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Abstract
In many areas, researchers might think that a differential equation model is required,
but one might be forced to use an approximate difference equation model if data is
only available at discrete points in time. In this paper, a detailed comparison is given
of the behavior of continuous and discrete models for two representative time-delay
models, namely a model for HIV and an extended logistic growth model. For each
model, there are seven different time-delay versions because there are seven different
positions to include time delays. For the seven different time-delay versions of each
model, proofs are given of necessary and sufficient conditions for the existence and
stability of equilibrium points and for the existence of Andronov–Hopf bifurcations in
the differential equations and Neimark–Sacker bifurcations in the difference
equations. We show that only five of the seven time-delay versions have bifurcations
and that all bifurcation versions have supercritical limit cycles with one having a
repelling cycle and four having attracting cycles. Numerical simulations are used to
illustrate the analytical results and to show that critical times for Neimark–Sacker
bifurcations are less than critical times for Andronov–Hopf bifurcations but converge
to them as the time step of the discretization tends to zero.
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1 Introduction
In recent years, time-delay differential equation and difference equation models have been
studied by many authors (see, e.g., [1–16]) as they are useful tools for modeling a wide va-
riety of systems in areas including traditional areas such as physics and engineering and
newer areas such as disease transmission, medical research, optimal drug treatment, bioe-
conomics, agriculture, finance, insurance, and environmental protection. In many of these
time-delay models, bifurcations occur as values of parameters are changed. For example,
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Andronov–Hopf bifurcations can occur in differential equation systems and Neimark–
Sacker bifurcations can occur in difference equation systems at critical values of time de-
lays. In some cases, the changes in system parameters can also lead to chaotic-type solu-
tions (see, e.g. [17, 18]).

In many applications, the preferred model is a differential equation model. However, as
the growth rate of diseases (such as HIV) or other kinds of populations (such as fish or an-
imal populations) can be a slow process or the collection of data may often only be carried
out at regular intervals such as a month or a year, it is often only possible to construct dif-
ference equation models. One method that is often used to construct a difference equation
model is to use a first-order Euler method to approximate the differential equation model
[1, 2, 19–22]. This method is also often used to solve Itó stochastic differential equations
as, for example, in the Euler–Mayurama method [1, 23].

As stated above, an important property of many time-delay differential equation mod-
els is that they have Andronov–Hopf bifurcations and an important property of many
time-delay difference equation models is that they have Neimark–Sacker bifurcations [24].
Because difference equation models are often used to approximate differential equation
models, we believe that it is important to study the relationship between the bifurcations
in the differential equations and the approximating difference equations.

In this paper, we analyze the bifurcation properties of one-dimensional time-delay dif-
ferential equation models and the corresponding discrete models obtained by the forward
Euler approximation. As examples, we consider time-delay versions of two systems. The
first system is a model discussed by Roberts and Saha [25] and Ding et al. [26] for trans-
mission of HIV in a human population. This model includes the effects of vertical HIV
transmission from mother to baby, the effects of births and deaths and of treatment by
antivirals. The second system is an extended logistic growth model (ELM) that has been
applied to forecasting short lifecycle products and services by Trappey and Wu [27], and
to growth of single-species populations by He et al. [1] and Sakanoue [28].

For both the HIV and the ELM models, there are seven different versions of time-delay
models that can be created from the original models. For each model, we first investigate
the properties of the seven different versions of differential equation models and prove
conditions for the existence and stability of equilibrium points and for the existence of
Andronov–Hopf bifurcations at critical values of the time delays. We then investigate the
properties of discretized versions of the models and prove conditions for the existence
and stability of equilibrium points and for the existence of Neimark–Sacker bifurcations
at critical values of the time delays. We show that both differential equation and difference
equation models may have bifurcations from both disease-free and endemic equilibrium
points. For the disease-free equilibrium, four of the seven different versions satisfy the
bifurcation conditions, and for the endemic equilibrium five of the seven versions have
bifurcations. For the bifurcations from the endemic equilibrium points, we show that for
each version with bifurcations the critical delay times for Neimark–Sacker bifurcations
are less than the critical times for Andronov–Hopf bifurcations but converge to them as
the time step of the discretization in the discretized model tends to zero. Numerical sim-
ulations are presented for a range of parameter values to illustrate the analytical results.
Applications of the results are given to the modeling of HIV transmission and to the mod-
eling of populations.
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2 Differential equation models
In this section, we describe the differential equation models for HIV and extended logistic
growth (ELM) that we study in this paper.

2.1 HIV models
Many researchers have developed mathematical models to study the transmission of HIV
at either the CD4+ T-cell level (see, e.g., [3, 4, 7, 29–33]) or at the population level (see,
e.g., [25, 26, 34, 35]). In the present research, we study a model for transmission of HIV at
the population level originally proposed by Roberts and Saha [25] as a general epidemic
model, and later developed by Ding et al. [26] as a stochastic differential equation model
for the progression to AIDS in a population infected with HIV. The nonlinear, logistic-
type, differential equation model discussed by Ding et al. is as follows (see also [35]):

dx(t)
dt

= (p – 1)Bx(t) + (βC – α)x(t)
(
1 – x(t)

)
, (1)

where x(t) is the proportion of the total population that is infected by HIV at time t, p
(0 < p < 1) is the vertical transmission probability (the fraction of babies born with HIV
infection), B is the birth rate for the population, β is the transmission rate on contact
between an infected and an uninfected individual, C is the contact rate between infected
and uninfected individuals, and α is the increase of the death rate due to the HIV infection.

The development of antiretroviral therapy using reverse transcriptase inhibitors (RTI)
and protease inhibitors (PI) has been shown to be an effective method of controlling the
spread of HIV by depressing the level of virus in an HIV+ person below a detectable level
[29–33, 36] and to effectively stop transmission of HIV from an HIV+ person to an unin-
fected person [37–42]. In the present model, we assume that the effects of both the RTI
and the PI can be included in the model in (1) as factors reducing the value of β (the rate
of infection on contact) and p (the vertical transmission probability). Following Darlai et
al. [35], we assume that

β = (1 – nav)β0, p = (1 – nav)p0, (2)

where nav is an antiretroviral therapy factor (0 ≤ nav < 1) and β0 and p0 are, respectively,
the infection rate of a susceptible person and the vertical transmission probability in the
absence of antiretroviral therapy.

