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Abstract
In this paper, we show a zero-Hopf bifurcation in a four-dimensional smooth
quadratic autonomous hyperchaotic system. Using averaging theory, we prove the
existence of periodic orbits bifurcating from the zero-Hopf equilibrium located at the
origin of the hyperchaotic system, and the stability conditions of periodic solutions
are given.
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1 Introduction
Chaos is a complex dynamic phenomenon in nonlinear dynamical system, which exists
widely in nature. Chaos theory and its application have aroused great interest of schol-
ars in various fields. Most of the research objects are three-dimensional chaotic systems,
the biggest feature is that there is only a positive Lyapunov exponent, which reflects that
the trajectory of the nonlinear system only generates instability (divergence or expansion)
in a certain direction, and develops exponentially. However, there are high-dimensional
nonlinear systems in a wide range of the fields of nature, social sciences, engineering, etc.
These systems may have two or more positive Lyapunov exponents, which is why they are
called hyperchaotic. Compared with chaotic motion, hyperchaotic motion is more com-
plicated and has more advantages in engineering and scientific applications. Therefore,
hyperchaotic systems have greater research value and prospects.

Over the years, scholars have done some research on hyperchaos in nonlinear circuits,
secure communications, lasers, kolpoz oscillators, control and synchronization [1–5]. In
1979, Rössler presented the concept of hyperchaos in his speech on applied mathematics,
and proposed the Rössler hyperchaos system [6]. The precise definition of hyperchaotic
system includes: (i) autonomous differential equations with at least four phase spaces; (ii)
dissipative structure; (iii) at least two unstable directions, of which at least one direction is
nonlinear [7]. Due to the multiple positive Lyapunov exponents produced by hyperchaotic
systems, its dynamic characteristics are difficult to predict and control. This characteris-
tic is widely used in communication systems by scholars [8]. In 1999, Meyer et al. studied
the hyperchaotic property of generalized Rössler system [9]. In 2005, based on the Chen
system, Chen et al. proposed the hyperchaotic Chen system [10]. In 2016, based on the
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Lorenz system, Zarei et al. proposed a new four-dimensional quadratic autonomous hy-
perchaotic attractor. It can generate double-wing chaotic and hyperchaotic attractors with
only one equilibrium point [11]. In 2017, Zhou et al. proposed a four-dimensional smooth
quadratic autonomous hyperchaotic system with complex dynamics, and analyzed the sta-
bility of the hyperchaotic system, pitchfork bifurcation, Hopf bifurcation and other local
dynamics problems by using the central manifold theorem and bifurcation theory [12]. In
2019, Rajagopal et al. proposed an improved hyperchaotic van der Pol–Duffing snap os-
cillator. Using a Lyapunov exponent, equilibrium point stability analysis and bifurcation
diagram, various dynamic properties of the system were studied [13].

Under certain conditions, some complex invariant sets can be separated from the iso-
lated zero-Hopf equilibrium point, so in some cases, the zero-Hopf equilibrium point may
mean the generation of local chaos. There have been many studies on zero-Hopf bifurca-
tion of three-dimensional systems. In 2014, by using the averaging theory, Garcia et al. pro-
vided an analytic proof of the existence of zero-Hopf bifurcation in systems with two slow
speeds and one fast variable, and to describe the stability or instability of periodic orbits in
such zero-Hopf bifurcation [14]. In 2017, Ginoux et al. used the second-order averaging
theory to prove that there are two types of zero-Hopf bifurcation in the predator–prey
Volterra–Gauss system under different parameters. Under the first parameter condition,
the system has a periodic orbit, and under the second parameter condition, the system
has five periodic orbits [15]. In 2018, Li et al. considered the existence of zero-Hopf bi-
furcation and periodic solutions for the improved Chua system by applying the averag-
ing theory [16]. In 2018, Salih studied the zero-Hopf bifurcation of the three-dimensional
Lotka–Volterra systems [17]. In 2018, Candido et al. studied the zero-Hopf bifurcation of
16 three-dimensional differential systems without equilibrium by using the averaging the-
ory [18]. However, due to the higher dimension and complexity of hyperchaotic systems,
few scholars are currently engaged in the analysis of hyperchaotic theory, there is still very
little work done on zero-Hopf bifurcation for n-dimensional systems with n ≥ 4. In 2014,
Lorena et al. studied the zero-Hopf bifurcation of a class of Lorenz hyperchaotic systems
and the generation of periodic solutions with the change of parameters, which was the
first work on the zero-Hopf bifurcation problem in four-dimensional systems [7]. In 2015,
Maza studied the zero-Hopf bifurcation of hyperchaotic Chen system, and proved that
hyperchaotic Chen system has two periodic orbits at the zero-Hopf equilibrium point by
using the averaging theory [19]. In 2017, Chen et al. studied zero-Hopf bifurcation of gen-
eralized Lorenz–Stenflo hyperchaotic system and obtained two periodic solutions gener-
ated from bifurcation points [20].

