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Abstract
The present article addresses the exponential stability of recurrent neural networks
(RNNs) with distributive and discrete asynchronous time-varying delays. Some novel
algebraic conditions are obtained to ensure that for the model there exists a unique
balance point, and it is global exponential asymptotically stable. Meanwhile, it also
reveals the difference about the equilibrium point between systems with and without
distributed asynchronous delay. One numerical example and its Matlab software
simulations are given to illustrate the correctness of the present results.
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1 Introduction
In the last few decades, a number of successful applications of RNNs have been witnessed
in many areas, including associative memory, prediction and optimal control, and pattern
recognition [1–8]. During the implementation of the operation, time delay is inevitably
inherent in the transmission process among neurons on account of limited propagation
speed and limited switching of the amplifier [9–13]. In addition, because of the existence
of a large number of parallel channels with different coaxial process sizes and lengths,
there maybe exist distributions of conduction velocities delays and propagation delays
along with these paths. In these cases, we cannot only model the signal propagation with
discrete delays due to it not being instantaneous. Thus, it is more suitable to add continu-
ous distribution delays into the neural network model. Moreover, these delays sometimes
may produce the desired excellent performance, such as processing moving images be-
tween neurons when signals are transmitted, exhibiting chaotic phenomena applied to
secure communication. Therefore, it is quite necessary to discuss the dynamical behavior
of the neural networks with mixed distributive and discrete delays. And there has been a
lot of literature on mixed constant delays [14–19] and time-varying delays [19–24].

Recently, Liu et al. [25] proposed the asynchronous delays, and investigated the ex-
ponential stability for complex-valued recurrent neural networks with discrete asyn-
chronous delays. Afterwards, Li et al. [26] presented the stability preservation in discrete
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analogue of an impulsive Cohen–Grossberg neural network with discrete asynchronous
delays. In the implementation of the operation, time delays are not just discrete asyn-
chronous, but also distributive asynchronous, or even mixed asynchronous. In fact, for a
driver, there is not only one kind of delay; his eyes, hands and feet all have delays in re-
sponding to the operation. Since the delays are different for different drivers, it needs to be
coordinated in the driver’s brain central nervous system. Therefore, the stability analysis
of neural networks with distributive and discrete asynchronous delays is a challenge that
we should look forward to discussing.

Inspired by the challenge above, we investigated the exponential stability of RNNs with
mixed asynchronous time-varying delays. The main contribution was to find some novel
sufficient conditions which make the discussed system’s balance point unique and the
global exponential asymptotically stable. The rest arrangement of this article are as fol-
lows. In the second section, the RNN model with some reasonable assumption is given.
The main results are given and proved in the third section. The corollaries and compar-
isons with the existing literature are given in the fourth section. Section 5 gives a numerical
example with comprehensible simulation to illustrate the effectiveness of the main results.
In the end of this paper, the conclusion is drawn.

2 Model description
In the present article, we investigate a class of RNNs of n (n ≥ 2) interconnected neurons
as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dxi(t)
dt = –aixi(t) +

∑n
j=1 bijfj(xj(t)) +

∑n
j=1 cijfj(xj(t – τij(t)))

+
∑n

j=1 dij
∫ t

t–hij(t) fj(xj(s)) ds + ui,

t ≥ 0, i = 1, 2, . . . , n,

(1)

where xi(t) is the state variate at time t related to the ith neuron; ai is a positive behaved
constant; fj(·) stands for activation function of the jth neuron, and it is a globally Lipschitz
continuous and differentiable nonlinear function such that

∣
∣fi(x) – fi(y)

∣
∣ ≤ li|x – y|, li ≥ 0,∀x, y ∈R, (2)

∣
∣fi(·)

∣
∣ ≤ Mi, Mi ≥ 0; (3)

bij, cij, and dij are the corresponding connection weights associated with the neurons
without delays, with discrete delays, and with distributed delays, respectively; τij(t) cor-
responds to the discrete asynchronous transmission time-varying delay along with the
axon of the unit j to the unit i at time t such that