For simplicity, we rewrite (1) as

dx(t)
dt

= –δx(t) + εx(t)
(
1 – x(t)

)
, (3)

where δ = (1 – p)B > 0 and ε = βC – α > 0. Equation (3) is the well-known logistic equation
model with an added death rate term –δx(t).

2.2 Extended logistic growth models
As stated previously, extended logistic growth models have been applied to forecasting
short lifecycle products and services by Trappey and Wu [27], and to growth of single-
species populations by Sakanoue [28].
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Table 1 Time-delay differential equation models

Version HIV

1: dnn dx(t)
dt = –δx(t – τ ) + εx(t)[1 – x(t)]

2: ndn dx(t)
dt = –δx(t) + εx(t – τ )[1 – x(t)]

3: nnd dx(t)
dt = –δx(t) + εx(t)[1 – x(t – τ )]

4: ddn dx(t)
dt = –δx(t – τ ) + εx(t – τ )[1 – x(t)]

5: dnd dx(t)
dt = –δx(t – τ ) + εx(t)[1 – x(t – τ )]

6: ndd dx(t)
dt = –δx(t) + εx(t – τ )[1 – x(t – τ )]

7: ddd dx(t)
dt = –δx(t – τ ) + εx(t – τ )[1 – x(t – τ )]

Version ELM

1: dnn dx(t)
dt = –rx(t – τ ) + βx(t)[1 – (x(t)/K )γ ]

2: ndn dx(t)
dt = –rx(t) + βx(t – τ )[1 – (x(t)/K )γ ]

3: nnd dx(t)
dt = –rx(t) + βx(t)[1 – (x(t – τ )/K )γ ]

4: ddn dx(t)
dt = –rx(t – τ ) + βx(t – τ )[1 – (x(t)/K )γ ]

5: dnd dx(t)
dt = –rx(t – τ ) + βx(t)[1 – (x(t – τ )/K )γ ]

6: ndd dx(t)
dt = –rx(t) + βx(t – τ )[1 – (x(t – τ )/K )γ ]

7: ddd dx(t)
dt = –rx(t – τ ) + βx(t – τ )[1 – [x(t – τ )/K )γ ]

In this paper, we study the extended logistic growth model discussed by He et al. [1]:

dx(t)
dt

= –rx(t) + βx(t)
[
1 –

(
x(t)/K

)γ ]
, (4)

where x(t) is the population at time t, and r is the natural death rate of the population
at low population levels. The parameters β , γ , K are positive parameters, where β is a
natural birth rate at low population levels, K is the “carrying capacity” of the system, and
the factor (x(t)/K)γ is the rate at which the birth rate decreases as x(t) → K . This reduction
in the birth rate could be due, for example, to factors such as overcrowding or limits in the
available food supply.

3 Time-delay differential equation models
In this paper, we extend the models in Eqs. (3) and (4) by introducing time delays into
the models. As shown in Table 1, there are seven time-delay versions of the two differen-
tial equation models. We use code “n” for no time delay and “d” for time delay. Then, for
example, “dnd” means time delays in positions 1 and 3 and no time delay in position 2.

Darlai et al. [35] have studied the Andronov–Hopf and Neimark–Sacker bifurcations in
HIV3:nnd and HIV7:ddd, and He et al. [1] have studied the Neimark–Sacker bifurcations
in ELM6:ndd.

4 Time-delay difference equation models
Using the first-order Euler method, we discretize the independent variable t with a step
size h, and replace a first-order system of differential equations of the form

dx
dt

= f
(
t, x(t)

)
, t ∈ [t0, T], x(t0) = x0 by

wn+1 = wn + hf (tn, wn), w0 = x0,
(5)

where tn = t0 + nh, n = 0, 1, 2, . . . , and wn = x(tn). The HIV and ELM difference equation
models for zero time delays can then be written in the form

HIV: wn+1 = wn – δhwn + εhwn(1 – wn),

ELM: wn+1 = wn – rhwn + βhwn[1 – (wn/K)γ ].
(6)

Note As in all difference equation approximations to differential equations, it is neces-
sary to check that the approximation is a numerically stable approximation to the original
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Table 2 Discrete time-delay equations for HIV and ELM

Version HIV

1: dnn wn+1 = wn – δhmτwn–m + εhmτwn(1 –wn)

2: ndn wn+1 = wn – δhmτwn + εhmτwn–m(1 –wn)

3: nnd wn+1 = wn – δhmτwn + εhmτwn(1 –wn–m)

4: ddn wn+1 = wn – δhmτwn–m + εhmτwn–m(1 –wn)

5: dnd wn+1 = wn – δhmτwn–m + εhmτwn(1 –wn–m)

6: ndd wn+1 = wn – δhmτwn + εhmτwn–m(1 –wn–m)

7: ddd wn+1 = wn – δhmτwn–m + εhmτwn–m(1 –wn–m)

Version ELM

1: dnn wn+1 = wn – rhmτwn–m + βhmτwn[1 – (wn/K )γ ]

2: ndn wn+1 = wn – rhmτwn + βhmτwn–m[1 – (wn/K )γ ]

3: nnd wn+1 = wn – rhmτwn + βhmτwn[1 – (wn–m/K )γ ]

4: ddn wn+1 = wn – rhmτwn–m + βhmτwn–m[1 – (wn/K )γ ]

5: dnd wn+1 = wn – rhmτwn–m + βhmτwn[1 – (wn–m/K )γ ]

6: ndd wn+1 = wn – rhmτwn + βhmτwn–m[1 – (wn–m/K )γ ]

7: ddd wn+1 = wn – rhmτwn–m + βhmτwn–m[1 – (wn–m/K )γ ]

differential equation. It is well known (see, e.g., [43]) that the forward Euler approximation
can be numerically unstable unless an upper limit is placed on the step size h. It is therefore
necessary to check that a Neimark–Sacker bifurcation corresponds to an Andronov–Hopf
bifurcation of the original differential equation model and that it is not a bifurcation aris-
ing from the instability of the forward-Euler method.

