
k

∥
∥˙̂ei(s)

∥
∥

1 ds ≤
∫ t

ti
k

L
(
i, ti

k , s
)

ds. (28)

In addition, ‖êi(t)‖1 ≤ ρ̂

1+ρ̂
‖ei(ti

k)‖1 yields ‖êi(t)‖1 ≤ ρ̂‖ei(t)‖1.
Thus, when t = ti

k+1 and ‖êi(ti
k+1)‖1 > ρ̂

1+ρ̂
‖ei(ti

k)‖1, then

ρ̂

1 + ρ̂

∥
∥ei

(
ti
k
)∥
∥

1 ≤
∫ ti

k+1

ti
k

L
(
i, ti

k , s
)

ds, (29)

which implies ti
k+1 – ti

k > 0, since ‖ei(ti
k)‖1 
= 0.

Similarly, if the event is triggered due to |ẽi(t)| > ρ̃|ei(t – τ (t))|, ti
k+1 – ti

k > 0 also holds.
Further, from (25)–(27), one obtains

‖ei(ti
k)‖1

1 + ρ̂
≤ ∥

∥ei(t)
∥
∥

1 ≤ ‖ei(ti
k)‖1

1 – ρ̂
(30)

and

|ei(ti
k – τ (t))|
1 + ρ̃

≤ ∣
∣ei

(
t – τ (t)

)∣
∣ ≤ |ei(ti

k – τ (t))|
1 – ρ̃

, (31)

for all t ∈ [ti
k , ti

k+1), which implies ‖ei(ti
k+1)‖1 > 0 and |ei(ti

k+1 –τ (t))| > 0. Furthermore, these
result in ti

k+2 – ti
k+1 > 0. By induction, it is obvious that node i will not exhibit Zeno trig-

gering for all t > ti
k . This ends the proof. �

4 Numerical examples
In this section, the example is provided to demonstrate the effectiveness of the proposed
approach.

Example 1 In this example, the finite-time synchronization of the time-varying delayed
coupled drive system (1) and the response system (2) with the controller (4) is investigated
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as follows:

ẋi(t) = f
(
xi(t)

)
+

4∑

j=1

aijxj(t) + 2
4∑

j=1

bijxj
(
t – τ (t)

)
,

ẏi(t) = f
(
yi(t)

)
+

4∑

j=1

aijyj(t) + 2
4∑

j=1

bijyj
(
t – τ (t)

)
+ ui(t), i = 1, 2, 3, 4,

(32)

where xi(t) = (xi1(t), xi2(t))T and yi(t) = (yi1(t), yi2(t))T are the state variables of the ith node
for the drive and response system, respectively, xi(0) = xi,0 and yi(0) = yi,0 are the initial
state values, τ (t) = sin t

2 , and the outer coupling matrices are assumed to be

A = (aij)4×4 = 0.01 ×

⎡

⎢
⎢
⎢
⎣

–0.8 0.4 0.2 0.2
0.4 –0.6 0.1 0.1
0.2 0.1 –0.4 0.1
0.2 0.1 0.1 –0.4

⎤

⎥
⎥
⎥
⎦

,

B = (bij)4×4 =

⎡

⎢
⎢
⎢
⎣

–1 0.2 0.4 0.4
0.2 –0.8 0.3 0.3
0.4 0.3 –0.8 0.1
0.4 0.3 0.1 –0.8

⎤

⎥
⎥
⎥
⎦

.

The nonlinear function f (·) is given by [24]

f
(
xi(t)

)
= –Cxi(t) + Dg

(
xi(t)

)
, (33)

in which

g(xi) = 0.5
(|xi1 + 1| – |xi1 – 1|, |xi2 + 1| – |xi2 – 1|)T ,

C =

[
1 0
0 1

]

, D =

[
1 + π

4 20
0.1 1 + π

4

]

.

By simple computation, we have ‖θ‖1 = 0.5303, in view of (3), (4) and the parameters
of network (32). From Assumption 1 and condition (7), letting ξ = 0.5, ρ̂ = 0.2, ρ̃ = 0.4,
we obtain k1 ≥ 5.6828, k3 ≥ 1.6667, and k2 can be any positive constant. Choosing k2 = 2,
and the initial value arbitrarily chosen from (–2, 2) by uniform distribution and we get
∑4

i=1 ‖ei(0)‖1 = 4.4744, ∀t ∈ [–1, 0], and ei(t) = 0 for t < –1, it is derived from (8) that the
network is synchronized within T = 3.7230. Figure 1 shows that x1(t) x2(t) x3(t) x4(t) and
y1(t) y2(t) y3(t) y4(t) evolve with the above initial values. Figure 2 describes the time evo-
lution of the synchronization errors with the controller. When the controllers are added
to the addressed network, one can see that the synchronization can be realized within
T = 3.7230.

Figure 3 shows the control updates for each of the node in 2.6 seconds of the simulation,
while Table 1 shows the average interevent time exhibited by each node during the simu-
lation. It may be observed that the minimum of these values is above 0.1 s, which means
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Figure 1 Time evolution of x1(t), x2(t), x3(t), x4(t), y1(t), y2(t), y3(t), y4(t) with controllers

Figure 2 Time evolution of synchronization errors e1(t), e2(t), e3(t), e4(t) with controllers

that the node that updates its control input more often performs less than 10 updates/s
on average.

5 Conclusions
In this paper, we have dealt with the finite-time synchronization problem of time-delayed
coupled networks with event-trigger controller. Sufficient conditions have been estab-
lished in terms of inequalities. And the finite-time synchronization problem is solved for
the addressed networked systems with time-varying delays without Zeno behavior. With-
out using the finite-time stability theorem, the synchronization conditions are obtained
for the systems. The numerical example has been presented to illustrate the usefulness
and effectiveness of the main results obtained. Furthermore, the occurrence of time delay
in the nonlinear function f (xi(t)) in (1) will be the subject of further study.
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Figure 3 Instants when a control update is triggered during the time interval [0, 2.6]. The vertical positions of
the markers indicate which node updates its control signal

Table 1 Average interevent time for each node in the time interval [0, 4] with the proposed control
algorithm applied

node average tik+1 – t
i
k

1 0.2083
2 0.1381
3 0.2286
4 0.3413
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