τij(t) ≥ 0, max
1≤j≤n

sup
t≥0

τij(t) ≤ τi, 0 ≤ dτij(t)
dt

≤ α < 1, i = 1, 2, . . . , n; (4)

hij(t) corresponds to the distributed asynchronous transmission time-varying delay along
with the axon of the unit j to the unit i at time t, and satisfies

hij(t) ≥ 0, max
1≤j≤n

sup
t≥0

hij(t) ≤ hi, i = 1, 2, . . . , n; (5)

ui is a constant, and represents the external input of the ith neuron.
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For model (1), its initial conditions are assumed to be

xi(s) = ϕi(s), ∀s ∈ [–τi, 0], (6)

where ϕi(s) is real-valued continuous function, and

τi = max{τi, hi}, ∀i ∈ {1, 2, . . . , n}. (7)

Remark 1 τij(t) and hij(t) above receive different information between different nodes at
time t, which means that the time-varying delays are asynchronous in system (1). There-
fore, model (1) is more general than Refs. [22, 26].

Assume that x∗ is a balance of model (1), and x∗
i is its ith component. Then Eq. (1)

becomes

aix∗
i =

n∑

j=1

bijfj
(
x∗

j
)

+
n∑

j=1

cijfj
(
x∗

j
)

+
n∑

j=1

dijhij(t)fj
(
x∗

j
)

+ ui. (8)

By Ref. [20], we can define the global exponential asymptotic stability of x∗.

Definition 1 The equilibrium point x∗ in model (1) is said to have global exponential
asymptotic stability, if there are M ≥ 1 and γ > 0 such that each solution of Eq. (1) satisfies

n∑

i=1

∣
∣xi(t) – x∗

i
∣
∣ ≤ Me–γ t

n∑

i=1

sup
s∈Ω

∣
∣ϕi(s) – x∗

i
∣
∣, (9)

where ϕi(s) is the initial continuous function, and Ω is a set of real numbers.

3 Main results and proofs
In this section, we will show that there is a unique balance point x∗ in the neural networks
(1), and it shows global exponential asymptotic stability.

Theorem 1 Suppose that (2), (3), and (5) hold. If for each i, i ∈ {1, 2, . . . , n}, one has

li

n∑

j=1

(|cji| + |bji| + |dji|hj
)

< ai, (10)

then the equilibrium point x∗ exists and is unique in system (1).

Proof On account of ai > 0, (8) can turn into

⎧
⎨

⎩

x∗
i = 1

ai
[
∑n

j=1 bijfj(x∗
j ) +

∑n
j=1 cijfj(x∗

j ) +
∑n

j=1 dijhij(t)fj(x∗
j ) + ui],

t ≥ 0, i = 1, 2, . . . , n.
(11)

Let

gi(x1, x2, . . . , xn) =
1
ai

[ n∑

j=1

bijfj(xj) +
n∑

j=1

cijfj(xj) +
n∑

j=1

dijhij(t)fj(xj) + ui

]

.
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Then we know that x∗
i is a fixed point of the mapping gi(x) from Eq. (11). Hence the equi-

librium point of Eq. (1) can be determined by the fixed points of functions g1(x), g2(x), . . . ,
and gn(x) within a specific range. Let x(t) be the vector (x1(t), x2(t), . . . , xn(t))T , and Φ be a
hypercube set defined by

Φ =

{

x(t)
∣
∣
∣
∣
∣xi(t)

∣
∣ ≤ 1

ai

[ n∑

j=1

(|bij| + |cij| + |dij|hi
)
Mj + |ui|

]

, i = 1, 2, . . . , n

}

. (12)

By the hypotheses (3) and (5), we can get

∣
∣gi

(
x∗

1, x∗
2, . . . , x∗

n
)∣
∣ =

∣
∣
∣
∣
∣

1
ai

[ n∑

j=1

bijfj
(
x∗

j
)

+
n∑

j=1

cijfj
(
x∗

j
)

+
n∑

j=1

dijhij(t)fj
(
x∗

j
)

+ ui

]∣
∣
∣
∣
∣

≤ 1
ai

[ n∑

j=1

|bij|Mj +
n∑

j=1

|cij|Mj +
n∑

j=1

|dij|hiMj + |ui|
]

≤ 1
ai

[ n∑

j=1

(|bij| + |cij| + |dij|hi
)
Mj + |ui|

]

. (13)

Let g(x) be the vector function (g1(x), g2(x), . . . , gn(x))T . From the continuity of fi, we know
that g(x) is a continuous mapping from set Φ to Φ . By Brouwer’s fixed point theorem,
there is at least one x∗ ∈ Φ such that

gi
(
x∗) = x∗

i , ∀i ∈ {1, 2, . . . , n}.