To obtain the first-order Euler approximations to the seven HIV and ELM time-delay
differential equations in Table 1, we assume that the time delay τ is divided into m equal
intervals. Then the step size is h = hmτ , where hm = 1/m, and we obtain the seven differ-
ence equations in Table 2. It can be seen that each of these Euler approximation equations
are difference equations of order m + 1.

5 Equilibrium points, stability and Andronov–Hopf bifurcations of differential
equation models

5.1 Equilibrium points
For each model, the equilibrium points x∗ for the differential equations (3) and (4), and the
seven time-delay differential equation versions in Table 1 are the same and are obtained by
setting dx

dt = 0. For each model, there is a trivial equilibrium point x∗ = 0 and an endemic
equilibrium point which exists only if x∗ > 0. The equilibrium points for the models are

HIV: x∗ = 0, x∗ = 1 –
δ

ε
= 1 –

1
R0

, R0 =
ε

δ
;

ELM: x∗ = 0, x∗ = K(1 –
r
β

)
1
γ = K(1 –

1
R0

)
1
γ , R0 =

β

r
.

(7)

For both models, the endemic equilbrium exists only if R0 > 1.

5.2 Local asymptotic stability
The conditions for local asymptotic stability of the equilibrium points can be obtained by
using a standard approach, such as the next-generation method [44], or by checking the
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Table 3 Values of ρ and η in linearized delay equations at equilibrium points

Version HIV: R0 = ε
δ ELM: Λ = β – r, R0 =

β
r

Disease-free Endemic Disease-free Endemic

ρ η ρ η ρ η ρ η

1: dnn ε δ 2δ – ε δ β r r – γΛ r
2: ndn –δ –ε –ε –δ –r –β –r – γΛ –r
3: nnd ε – δ 0 0 ε – δ β – r 0 0 γΛ

4: ddn 0 δ – ε –ε + δ 0 0 r – β –γΛ 0
5: dnd ε δ δ ε β r r r + γΛ

6: ndd –δ –ε –δ ε – 2δ –r –β –r –r + γΛ

7: ddd 0 δ – ε 0 ε – δ 0 r – β 0 γΛ

eigenvalues of the linearized system at the equilibrium points [45]. In this case, it is easy
to check the eigenvalues of the linearized equations about the equilibrium points.

We can obtain the linearized versions of the delay equations in Table 1 by defining per-
turbations y(t) = x(t) – x∗ and y(t – τ ) = x(t – τ ) – x∗. The linearized versions can then be
written in the standard form

dy
dt

= ρy(t) – ηy(t – τ ), (8)

where the ρ and η values for the linearized equations at the disease-free and endemic
equilibrium points are shown in Table 3.

As usual, we assume a trial solution y(t) = eλt . The characteristic equation from the trial
solution is then

λ = ρ – ηe–λτ . (9)

Then, if the real parts of all eigenvalues λ of (9) are negative, the general solution y(t) → 0
as t → ∞ and the equilibrium point x∗ is locally asymptotically stable.

Zero time delay. For both disease-free and endemic equilibrium points, the condition
for local asymptotic stability is λ = ρ –η < 0. For the HIV model, the stability condition for
the disease-free equilibrium becomes ρ – η = ε – δ < 0 and for the endemic equilibrium it
becomes ρ – η = δ – ε < 0. Therefore, the HIV disease-free equilibrium is locally asymp-
totically stable if ε – δ < 0, and the basic reproductive number is then R0 = ε

δ
< 1. Similarly,

the ELM disease-free equilibrium is locally asymptotically stable if β – r < 0, and the basic
reproductive number is R0 = β

r < 1.
Note that, for zero time delay, the disease-free equilibrium is locally asymptotically sta-

ble if R0 < 1 and unstable if R0 > 1, and that the endemic equilibrium exists only if R0 > 1.

5.3 Andronov–Hopf bifurcations of time-delay models
From bifurcation theory [24], Andronov–Hopf (or Hopf) bifurcations exist in an equilib-
rium solution if the eigenvalues λ of the linearized equation about the equilibrium solution
satisfy the Andronov–Hopf bifurcation theorem.

Theorem 1 (Andronov–Hopf bifurcation theorem) A system of time-delay ordinary dif-
ferential equations has an Andronov–Hopf bifucation point if the following conditions are
satisfied:
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(C1) There exists a critical value of the time delay τ = τc > 0 for which an eigenvalue
λc = iφc of the Jacobian of the linearized equations is purely imaginary, i.e. φc is real
and nonzero.

(C2) For τ = τc, all other eigenvalues have negative real parts, and for 0 < τ < τc, all
eigenvalues have negative real parts.

(C3) The derivative d(�(λ))
dτ

|τ=τc �= 0, where � denotes real part.

We first look for possible solutions of the characteristic equation (9) for the endemic
equilibrium that satisfy condition (C1) by looking for a purely imaginary solution λc = iφc

with φc > 0 for τ = τc > 0.

Lemma 1 Necessary and sufficient conditions for existence of purely imaginary solutions
λ = iφ of the characteristic equation λ = ρ –ηe–λτ satisfying condition (C1) for τ = τc > 0 and
φ = φc �= 0 are 1) η > 0 and 2) |ρ| < η. If these conditions are satisfied, then the corresponding
φc and τc values are given by

τc =
1
φc

cos–1(ρ/η) =
1
φc

sin–1(φc/η), φc = ±
√

η2 – ρ2. (10)

Note: Since complex solutions must exist in complex conjugate pairs, we will assume that
φc =

√
η2 – ρ2 > 0.

Proof Substituting λ = iφ into (9), separating real and imaginary parts, and solving for φ,
we obtain

ρ = η cos(φτ ), φ = η sin(φτ ), (11)

where φ =
√

η2 – ρ2 is real and nonzero if and only if |ρ| < |η|. Then, solving for τ in (11),
we obtain the expressions for τc in (10), and from the second expression for τc in (10), we
see that a real positive solution for τc exists if and only if η > 0.