In order to fully understand the dynamics of a system, it is necessary to study its pe-
riodic solutions. In recent years, scholars have studied the periodic solutions of many
classical systems. In 2017, Liu et al. studied the existence of periodic solutions for the
Newtonian equation of motion with p-Laplacian operator by asymptotic behavior of po-
tential function [21]. In 2018, Wang et al. considered the existence of periodic solutions
for a non-autonomous second-order Hamiltonian systems [22]. In 2018, Wang et al. stud-
ied the multiplicity of periodic solutions of one kind of planar Hamiltonian systems with a
nonlinear term satisfying semi-linear conditions [23]. In 2019, Chiraz proved the existence
of periodic solutions for some non-densely non-autonomous delayed partial differential
equations [24].
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In this paper, from the perspective of local dynamics, a four-dimensional smooth
quadratic autonomous hyperchaotic system [12] is studied:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ = a(y – x),

ẏ = bx – y – xz + u,

ż = –cz + xy,

u̇ = –du – jx + exz,

(1)

where a, b, c, d, j, e are real parameters.
The system (1) is constructed by adding one state variable to the well-known Lorenz

system, which has rich and complex dynamic behaviors. With the change of parameters,
the system can evolve into periodic, quasi-periodic, chaotic and hyperchaotic states, and
attractors in these states are different from ordinary attractors. In this paper, we study
the zero-Hopf bifurcation of the system (1) at equilibrium point, and the generation of
periodic solutions as parameters change.

2 Zero-Hopf bifurcation analysis
We can verify that, for any choice of the parameters, E0(0, 0, 0, 0) is always an equilibrium
point for the hyperchaotic system (1). Moreover, when c = 0, system (1) has a line equilib-
rium (0, 0, z, 0); when –c(d+j–bd)

d–e > 0, system (1) has a pair of symmetrical equilibria:

E1

(√
–c(d + j – bd)

d – e
,
√

–c(d + j – bd)
d – e

, –
d + j – bd

d – e
, –

√
–c(d + j – bd)

d – e
e + j – be

d – e

)

,

E2

(

–
√

–c(d + j – bd)
d – e

, –
√

–c(d + j – bd)
d – e

, –
d + j – bd

d – e
,
√

–c(d + j – bd)
d – e

e + j – be
d – e

)

.

In the next theorem, we will give the zero-Hopf equilibrium point of the system (1).

Theorem 1 The hyperchaotic system (1) has a zero-Hopf equilibrium localized at equilib-
rium E0 if the following conditions are satisfied: a = –1, 1 – b < 0, c = j = d = 0. Moreover,
the eigenvalues at E0 for the parameter conditions are 0, 0, ±√

b – 1i.

In the rest of this section, we will study the zero-Hopf bifurcation and periodic solutions
of the hyperchaotic system (1) at the equilibrium point E0.

Theorem 2 For c �= 0, j �= 0, d �= 0, e �= 0, b > 1, we consider the hyperchaotic system (1) with
a = –1 + εa1, c = εc1, j = εj1, d = εd1, where ε > 0 is a sufficiently small parameter and a1,
c1, j1, d1 are nonzero real parameters. The following statements hold.

(i) If a1 �= d1, c1(a1(b–1)2–j1)
e > 0, the system(1) has a zero-Hopf bifurcation and produces a

periodic solution εΦ1(t, ε) at the equilibrium point E0. Moreover, the periodic
solution εΦ1(t, ε) is stable if a1 < d1, c1 > 0, 4j1 + (–4a1 + c1)(b – 1)2 > 0,
j1 – a1(b – 1)2 < 0; or a1 < d1, c1 > 0, 4j1 + (–4a1 + c1)(b – 1)2 < 0.