It follows that there is at least one equilibrium point in Eq. (1).
Next, we will show the uniqueness of the equilibrium point in Eq. (1).
Let y∗ = (y∗

1, y∗
2, . . . , y∗

n)T be also an equilibrium point of model (1). From (2), (3), and (8),
we can obtain

∣
∣y∗

i – x∗
i
∣
∣ =

1
ai

∣
∣
∣
∣
∣

n∑

j=1

(
cij + bij + dijhij(t)

)(
fj
(
y∗

j
)

– fj
(
x∗

j
))

∣
∣
∣
∣
∣

≤ 1
ai

n∑

j=1

(|cij| + |bij| + |dij|hij(t)
)
lj
∣
∣y∗

j – x∗
j
∣
∣

≤ 1
ai

n∑

j=1

lj
(|cij| + |bij| + |dij|hi

)∣
∣y∗

j – x∗
j
∣
∣. (14)

Summing over all the neurons that satisfy the inequality (14), we get

n∑

i=1

∣
∣y∗

i – x∗
i
∣
∣ ≤

n∑

i=1

n∑

j=1

1
ai

lj
(|cij| + |bij| + |dij|hi

)∣
∣y∗

j – x∗
j
∣
∣

≤
n∑

i=1

n∑

j=1

1
ai

li
(|cji| + |bji| + |dji|hj

)∣
∣y∗

i – x∗
i
∣
∣. (15)
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It follows that

n∑

i=1

∣
∣y∗

i – x∗
i
∣
∣

[

ai – li

n∑

j=1

(|cji| + |bji| + |dji|hj
)
]

= 0. (16)

According to the condition (10), we can get

x∗
i = y∗

i , i = 1, 2, . . . , n,

implying that there exists a unique equilibrium in model (1). �

Theorem 2 Suppose that (2)–(5), and (10) hold, and we have β ≥ 1 and q > 0 such that

β = max
1≤i≤n

{

1 +
n∑

j=1

|cji|liτj
eqτj

1 – α
+

n∑

j=1

|dji|li

(
1
q2 +

qhj – 1
q2 eqhj

)}

. (17)

If the equilibrium point x∗ and each solution of Eq. (1) with the initial conditions (6) satisfy

n∑

i=1

∣
∣xi(t) – x∗

i
∣
∣ ≤ βe–qt

n∑

i=1

sup
s∈[–τi ,0]

∣
∣ϕi(s) – x∗

i
∣
∣, (18)

then x∗ is the global exponential asymptotic stability.

Proof By Theorem 1, model (1) exists a unique balance point under the assumptions (2),
(3), (5), and (10), and we denote it as x∗. Then from Eq. (1), we have

d|xi(t) – x∗
i |

dt
≤ –ai

∣
∣xi(t) – x∗

i
∣
∣ +

n∑

j=1

|bij|lj
∣
∣xj(t) – x∗

j
∣
∣ +

n∑

j=1

|cij|lj
∣
∣xj

(
t – τij(t)

)
– x∗

j
∣
∣

+
n∑

j=1

|dij|
∫ t

t–hij(t)
lj|xj(s) – x∗

j |ds. (19)

Assumed that

yi(t) = eqt∣∣xi(t) – x∗
i
∣
∣, t ≥ –τi, i = 1, 2, . . . , n.