The minimum value of τc satisfying Eq. (10) also satisfies condition (C1) and therefore
it is a possible Andronov–Hopf bifurcation point. �

Then, using the values of ρ and η for the HIV and ELM delay equations given in Ta-
ble 3, we find that, as shown in Table 4, possible Andronov–Hopf bifurcations can occur
from disease-free equilibrium states for four of the time-delay versions and from endemic
equilibrium states for five of the versions. However, we have found that bifurcations from
the disease-free states give limit cycles that contain negative population values. For these
“limit cycle” regions, the extra condition that the state variable cannot be negative must
be added to the mathematical model.

In the remainder of this paper, we will only consider bifurcations from endemic equilib-
rium states.

Lemma 2 If the necessary and sufficient conditions stated in Lemma 1 are satisfied for
an endemic equilibrium state, then the critical τc > 0 defined in Lemma 1 also satisfies
conditions (C2) and (C3) of the Andronov–Hopf bifurcation theorem.
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Table 4 Andronov–Hopf bifurcation conditions and values for τc in HIV and ELM delay models

Version Disease-free

HIV: R0 = ε
δ ELM: Λ = β – r, R0 =

β
r

Bifurcation τc Bifurcation τc

dnn R0 < 1 1
φc

cos–1( εδ ) R0 < 1 1
φc

cos–1( βr )

ε < δ φc =
√

δ2 – ε2 β < r φc =
√
r2 + β2

ndn No – No –

nnd No – No –

ddn R0 < 1 π
2φc

R0 < 1 π
2φc

ε < δ δ – ε β < r φc = r – β

dnd R0 < 1 1
φc

cos–1( εδ ) R0 < 1 1
φc

cos–1( βr )

ε > δ φc =
√

ε2 – δ2 β < r φc =
√
r2 + β2

ndd No – No –

ddd R0 < 1 π
2φc

R0 < 1 π
2φc

ε < δ φc = δ – ε β < r φc = r – β

Version Endemic

HIV: R0 = ε
δ ELM: Λ = β – r, R0 =

β
r

Bifurcation τc Bifurcation τc

dnn 1 < R0 < 3 1
φc

cos–1( 2δ–εδ ) 1 < R0 < 1 + 2
γ

1
φc

cos–1( r–γΛ
r )

δ < ε < 3δ φc =
√
4δε – ε2 – 3δ2 0 < γΛ < 2r φc =

√
2rγΛ + γ 2Λ2

ndn No – No –

nnd R0 > 1 π
2φc

R0 > 1 π
2φc

ε > δ φc = ε – δ Λ > 0 φc = γΛ

ddn No – No –

dnd R0 > 1 1
φc

cos–1( δε ) R0 > 1 1
φc

cos–1( r
r+γΛ )

ε > δ φc =
√

ε2 – δ2 Λ > 0 φc =
√

γ 2Λ2 + 2rγΛ

ndd R0 > 3 1
φc

cos–1( δ
ε–2δ ) R0 > 1 + 2

γ
1
φc

cos–1( r
γΛ–r )

ε > 3δ φc =
√

ε2 + 3δ2 – 4δε γΛ > 2r φc =
√

γ 2Λ2 – 2rγΛ

ddd R0 > 1 π
2φc

R0 > 1 π
2φc

ε > δ φc = ε – δ Λ > 0 φc = γΛ

Figure 1 Plots of real and imaginary parts of eigenvalues vs time delay τ for delay differential equation. The
vertical black line is at τ = τc

Proof Let λ = μ + iφ, where μ and φ are real, and we can assume that φ ≥ 0.
Note: An example of the variation of μ and φ as τ is increased that is used in this lemma

to prove condition (C2) is shown in Fig. 1. The real and imaginary parts of (9) are μ =
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ρ – ηe–μτ cos(φτ ), φ = ηe–μτ sin(φτ ), and the real and imaginary parts of the derivative of
the characteristic equation (9) with respect to τ can be written as:

dμ

dτ
=

1
�

ηe–μτ

(
μ

(
1 – τηe–μτ

)
– 2μ sin2

(
φτ

2

)
+ φ sin(φτ )

)
, (12)

dφ

dτ
=

1
�

ηe–μτ

(
φ
(
1 – τηe–μτ

)
– 2φ sin2

(
φτ

2

)
– μ sin(φτ )

)
, (13)

where

� =
∣∣1 – ητe–λτ

∣∣2 =
(
1 – τηe–μτ

)2 + 4τηe–μτ sin2
(

φτ

2

)
. (14)

Clearly, μ and φ are continuous functions of τ , but the derivatives can be discontinuous
if � = 0.

We consider three cases:
1. 1 – τηe–μτ > 0. At τ = 0, we have μ = ρ – η < 0 and φ = 0. Further, since μ < 0 and

� = 1 > 0, we have dμ

dτ
< 0 and dφ

dτ
= 0 at τ = 0. As τ increases, μ will decrease and

remain negative and φ will remain zero. Therefore, the eigenvalue will be real and
negative.

2. 1 – τηe–μτ = 0. Since μ < 0, this condition must occur at some point τ = τd > 0.
Also, since φ = 0 for τ < τd , � = 0 at τ = τd . The derivatives dμ

dτ
and dφ

dτ
will therefore

be discontinuous at τd . Then, since φ = 0 is actually an unstable solution of (13), the
discontinuity at τd will make φ become nonzero.

3. 1 – τηe–μτ < 0. As τ increases, φ becomes non-negative. If φ > 0, then, for τ in the
positive neighborhood of τd , we have μ < ρ – η < 0, and therefore for small φ, dφ

dτ
> 0

if φ > 0 and dφ

dτ
< 0 if φ < 0. Figure 1 shows the case of φ > 0.

In both cases, μ < 0 and therefore dμ

dτ
> 0 and μ increases monotonically until

μ = 0. At this point, we see that the Andronov–Hopf bifurcation condition (C1) will
be satisfied and we can identify the τ value as the critical value τc and the φ value as
the critical value φc defined in Lemma 1. Since μ < 0 for τ < τc, we have proved
condition (C2) for τc.

Finally, substituting μ = 0, φ = φc and τ = τc into (12) and (14), we have

dμ

dτ

∣
∣∣
∣
τ=τc

=
φ2

c
(1 – τcη)2 + 2τc(η – ρ)

. (15)

Since η – ρ > 0, the denominator is always positive and therefore condition (C3) is satis-
fied. Also, since dμ

dτ
|τ=τc > 0, the bifurcation will occur as τ increases to τc. The proof is

complete. �

Combining the results of Lemmas 1 and 2, we obtain the following theorem.