(ii) If a1 �= d1, c1(d1(b–1)2–j1)
e > 0, the system (1) has a zero-Hopf bifurcation and produces

two periodic solutions εΦ2(t, ε), εΦ3(t, ε) at the equilibrium point E0. Moreover, the
periodic solutions εΦ2(t, ε) and εΦ3(t, ε) are stable if a1 < d1, c1 > 0,
–8j1 + (8d1 + c1)(b – 1)2 > 0, –j1 + d1(b – 1)2 < 0; or a1 < d1, c1 > 0,
–8j1 + (8d1 + c1)(b – 1)2 < 0.
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3 Averaging theory of periodic orbits
The averaging theory is a classical and mature tool for studying the dynamic behavior of
nonlinear dynamical systems, especially for the study of periodic solutions. In recent years,
it has been improved and applied well. The classical averaging theory [25] is as follows.

Consider differential system:

ẋ = εF(t, x) + ε2G(t, x, ε), (2)

with x ∈ D, where D is an open subset of Rn, t ≥ 0. We assume that F(t, x) and G(t, x, ε)
are T-periodic in t. We define the averaged function

f (x) =
1
T

∫ T

0
F(t, x) dt. (3)

Theorem 3 Make the following assumptions:
(i) F , its Jacobian ∂F/∂x and its Hessian ∂2F/∂x2; G, its Jacobian ∂G/∂x are defined,

continuous and bounded by a constant independent of ε in [0,∞) × D and ε ∈ (0, ε0].
(ii) T is a constant independent of ε.

Then the following conclusions can be obtained:
(a) If p is the zero of the averaged function f (x), and

det

(
∂f
∂x

)∣
∣
∣
∣

x=p
�= 0, (4)

then there exists a T-periodic solution x(t, ε) of system (2) such that x(0, ε) → p as
ε → 0.

(b) If the eigenvalue of the Jacobian matrix ( ∂f
∂x ) has a negative real part, the periodic

solution x(t, ε) is asymptotically stable.

4 Proofs
In this section we will provide the proofs of Theorem 1 and Theorem 2.

Proof of Theorem 1 The characteristic equation at the equilibrium point E0 is obtained:

λ4 + (1 + a + c + d)λ3 + (a – ab + c + ac + d + ad + cd)λ2

+ (ac – abc + ad – abd + cd + acd + aj)λ + acd – abcd + acj = 0. (5)

When a = –1, 1 – b < 0, c = j = d = 0, Eq. (5) has roots λ1 = λ2 = 0, λ3,4 = ±√
b – 1i. That is,

the equilibrium point E0 is a zero-Hopf equilibrium of the hyperchaotic system (1).
Theorem 1 is proved. �

Proof of Theorem 2 Let b – 1 = ω2, where ω > 0. Then, by a = –1 + εa1, c = εc1, j = εj1,
d = εd1, b – 1 = ω2, the hyperchaotic system (1) can be written as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ = –(y – x) + εa1(y – x),

ẏ = (ω2 + 1)x – y + u – xz,

ż = –εc1z + xy,

u̇ = –εj1x – εd1u + exz.

(6)
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Furthermore, we rescale the variables. Let x = ε̃x, y = ε̃y, z = ε̃z, u = εũ, and denoting
again the variables (̃x, ỹ, z̃, ũ)T by (x, y, z, u)T , then system (6) will be changed to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ = –(y – x) + ε(a1(y – x)),

ẏ = (ω2 + 1)x – y + u – εxz,

ż = ε(–c1z + xy),

u̇ = ε(–j1x – d1u + exz).

(7)

Now we shall write the linear part at the origin of the system (7) when ε = 0 into its real
Jordan normal form, i.e. as

⎛

⎜
⎜
⎜
⎝

0 –ω 0 0
ω 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎟
⎠

.

For doing that we consider the linear change

x = –
Z
ω2 +

Xω + Y
1 + ω2 , y = Y –

Z
ω2 , z = U , u = Z. (8)

By using the new variables (X, Y , Z, U), the system (7) can be written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ = –Yω + ε( –ω2(1+ω2)(d1Z+a1ω)(–X+Yω)+j1(–ω2(Y +Xω)+Z(1+ω2))
ω3+ω5

+ (e–1)(ω2(Y +Xω)+Z(1+ω2))U
ω3+ω5 ),

Ẏ = Xω + ε( j1(–ω2(Y +Xω)+Z(1+ω2))+e(ω2(Y +Xω)+Z(1+ω2))U
ω4+ω6

– ω2(Y +Xω)U+(d1Z–UZ)(1+ω2)
ω2+ω4 ),

Ż = ε( j1(–ω2(Y +Xω)+Z(1+ω2))+e(ω2(Y +Xω)+Z(1+ω2))U–d1Zω2(1+ω2)
ω2+ω4 ),

U̇ = ε( –c1U(ω4+ω6)+(Z–Yω2)(–ω2(Y +Xω)+Z(1+ω2))
ω4+ω6 ).