Then the derivative along with (19) is

dyi(t)
dt

= qeqt∣∣xi(t) – x∗
i
∣
∣ + eqt d|xi(t) – x∗

i |
dt

≤ –(ai – q)yi(t) + eqt
n∑

j=1

|bij|lj
∣
∣xj(t) – x∗

j
∣
∣ + eqt

n∑

j=1

|cij|lj
∣
∣xj

(
t – τij(t)

)
– x∗

j
∣
∣

+ eqt
n∑

j=1

|dij|
∫ t

t–hij(t)
lj
∣
∣xj(s) – x∗

j
∣
∣ds. (20)
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Since

eqt
∫ t

t–hij(t)

∣
∣xj(s) – x∗

j
∣
∣ds ≤ eqt

∫ t

t–hi

∣
∣xj(s) – x∗

j
∣
∣ds

= eqt
∫ hi

0

∣
∣xj(u + t – hi) – x∗

j
∣
∣du

=
∫ hi

0
eq(hi–u)yj(u + t – hi) du, (21)

we substitute (21) into (20), and get

dyi(t)
dt

≤ –(ai – q)yi(t) + eqt
n∑

j=1

|bij|lj
∣
∣xj(t) – x∗

j
∣
∣ + eqt

n∑

j=1

|cij|lj
∣
∣xj

(
t – τij(t)

)
– x∗

j
∣
∣

+
n∑

j=1

|dij|lj

∫ hi

0
eq(hi–u)yj(u + t – hi) du. (22)

Consider a Lyapunov function V (t) = V (y1, y2, . . . , yn)(t) defined by

V (t) =
n∑

i=1

{

yi(t) +
n∑

j=1

|cij|lj
eqτi

1 – α

∫ t

(t–τij(t))
yj(s) ds

+
n∑

j=1

|dij|lj

∫ hi

0
eq(hi–u)

∫ t

u+t–hi

yj(w) dw du

}

. (23)

Taking the derivative of V (t) along with (19), we get

dV (t)
dt

=
n∑

i=1

{
dyi(t)

dt
+

n∑

j=1

|cij|lj
eqτi

1 – α

(
yj(t) – yj

(
t – τij(t)

)(
1 – τ̇ij(t)

))

+
n∑

j=1

|dij|lj

∫ hi

0
eq(hi–u)(yj(t) – yj(u + t – hi)

)
du

}

≤ –
n∑

i=1

{

(ai – q)yi(t) –
n∑

j=1

|bij|ljyj(t) –
n∑

j=1

|cji|li
eqτi

1 – α
yj(t)

–
n∑

j=1

|dij|lj

∫ hi

0
eq(hi–u)yj(t) du

}

= –
n∑

i=1

{

(ai – q) –
n∑

j=1

|bji|li –
n∑

j=1

|cji|li
eqτj

1 – α

–
n∑

j=1

|dji|li
eqhj – 1

q

}

yi(t). (24)

Let Fi(qi) be an auxiliary continuous function related to index i, defined by

Fi(qi) = ai – qi – li

n∑

j=1

|bji| – li

n∑

j=1

|cji| eqiτj

(1 – α)qi/q – li

n∑

j=1

|dji|
[

hj +
∞∑

k=2

qk–1
i hk

j

k!

]

, (25)
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where qi is a positive real number, and i is a positive nature number not bigger than n. In
view of the hypothesis (10), one has

Fi(0) = ai – li

n∑

j=1

|bji| – li

n∑

j=1

|cji| – li

n∑

j=1

|dji|hj > 0. (26)

From the continuity of Fi, there exists q∗
i ∈ (0, +∞) such that

Fi
(
q∗

i
)

> 0, i = 1, 2, . . . , n.

Without loss of generality, let q = max1≤i≤n{q∗
1, q∗

2, . . . , q∗
n}. Then

Fi(q) = ai – q – li

n∑

j=1

|bji| – li

n∑

j=1

|cji| eqτj

1 – α
– li

n∑

j=1

|dji|
[

hj +
∞∑

k=2

qk–1hk
j

k!

]

= (ai – q) –
n∑

j=1

|bji|li –
n∑

j=1

|cji|li
eqτj

1 – α
–

n∑

j=1

|dji|li
eqhj – 1

q
> 0. (27)

Therefore, by (24) and (27), one can see that the derivative of V (t) is smaller than 0 for
t ∈ [0, +∞]. Based on the definition of V (t) and the assumption (4), we obtain

n∑

i=1

eqt∣∣xi(t) – x∗
i
∣
∣ ≤ V (t) ≤ V (0), (28)

where

V (0) =
n∑

i=1

{

yi(0) +
n∑

j=1

|cij|lj
eqτi

1 – α

∣
∣
∣
∣

∫ 0

–τij(0)
yj(s) ds

∣
∣
∣
∣

+
n∑

j=1

|dij|lj

∫ hi

0
eq(hi–u)