Theorem 2 Necessary and sufficient conditions for the existence of an Andronov–Hopf
bifurcation in the endemic equilibrium points in equation (8) are η > 0 and |ρ| < η. Then
the Andronov–Hopf bifurcation exists at a critical time delay:

τc =
1
φc

cos–1(ρ/η) =
1
φc

sin–1(φc/η), (16)

where φc =
√

η2 – ρ2. Further, the bifurcation occurs as τ increases through τc.
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6 Equilibrium points, stability and Neimark–Sacker bifurcations of difference
equation models

6.1 Equilibrium points and basic reproduction numbers
The equilibrium points w∗ for the difference equation models are obtained by setting
wn+1 = wn = wn–m = w∗ in equation (6). For each model, we obtain a trivial equilibrium
point w∗ = 0 and an endemic equilibrium point given by

HIV: w∗ = 0, w∗ = 1 –
δ

ε
; ELM: w∗ = 0, w∗ = K

(
1 –

r
β

) 1
γ

. (17)

For the HIV model, the endemic equilibrium exists only if ε > δ, and for the extended
logistic model, the endemic equilibrium exists only if β > r. The equilibrium points in (17)
are also equilibrium points for the differential equation models.

To obtain the basic reproductive numbers R0 for local stability of the disease-free equi-
librium points, we check the eigenvalues of the linearized system at the disease-free equi-
librium. We let yn = wn – w∗ and assume that yn is small. Then the linearized equations
are:

HIV: yn+1 =
(
1 – hm(δ – ε)

)
yn, ELM: yn+1 =

(
1 – hm(r – β)

)
yn. (18)

Therefore, the HIV disease-free equilibrium is locally asymptotically stable if |1 – hm(δ –
ε)| < 1, i.e., if R0 = ε

δ
< 1. Similarly, the ELM disease-free equilibrium is locally asymptoti-

cally stable if R0 = |1 – hm(r – β)| < 1, i.e., if R0 = β

r < 1.
Note that in both cases, the disease-free equilibrium is locally asymptotically stable if

R0 < 1, whereas the endemic equilibrium exists only if R0 > 1. Also, as noted in section (4),
the stability conditions for the numerical stability of the forward Euler approximation put
an upper limit on the step size h = hmτ in the difference equations (18).

6.2 Conditions for Neimark–Sacker bifurcations
We obtain the conditions for Neimark–Sacker bifurcations of the endemic equilibrium
solutions of the nonlinear HIV and ELM equations (18) from the linearized equations
about the endemic equilibrium points.

To obtain the linearized, time-delayed versions of the nonlinear difference equations,
we define yn+1 = wn+1 – w∗, yn = wn – w∗ and yn–m = wn–m – w∗. Then we obtain

yn+1 = yn + ρhmτyn – ηhmτyn–m, (19)

where ρ and η are constants and hm = 1/m. The values of these constants for the seven
linearized versions of the discrete HIV and ELM equations are the same as the values given
in Table 3 for the seven linearized versions of the HIV and ELM differential equations in
Table 1.

Then, assuming a trial solution of the form yn = λn for (19), we obtain the characteristic
equation, which it is convenient to write in the alternative forms

P1(λ) = λm(λ – 1) – hmτ
(
ρλm – η

)
= 0, (20)

P2(λ) = λ – 1 – hmτ
(
ρ – ηλ–m)

= 0, (21)
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P3(λ) = λ
1
2 – λ– 1

2 – hmτ
(
ρλ– 1

2 – ηλ–(m+ 1
2 )) = 0. (22)

From the real and imaginary parts of the characteristic equations in (20)–(22), we obtain
the conditions

mrm+1 cos
(
(m + 1)ω

)
= (m + ρτ )rm cos(mω) + ητ , (23)

mrm+1 sin
(
(m + 1)ω

)
= (m + ρτ )rm sin(mω), (24)

mrm+1 cos(ω) = (m + ρτ )rm + ητ cos(mω), (25)

mrm+1 sin(ω) = ητ sin(mω), (26)

mrm+1 cos

(
1
2
ω

)
= (m + ρτ )rm cos

(
1
2
ω

)
– ητ cos

((
m +

1
2

)
ω

)
, (27)

mrm+1 sin

(
1
2
ω

)
= –(m + ρτ )rm sin

(
1
2
ω

)
– ητ sin

((
m +

1
2

)
ω

)
. (28)

From bifurcation theory [24], the conditions for the existence of a Neimark–Sacker bifur-
cation are as follows.

Theorem 3 (Neimark–Sacker bifurcation theorem) A Neimark–Sacker bifurcation point
occurs if there exists a time delay τ = τc such that the eigenvalues λ(τ ) = r(τ )eiω(τ ) of a
linearized system of nonlinear difference equations satisfy the following conditions:

(C1) For τ = τc, there exists a complex conjugate pair of eigenvalues on the unit circle,
i.e., r(τc) = 1, λ(τc) = e±iωc and 0 < ω(τc) = ωc < π .

(C2) At τ = τc, all other eigenvalues are inside the unit circle and, for 0 < τ < τc, all
eigenvalues are inside the unit circle.

(C3) r′(τc) = dr(τ )
dτ

|τ=τc �= 0.
(C4) eikωc �= 1, for k = 1, 2, 3, 4.
(C5) �[e–iωc c1(τc)] �= 0, where c1(τc) is a critical function that determines the direction

and stability of Neimark–Sacker bifurcations (see, e.g., [19, 24] and the section on
direction and stability of the Neimark–Sacker bifurcations, Sect. 7).

If the condition (C5) of the Neimark–Sacker theorem is satisfied, then an invariant closed
curve, topologically equivalent to a circle, will occur for τ in a one sided neighborhood of τc.
The radius of the invariant curve will grow like O(

√|τ – τc|). One of the four cases below
applies:

1. r′(τc) > 0. The endemic equilibrium point is locally asymptotically stable for τ < τc

and unstable for τ > τc.
(a) �[e–iωc c1(τc)] < 0. An attracting invariant closed curve exists for τ > τc.
(b) �[e–iωc c1(τc)] > 0. A repelling invariant closed curve exists for τ > τc.