(9)

Then we use the cylindrical coordinates X = r cos θ , Y = r sin θ , and obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ = ε

ω4+ω6 (rω4(a1 – j1 + U – eU + a1ω
2) cos θ2 – rω2(j1 + U(e + ω2)) sin θ2

+ Z(1 + ω2)(j1 + eU + (–d1 + U)ω2) sin θ – ω cos θ (U(–1 + 2e + ω2) sin θ

+ rω2(2j1 + a1ω
2(1 + ω2)) + Z(1 + ω2)(–j1 + U – eU + d1ω

2))),
θ̇ = ω + ε

r(ω4+ω6) (–rω3(j1 + U(e + ω2)) cos θ2 + ω sin θ (Z(1 + ω2)(–j1 + U – eU
+ d1ω

2) + rω2(j1 + (–1 + e)U + a1ω
2(1 + ω2)) sin θ ) + cos θ (Z(1 + ω2)(j1 + eU

+ (–d1 + U)ω2) – rω2(j1 – j1ω2 + ω2(a1 + 2U + a1ω
2) + e(U – Uω2)) sin θ )),

Ż = ε(–d1Z – (j1 + eU)( – Z
ω2 + rω cos θ+r sin θ

1+ω2 )),
U̇ = ε(–c1U + ( Z

ω2 – r sin θ )( – Z
ω2 + rω cos θ+r sin θ

1+ω2 )).

(10)
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We take θ as a new independent variable and obtain the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dr
dθ

= ε( 1
ω5+ω7 (rω4(a1 – j1 + U – eU + a1ω

2) cos θ2 – rω2(j1 + U(e + ω2)) sin θ2

+ Z(1 + ω2)(j1 + eU + (–d1 + U)ω2) sin θ – ω cos θ (Z(1 + ω2)(–j1 + U – eU
+ d1ω

2) + rω2(2j1 + a1ω
2(1 + ω2)) + U(–1 + 2e + ω2) sin θ ))) + o(ε2)

= εF1(θ , r, Z, U) + o(ε2),
dZ
dθ

= ε( 1
ω3+ω5 (Z(1 + ω2)(j1 + eU – d1ω

2) – rω2(j1 + eU)(ω cos θ + sin θ ))) + o(ε2)
= εF2(θ , r, Z, U) + o(ε2),

dU
dθ

= ε( –c1U
ω

+ (Z–rω2 sin θ )(Z+Zω2–rω2(ω cos θ+sin θ ))
ω5+ω7 ) + o(ε2)

= εF3(θ , r, Z, U) + o(ε2).

(11)

Using the notation of averaging theory introduced in Theorem 3, we get t = θ , T = 2π ,
x = (r, Z, U) and

F(θ , r, Z, U) =

⎛

⎜
⎝

F1(θ , r, Z, U)
F2(θ , r, Z, U)
F3(θ , r, Z, U)

⎞

⎟
⎠ , f (r, Z, U) =

⎛

⎜
⎝

f1(r, Z, U)
f2(r, Z, U)
f3(r, Z, U)

⎞

⎟
⎠ .

Then we compute the integrals, i.e.

f1(r, Z, U) =
1

2π

∫ 2π

0
F1(θ , r, Z, U) dθ = –

r(j1 + eU – a1ω
2)

2ω3 ,

f2(r, Z, U) =
1

2π

∫ 2π

0
F2(θ , r, Z, U) dθ =

Z(j1 + eU – d1ω
2)

ω3 ,

f3(r, Z, U) =
1

2π

∫ 2π

0
F3(θ , r, Z, U) dθ =

–2c1U + 2Z2

ω4 + r2

1+ω2

2ω
.

Solving the equations f1(r, Z, U) = f2(r, Z, U) = f3(r, Z, U) = 0, we can get the following four
solutions:

s0 = (0, 0, 0),

s1 =
(√

2c1(1 + ω2)(a1ω2 – j1)
e

, 0,
a1ω

2 – j1
e

)

,

s2 =
(

0,ω2

√
c1(d1ω2 – j1)

e
,

d1ω
2 – j1
e

)

,

s3 =
(

0, –ω2

√
c1(d1ω2 – j1)

e
,

d1ω
2 – j1
e

)

.

Finally, we analyze these four solutions, respectively.
(I) For the first solution s0, it has the Jacobian

det

(
∂f
∂x

(s0)
)

= 0.