∫ 0

u–hi

yj(w) dw du

}

≤
n∑

i=1

{

yi(0) +
n∑

j=1

|cij|ljτi
eqτi

1 – α
sup

s∈[–τi ,0]
yj(s)

+
n∑

j=1

|dij|lj

∫ hi

0
eq(hi–u)(hi – u) du sup

s∈[–hi ,0]
yj(s)

}

=
n∑

i=1

{

yi(0) +
n∑

j=1

|cij|ljτi
eqτi

1 – α
sup

s∈[–τi ,0]
yj(s)

+
n∑

j=1

|dij|lj

(
1
q2 +

qhi – 1
q2 eqhi

)

sup
s∈[–hi ,0]

yj(s)

}

≤
n∑

i=1

{

1 +
n∑

j=1

|cji|liτj
eqτj

1 – α
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+
n∑

j=1

|dji|li

(
1
q2 +

qhj – 1
q2 eqhj

)}

sup
s∈[–τi ,0]

∣
∣ϕi(s) – x∗∣∣

≤ β

n∑

i=1

sup
s∈[–τi ,0]

∣
∣ϕi(s) – x∗∣∣. (29)

Combining (17), (28), and (29), one can derive the inequality (18), and thus the equilib-
rium point x∗ of Eq. (1) has the global exponential asymptotic stability on account of Def-
inition 1. �

Remark 2 The constant β ≥ 1, which plays a significant role in the index of convergence
of model (1), relies on the distributive delay hj and delay τj for j = 1, 2, . . . , n. If either the
discrete delay τj or the distribution delay hj of (17) is sufficiently large, namely, the dis-
crete asynchronous delays τij(t) of (4) and distributed asynchronous delays hij(t) of (5)
are sufficiently large, then β will be large enough, and thus the convergence time towards
the equilibrium point will be longer. Therefore, the convergence time of model (1) can
be shortened only if the two delays are reduced appropriately in the process of operation
coordination.

4 Corollaries and comparisons
By Theorem 1 and Theorem 2, we will have the following corollaries. Meanwhile, we also
will compare the conclusions of this paper with the existing literature.

When hij(t) = 0 for i, j ∈ {1, 2, . . . , n}, Eq. (1) changes into the following neural networks:

dxi(t)
dt

= –aixi(t) +
n∑

j=1

bijfj
(
xj(t)

)
+

n∑

j=1

cijfj
(
xj

(
t – τij(t)

))
+ ui, t ≥ 0, (30)

and its initial conditions are

xi(s) = ϕi(s), ∀s ∈ [–τi, 0], (31)

where i is a positive integer not bigger than n.

Corollary 1 Assume that (2) and (3) are true. If for each i, i ∈ {1, 2, . . . , n}, one has

li

n∑

j=1

(|cji| + |bji|
)

< ai, (32)

then the equilibrium point x∗ exists and is unique in the system (30).

Corollary 2 Suppose that (2)–(4), and (32) hold. If there exist two constants β ≥ 1 and
q > 0 such that

β = max
1≤i≤n

{

1 +
n∑

j=1

|cji|liτj
eqτj

1 – α

}

, (33)
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and the equilibrium point x∗ and each solution of Eq. (30) with the initial conditions (31)
satisfy

n∑

i=1

∣
∣xi(t) – x∗

i
∣
∣ ≤ βe–qt

n∑

i=1

sup
s∈[–τi ,0]

∣
∣ϕi(s) – x∗

i
∣
∣, (34)

then x∗ is the global exponential asymptotic stability.

Remark 3 By Ref. [26], the equilibrium point of model (30) with discrete asynchronous
time-varying delay is the same to that without delays. Meanwhile hij(t) �= 0, by Theorem 1,
the equilibrium point of model (1) will be affected by hij(t), t > 0.

When τij(t) = 0 for i, j ∈ {1, 2, . . . , n}, Eq. (1) turns into the following neural networks:

dxi(t)
dt

= –aixi(t) +
n∑

j=1

bijfj
(
xj(t)

)
+

n∑

j=1

cijfj
(
xj(t)

)

+
n∑

j=1

dij

∫ t

t–hij(t)
fj
(
xj(s)

)
ds + ui, t ≥ 0, (35)

and its initial conditions are

xi(s) = ϕi(s), ∀s ∈ [–hi, 0], (36)

where i is a natural number, belonging to the set {1, 2, . . . , n}.