2. r′(τc) < 0. The endemic equilibrium point is unstable for τ < τc and locally
asymptotically stable for τ > τc.
(a) �[e–iωc c1(τc)] < 0. An attracting invariant closed curve exists for τ < τc.
(b) �[e–iωc c1(τc)] > 0. A repelling invariant closed curve exists for τ < τc.

We first look for solutions of the characteristic equations (20)–(22) that satisfy condition
(C1) of Theorem 3.
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Lemma 3 A complex conjugate pair of eigenvalues of the characteristic equations (20)–
(22) lie on the unit circle with λ = eiωc for a positive value of the delay τ if the following
conditions are satisfied:

1. A positive real solution ω = ωc, 0 < ωc < π , exists for the equation

R(ω) = ρ cos

(
1
2
ω

)
– η cos

((
m +

1
2

)
ω

)
= 0. (29)

2. A positive value of τ = τc exists such that τc = τ1(ωc) = τ2(ωc) = τ3(ωc), where

τ1(ω) =
m
ρ

(
sin((m + 1)ω)

sin(mω)
– 1

)
=

2m cos((m + 1
2 )ω) sin( 1

2ω)
ρ sin(mω)

,

τ2(ω) =
2m sin2( 1

2ω)
η cos(mω) – ρ

, τ3(ω) =
m sin(ω)
η sin(mω)

.

(30)

Note: Since any complex eigenvalues must occur in complex conjugate pairs, existence of an
eigenvalue with ω = ωc > 0 implies existence of an eigenvalue with ω = –ωc < 0.

Proof Taking the real part of the characteristic equation P3(λ) = 0 in (22) for λ = e±iω , we
obtain the condition in (29). Then, taking the imaginary part of P1(λ) = 0, and the real and
imaginary parts of P2(λ) = 0, for λ = e±iω , we obtain the formulas for τ1(ω), τ2(ω), τ3(ω) in
(30). Therefore, if conditions 1 and 2 of the lemma are satisfied, then λc = eiωc is a solution
of the characteristic equations in (20)–(22) for a real positive value of the time delay. �

We now prove the following lemma.

Lemma 4 Necessary and sufficient conditions for the critical value τc > 0 defined in
Lemma 3 to exist are: |ρ| < η and η > 0.

Proof If λ = r for real r, then the characteristic equation P2(λ) = 0 in (21) is m(r – 1) =
τ (ρ – ηr–m). Then, differentiating this equation with respect to τ , we have

dr
dτ

=
ρ – η

m(1 – ητ )
. (31)

For τ = 0, a real solution of the characteristic equation m(r – 1) = τ (ρ – ηr–m) is r = 1 and,
at r = 1, the derivative dr

dτ
= ρ–η

m . Therefore, if ρ – η ≥ 0, then a real eigenvalue will remain
on or move outside the unit circle for τ > 0, and hence τc cannot be a Neimark–Sacker
bifurcation point. Therefore, ρ – η < 0 is a necessary condition for real eigenvalues to lie
inside the unit circle in the positive neighborhood of τ = 0.

We next prove that necessary and sufficient conditions for τc > 0 to exist are that
η2 – ρ2 > 0. From the formulas for τ2(ωc) and τ3(ωc) in (30) and the condition that 0 < ωc <
π , it can be seen that necessary conditions for τ2(ωc) and τ3(ωc) to be positive are that
sin(ωc) > 0 and sin( 1

2ωc) > 0. Therefore, necessary conditions for τc = τ2(ωc) = τ3(ωc) > 0 to
exist are

η cos(mωc) > ρ, η sin(mωc) > 0, and therefore η2 > ρ2. (32)
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Next, if ρ – η < 0 and η2 – ρ2 > 0, then ρ + η > 0. Then, since ρ – η < 0 and ρ + η > 0, it is
necessary that η > 0 and |ρ| < η.

We now prove that the conditions are sufficient. In Eq. (29), the function R(ω) is a con-
tinuous function of ω for 0 ≤ ω ≤ π . We have R(0) = ρ – η < 0 and R( 2π

2m+1 ) = ρ cos( π
2m+1 ) +

η > 0. Therefore, from the intermediate value theorem of elementary calculus, R(ω) = 0
for at least one ω ∈ (0, 2π

2m+1 ).
Therefore, from Lemma 3, τ = τc exists and satisfies condition (C1) of the Neimark–

Sacker theorem. The proof is complete �

We now prove condition (C2).

Lemma 5 If the necessary and sufficient conditions stated in Lemma 4 are satisfied, then
the critical τc > 0 defined in Lemma 3 also satisfies condition (C2) of the Neimark–Sacker
bifurcation theorem.

Note: An example of the variation of r and ω as τ is increased that is used in this lemma
to prove condition (C2) is shown in Fig. 2.

Proof Let λ = reiω , where r ≥ 0 and ω �= 0 are real. Also, since any complex eigenvalues
must occur in complex conjugate pairs, we can assume that 0 < ω < π .

Then, differentiating Eqs. (23) and (24) with respect to τ and simplifying using (23)–(26),
we can write the derivatives for r and ω in the forms

dr
dτ

=
1
�

((
rm+1 – ητ

)(
ρrm – η

)
cos(ω) + ρητ rm(

cos(ω) – cos(mω)
)

+ ηrm+1(cos(ω) – cos
(
(m + 1)ω

))
+ η2τ

(
1 – cos(ω)

))

=
1

τ�

((
rm+1 – ητ

)(
ρrm – η

)
+ 2ητ rm sin2

(
1
2

mω

)

+ 2
(
η – ρrm)

rm+1
(

sin2
(

1
2
(
(m + 1)ω

))
+ sin2

(
1
2
ω

)))
, (33)

dω

dτ
=

rm(1 – ρτ )η sin(mω)
�

, (34)

Figure 2 Plots of moduli and arguments of eigenvalues vs time delay τ . The vertical black line is at τ = τc
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where

� = m
(

(
rm+1 – ητ

)2 + 4rm+1ητ sin2
(

(m + 1)ω
2

))
. (35)

As for the Andronov–Hopf bifurcation, we consider three cases.
1. rm+1 – ητ > 0. Then, at τ = 0, we have from (20) λ = r = 1, and ω = 0, and from (34)

that dω
dτ

= 0. Hence, in the positive neighborhood of τ = 0, we have ω = 0 and then

� = m
(
rm+1 – ητ

)2 and
dr
dτ

=
ρrm – η

m(rm+1 – ητ )
< 0. (36)

Therefore, as shown in Fig. 2, for rm+1 – ητ > 0, the modulus r decreases and the
angle ω remains zero.