Then, by Theorem 3, we know the periodic solution cannot be determined.
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(II) For the second solution s1, when c1(a1ω2–j1)
e > 0, s1 is a real solution. The solution s1

has the Jacobian

det

(
∂f
∂x

(s1)
)

=
c1(a1ω

2 – j1)(a1 – d1)
ω5 .

When a1 �= d1, det( ∂f
∂S (s1)) �= 0. Then according to Theorem 3, we see that the system

(11) has a periodic solution x1(θ , ε) such that x1(0, ε) = s1 + o(ε). Bring the solution
back to the system (9), and we have a periodic solution
Φ1(t, ε) = (X(t, ε), Y (t, ε), Z(t, ε), U(t, ε)). Then the system (6) has a periodic solution
(x(t, ε), y(t, ε), z(t, ε), u(t, ε)) = ε(X(t, ε), Y (t, ε), Z(t, ε), U(t, ε)) = εΦ1(t, ε).

To determine the stability of the periodic solution εΦ1(t, ε), we calculate the eigenvalues
of the Jacobian matrix ∂f

∂x (s1). The eigenvalues are given as follows:

λ1 =
a1 – d1

ω
, λ2,3 =

–c1ω ± √
c1(4j1 + (–4a1 + c1)ω2)

2ω2 .

Now we discuss the stability of the periodic solution when the eigenvalues are real and
imaginary, respectively, and obtain the following solutions.

(i) When c1(4j1 + (–4a1 + c1)(b – 1)2) > 0, λ2 and λ3 are real. In this case, the periodic
solution εΦ1(t, ε) is stable if a1 < d1, c1 > 0, j1 – a1(b – 1)2 < 0.

(ii) When c1(4j1 + (–4a1 + c1)ω2) < 0, λ2 and λ3 are imaginary. In this case, the periodic
solution εΦ1(t, ε) is stable if a1 < d1, c1 > 0.

(iii) For the solutions s2 and s3, when c1(d1ω2–j1)
e > 0, s2, s3 are real solutions. The

solution s2 and s3 have the same Jacobian

det

(
∂f
∂x

(s2)
)

= det

(
∂f
∂x

(s3)
)

=
c1(d1ω

2 – j1)(–a1 + d1)
ω5 .

When a1 �= d1, det( ∂f
∂x (s2, s3)) �= 0. According to the averaging theory, if there exists

r = εr1 + o(ε2) > 0, then system (11) has two additional periodic solutions x2(θ , ε),
x3(θ , ε) such that x2(0, ε) = s2 + o(ε), x3(0, ε) = s3 + o(ε). Bring the solutions back to
the system (9), and we have two periodic solutions
Φ2(t, ε) = (X(t, ε), Y (t, ε), Z(t, ε), U(t, ε)), Φ3(t, ε) = (X(t, ε), Y (t, ε), Z(t, ε), U(t, ε)).
Then the system (6) has the periodic solutions εΦ2(t, ε), εΦ3(t, ε).

After calculation, we see that the Jacobian matrices ∂f
∂x (s2), ∂f

∂x (s3) have the same eigen-
values. The eigenvalues are given as follows:

λ1 =
a1 – d1

2ω
, λ2,3 =

–c1ω ± √
c1(–8j1 + (8d1 + c1)ω2)

2ω2 .

Similarly, we discuss the case where the eigenvalues are real and imaginary, respectively.
Then we arrive at the following conclusions.

(i) When c1(–8j1 + (8d1 + c1)(b – 1)2) > 0, λ2 and λ3 are real. In this case, the periodic
solutions εΦ2(t, ε), εΦ3(t, ε) are stable if a1 < d1, c1 > 0, –j1 + d1(b – 1)2 < 0.

(ii) When c1(–8j1 + (8d1 + c1)(b – 1)2) < 0, λ2 and λ3 are imaginary. In this case, the
periodic solutions εΦ2(t, ε), εΦ3(t, ε) are stable if a1 < d1, c1 > 0.

Theorem 2 is proved. �
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5 Conclusion
Four-dimensional hyperchaotic systems have complex dynamic behavior and are widely
used. In this paper, we study a four-dimensional smooth quadratic autonomous hyper-
chaotic system, and we prove that the system has a zero-Hopf bifurcation at the origin
of coordinates. The existence of periodic solutions of the system is proved by the classi-
cal averaging method, and the stability conditions of periodic solutions are given. In fact,
there are many other rich dynamic properties of this hyperchaotic system that are not fully
exploited. We hope to have other discoveries about this system in the future work.
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