Corollary 3 Suppose that (2), (3), and (5) hold. If for each i, i ∈ {1, 2, . . . , n}, we have

li

n∑

j=1

(|bji| + |dji|hj
)

< ai, (37)

then the equilibrium point x∗ exists and is unique in the system (35).

Corollary 4 Suppose that (2), (3), (5), and (36) hold. If we have β ≥ 1 and q > 0 such that

β = max
1≤i≤n

{

1 +
n∑

j=1

|dji|li

(
1
q2 +

qhj – 1
q2 eqhj

)}

, (38)

and the equilibrium point x∗ and each solution of Eq. (35) with the initial conditions (36)
satisfy

n∑

i=1

∣
∣xi(t) – x∗

i
∣
∣ ≤ βe–qt

n∑

i=1

sup
s∈[–hi ,0]

∣
∣ϕi(s) – x∗

i
∣
∣, (39)

then x∗ has the global exponential asymptotic stability.
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When τij(t) = τ (t) and hij(t) = h(t) for i, j ∈ {1, 2, . . . , n}, let supt≥0 τ (t) ≤ τ , and
supt≥0 h(t) ≤ h. Hence Eq. (1) changes into

⎧
⎪⎪⎨

⎪⎪⎩

dxi(t)
dt = –aixi(t) +

∑n
j=1 bijfj(xj(t)) +

∑n
j=1 cijfj(xj(t – τ (t)))

+
∑n

j=1 dij
∫ t

t–h(t) fj(xj(s)) ds + ui,

i = 1, 2, . . . , n, t ≥ 0,

(40)

and its initial conditions are

⎧
⎨

⎩

xi(s) = ϕi(s), ∀s ∈ [–τ , 0],

i = 1, 2, . . . , n, t ≥ 0,
(41)

where ϕi(s) is real-valued continuous functions, and

τ = max
t≥0

{τ , h}. (42)

Corollary 5 Suppose that (2), (3), and (5) hold. If for each i, i ∈ {1, 2, . . . , n}, we have

li

n∑

j=1

(|bji| + |cji| + |dji|h
)

< ai, (43)

then the equilibrium point x∗ exists and is unique in the system (40).

Corollary 6 Suppose that (2)–(5), and (43) hold, and we have β ≥ 1 and q > 0 such that

β = max
1≤i≤n

{

1 +
n∑

j=1

|cji|liτ
eqτ

1 – α
+

n∑

j=1

|dji|li

(
1
q2 +

qh – 1
q2 eqh

)}

. (44)

If the equilibrium point x∗ and each solution of Eq. (40) with the initial conditions (41)
satisfy

n∑

i=1

∣
∣xi(t) – x∗

i
∣
∣ ≤ βe–qt

n∑

i=1

sup
s∈[–τ ,0]

∣
∣ϕi(s) – x∗

i
∣
∣, (45)

then x∗ has the global exponential asymptotic stability.

Remark 4 The system (40) is one of the RNNs with distributive and discrete delays, which
occur to the literature [22]. In this paper, we show the balance x∗ of Eq. (40) is the global ex-
ponential asymptotic stability via the Lyapunov function method, which is different from
the method used in the literature [22].
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5 Simulation example
Example We consider the following two-dimensional neural network model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t)
dt = –5x1(t) + 0.2f1(x1(t)) + 0.3f2(x2(t)) + 1.7f1(x1(t – τ11(t)))

+ 0.8f2(x2(t – τ12(t))) + 0.3
∫ t

t–h11(t) f1(x1(s)) ds

+ 0.2
∫ t

t–h12(t) f2(x2(s)) ds + 2.5,
dx2(t)

dt = –7x2(t) + 0.1f1(x1(t)) + 0.4f2(x2(t)) + 0.8f1(x1(t – τ21(t)))

+ 0.9f2(x2(t – τ22(t))) – 0.2
∫ t

t–h21(t) f1(x1(s)) ds

+ 0.4
∫ t

t–h22(t) f2(x2(s)) ds + 1.5,

(46)

where fi(xi(t)) = tanh(xi(t)), τ11(t) = τ21(t) = 0.49 + 0.49 sin(0.02t), τ12(t) = τ22(t) = 0.48 +
0.48 cos(0.03t), h11(t) = h21(t) = 1.5 + e–t , and h12(t) = h22(t) = 3 + e–t . For the initial condi-
tion is considered that x1(s) = ln(s + 3.9), x2(s) = 0.4es – 0.7, s ∈ [–4, 0].