2. rm+1 – ητ = 0. At τ = τd = rm+1

η
, the denominator � = 0 and, as shown in Fig. 2, the

derivatives dr
dτ

and dω
dτ

are discontinuous. Then, since ω = 0 is an unstable solution
of (34), ω becomes nonzero (positive in Fig. 2) in the positive neighborhood of τd .

3. rm+1 – ητ < 0. In this case, it can be seen from Eq. (33) that dr
dτ

> 0, and therefore r
increases.

We now show that rm+1 – ητ < 0 for all τ ≤ τc. From (26), we have

rm+1

ητ
=

sin(mω)
m sin(ω)

. (37)

Also, from Lemma 4, we have the condition that, for ω �= 0, the critical value of
ωc ∈ (0, 2π

2m+1 ). It is straightforward to prove that

sin(mω)
m sin(ω)

< 1 for ω ∈
(

0,
2π

2m + 1

]
. (38)

Therefore rm+1 – ητ < 0 for τd < τ ≤ τc, and hence r is a continuous, monotonically
increasing function of τ for τd ≤ τ ≤ τc. Therefore τ = τc is the minimum value of τ

for which r = 1. The proof is complete. �

We now prove condition (C3).

Lemma 6 If the necessary and sufficient conditions stated in Lemma 4 are satisfied, then
the critical τc > 0 defined in Lemma 3 also satisfies condition (C3) of the Neimark–Sacker
bifurcation theorem.

Proof As shown in Lemma 5, dr
dτ

> 0 for τd < τ ≤ τc, and therefore condition (C3) is satis-
fied. �

We now prove condition (C4).

Lemma 7 If the necessary and sufficient conditions given in Lemma 4 for τc > 0 to exist
are satisfied and if m > 1, then the corresponding critical argument ω = ωc satisfies the
conditions eikωc �= 1 for k = 1, 2, 3, 4.
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Proof Since 0 < ωc < 2π
2m+1 and m > 1, we have 0 < kωc < 2π for k = 1, 2, 3, 4 and therefore

eikωc �= 1. �

Then, combining Lemmas 3–7, we have the following theorem.

Theorem 4 If the necessary and sufficient conditions stated in Lemma 4 are satisfied and
if m > 1, then a critical time delay τc > 0 exists for Eq. (19) that satisfies conditions (C1),
(C2), (C3) and (C4) of the Neimark–Sacker bifurcation theorem.

Then, from Theorem 4, we have shown that the conditions for possible Neimark–Sacker
bifurcations for the seven versions of the discrete HIV and extended logistic model equa-
tions are the same as the values given in Table 4 for the seven versions of the HIV and
ELM differential equations in Table 1.

7 Direction and stability of the Neimark–Sacker bifurcations
In this section, we find the direction and stability of Neimark–Sacker bifurcations by
studying condition (C5) of the Neimark–Sacker theorem for the five versions (dnn, nnd,
dnd, ndd, ddd) of the time-delay difference equations that show bifurcations. To prove
condition (C5), we follow the method given in Li [19] and Kuznetsov [24] to compute
the function called c1(τ ) for the critical value τ = τc. The main ideas in the derivation are
to replace the single nonlinear difference equations of order m + 1 in the perturbations
yn = wn – w∗ by a system of m + 1 first-order difference equations and then to examine
the terms up to third order in yn in the Taylor series expansions of the right-hand sides
of these systems of first-order nonlinear difference equations. The critical function c1(τc)
can then be computed from these terms.

The terms up to third order of the nonlinear difference equations for the five versions
of the HIV and ELM models are shown in Table 5.

We now introduce a vector Yn = (yn, yn–1, yn–2, . . . , yn–m)T , n ≥ m and write the system
of first-order difference equations up to third order in the Taylor series expansion in the
form

Yn+1 = AYn +
1
2
B(Yn, Yn) +

1
6
C(Yn, Yn, Yn) + O

(‖Yn‖4). (39)

In (39),A is the Jacobian of the system of m+1 first-order difference equations andB and C
are the second- and third-order terms in the system. We will first discuss the Jacobian and
eigenvectors and then give the formulas for the second- and third-order terms. Finally, we
will derive the formula for the critical coefficient c1(τc) for the five HIV and ELM versions
that have Neimark–Sacker bifurcations.

7.1 The Jacobian matrix and eigenvectors
The Jacobian matrix A = J(τ ) for the linearized system of m + 1 first-order equations cor-
responding to the nonlinear difference equations in (19) is given by

J(τ ) =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

1 + ρhmτ 0 · · · 0 –ηhmτ

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

. (40)
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Table 5 Nonlinear discrete HIV and ELM equations for versions with Neimark–Sacker bifurcations
(values of ρ and η are given in Table 3)

Version HIV ψ = hmτ

dnn yn+1 = yn + εψyn – δψyn–m – εψ (yn +w∗)2

second order yn+1 = yn + ρψyn – ηψyn–m – 2εψy2n
nnd yn+1 = yn – δψyn + εψyn–m – εψ (yn +w∗)(yn–m +w∗)
second order yn+1 = yn – ηψyn–m – εψ (ynyn–m + yn–myn)

dnd yn+1 = yn – εψyn – δψyn–m – εψ (yn +w∗)(yn–m +w∗)
second order yn+1 = yn + ρψyn – ηψyn–m – εψ (ynyn–m + yn–myn)

ndd yn+1 = yn – δψyn + εψyn–m – εψ (yn–m +w∗)2

second order yn+1 = yn + ρψyn – ηψyn–m – 2εψy2n–m
ddd yn+1 = yn + (ε – δ)ψyn–m – εψ (yn–m +w∗)2

second order yn+1 = yn – ηψyn–m – 2εψy2n–m

Version ELM ψ = hmτ , Λ = β – r, ν = β
K (

Λ
β )