After comparison and simple calculation, we know that Eq. (46) represents a two-
dimensional RNN with discrete and distributed asynchronous time-varying delays, and
satisfies all the assumptions of Theorem 1 and Theorem 2. In Fig. 1, we illustrate state
trajectories of x1 and x2 of model (46), which show that model (46) has a unique and ex-
ponential asymptotically stable equilibrium point.

In Fig. 2, we illustrate state trajectories of x1 and x2 of model (46) under three other
different initial conditions: x1(s) = 0.4, x2(s) = 0.7; x1(s) = –0.5 + es, x2(s) = 0.4es and x1(s) =
–0.9, x2(s) = –0.3, which demonstrate that exponential convergence of model (46) is global.
Therefore, Figs. 1 and 2 show fully the effectiveness of our results in this paper.

Taking out the distributed delay, model (46) turns into a two-dimensional RNN with
discrete asynchronous time-varying delays. Figure 3 illustrates its state trajectories, which
are marked as x1-discrete and x2-discrete, respectively. Meanwhile, Fig. 3 also shows the
sate trajectories of x1 and x2 of model (46) without delays. From Fig. 3, we see that the
dynamical behaviors of Eq. (46) without distributed delay and Eq. (46) without delay are
converging toward the same equilibrium point.

Figure 1 State trajectories of model (46)
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Figure 2 State trajectories of model (46) under three other initial conditions

Figure 3 State trajectories of model (46) without distributed delay, or without delay

Removing the discrete delay, model (46) becomes a two-dimensional RNN with distribu-
tive asynchronous time-varying delays. Figure 4 illustrates its state trajectories, which are
marked as x1-distributed and x2-distributed, respectively. Meanwhile, Fig. 4 also demon-
strate the sate trajectories of x1 and x2 of model (46) without delays. From Fig. 4, we see
that the trajectories of Eq. (46) with distributive asynchronous time-varying delays and
Eq. (46) without delay are different, which implies that the dynamical behavior of model
(46) is affected by the distributed asynchronous time-varying delay.

In Fig. 5, we illustrate the state trajectories of model (46) with delays (i): τ11(t) =
τ21(t) = 0.49 + 0.49 sin(0.02t), τ12(t) = τ22(t) = 0.48 + 0.48 cos(0.03t), h11(t) = h21(t) = 1.5 +
e–t , h12(t) = h22(t) = 3 + e–t , and model (46) with delays (ii): τ11(t) = τ21(t) = 0.11 +
0.11 sin(0.02t), τ12(t) = τ22(t) = 0.09 + 0.09 cos(0.03t), h11(t) = h21(t) = 0.1 + e–t , h12(t) =
h22(t) = 0.2 + e–t , which are marked as x1-big and x2-big, and x1-small and x2-small, re-
spectively. Obviously, the maximum of all delays in (i) is bigger than that in (ii). From Fig. 5,
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Figure 4 State trajectories of model (46) without discrete delay, or without delay

Figure 5 State trajectories of model (46) with different asynchronous time-varying delays

we see that the stability convergence time of neural networks with big upper bound delay
is longer than that of neural networks with small upper bound delay.

6 Conclusion
In the present paper, we discuss the RNNs with mixed asynchronous time-varying delays.
By the Lyapunov function method, some algebra conditions are given to make the inves-
tigated model have a unique and global exponential asymptotically stable balance point.
Meanwhile, we also show that the balance point of the neural networks with distribu-
tive asynchronous time-varying delays is different from that without distributed delays.
Finally, one numerical example and its simulation are given to demonstrate the effective-
ness of our results. The considered neural networks in this paper can be further discussed
as regards their discrete-time analogue, and also can be investigated as regards their dy-
namical characteristics by adding pulses.
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