γ –1
γ , ξ = β

K2
(Λβ )

γ –2
γ

dnn yn+1 = yn + βψyn – rψyn–m – αψ β

Kγ
(yn +w∗)γ+1

third order yn+1 = yn + ρψyn – ηψyn–m – (γ 2 + γ )νψy2n – (γ
3 – γ )ξψy3n

nnd yn+1 = yn +ψΛyn – αψ β

Kγ
(yn +w∗)(yn–m +w∗)γ

third order yn+1 = yn – ηψyn–m – νψ [(γ 2 – γ )y2n–m + γ (ynyn–m + yn–myn)]

– ξψ [(γ 3 – 3γ 2 + 2γ )y3n–m
+ (γ 2 – γ )(yny2n–m + yn–mynyn–m + y2n–myn)]

dnd yn+1 = yn + αψ (1 + β)yn – rψyn–m

– αψ β

Kγ
(yn +w∗)(yn–m +w∗)γ

third order yn+1 = yn + ρψyn – ηψyn–m

– νψ [(γ 2 – γ )y2n–m + γ (ynyn–m + yn–myn)]

– ξψ [(γ 3 – 3γ 2 + 2γ )y3n–m
+ (γ 2 – γ )(yny2n–m + yn–mynyn–m + y2n–myn)]

ndd yn+1 = yn – rψyn + αψ (1 + β)yn–m – αψ β

Kγ
(yn–m +w∗)γ+1

third order yn+1 = yn + ρψyn – ηψyn–m – (γ 2 + γ )νψy2n–m
– (γ 3 – γ )ξψy3n–m

ddd yn+1 = yn +ψΛyn–m – αψ β

Kγ
(yn–m +w∗)γ+1

third order yn+1 = yn – ηψyn–m – (γ 2 + γ )νψy2n–m – (γ 3 – γ )ξψy3n–m

Since the Jacobian matrix is the companion matrix [43] of the characteristic equation (20),
the eigenvalues of the Jacobian matrix and the characteristic equation are the same. For a
critical value τc, a solution of the characteristic equation (20) is λc = eiωc . Then the eigen-
vector of J(τ ) for the eigenvalue λc = eiωc can be written in the form

q
(
eiωc

)
=

(
eimωc , ei(m–1)ωc , . . . , eiωc , 1

)T , (41)

where we have chosen qm = 1 as a normalization constant.
Following Li [19], we also introduce the adjoint eigenvector

r
(
eiωc

)
= D

(
1,σ eimωc ,σ ei(m–1)ωc , . . . ,σ ei2ωc ,σ eiωc

)T , (42)

of the transposed Jacobian matrix J(τc)T . In (42), σ = –ηhmτc, and D = (e–imωc + mσ eiωc )–1

is a normalization constant chosen so that the inner product of the eigenvector (41) and
adjoint eigenvector (42) satisfy 〈q∗, q〉 = 1.
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Table 6 Table of b0(Yn ,Yn) and c0(Yn ,Yn ,Yn) formulas for HIV and ELM models

b0(Yn ,Yn) HIV ELM Λ = β – r, ν = β
K (

Λ
β )

γ –1
γ

dnn –2εhmτ ynyn –(γ 2 + γ )νhmτ ynyn

nnd, dnd –εhmτ (ynyn–m + yn–myn) –νhmτ [(γ 2 – γ )yn–myn–m

+ γ (ynyn–m + yn–myn)]
ndd, ddd –2εhmτ yn–myn–m –νhmτ (γ 2 + γ )yn–myn–m

c0(Yn ,Yn ,Yn) ELM Λ = β – r, ξ = β

K2
(Λβ )

γ –2
γ

dnn –(γ 3 – γ )ξhmτ ynynyn

nnd, dnd –ξhmτ [(γ 3 – 3γ 2 + 2γ )yn–myn–myn–m

+ (γ 2 – γ )(ynyn–myn–m + yn–mynyn–m + ynyn–myn–m)]
ndd, ddd –ξhmτ (γ 3 – γ )yn–myn–myn–m

7.2 The second- and third-order terms
The formulas for the second- and third-order terms in Eq. (39) are given by

B(Yn, Yn) =
(
b0(Yn, Yn), 0, 0, . . . , 0

)T , (43)

C(Yn, Yn, Yn) =
(
c0(Yn, Yn, Yn), 0, 0, . . . , 0

)T , (44)

where the b0 and c0 terms are second- and third-order partial derivatives, respectively,
of the right-hand sides of the system of m + 1 first-order nonlinear difference equations
corresponding to the nonlinear difference equations in Table 5. The values of the b0 and
c0 terms for the five versions of the HIV and ELM models are shown in Table 6.

Following the algorithms in Li [19] and Kuznetsov [24], we concentrate on the expres-
sion for the critical coefficient c1(τc),

c1(τc) =
g20g11(1 – 2λc)

2(λ2
c – λc)

+
|g11|2
1 – λc

+
|g02|2

2(λ2
c – λc)

+
g21

2
, (45)

where

g02 =
〈
q∗,B(q, q)

〉
= Db0(q, q),

g11 =
〈
q∗,B(q, q)

〉
= Db0(q, q),

g20 =
〈
q∗,B(q, q)

〉
= Db0(q, q),

ω11 =
b0(q, q)
P1(1)

p(1) –
〈q∗,B(q, q)〉

1 – λc
q –

〈q∗,B(q, q)〉
1 – λc

q (46)

= b0(q, q)
{

1
P1(1)

p(1) –
D

1 – eiωc
q –

D
1 – e–iωc

q
}

,

ω20 =
b0(q, q)
P1(λ2

c )
p
(
λ2

c
)

–
〈q∗,B(q, q)〉

λ2
c – λc

q –
〈q∗,B(q, q)〉

λ2
c – λc

q

= b0(q, q)
{

1
P1(e2iωc )

p
(
e2iωc

)
–

D
e2iωc – eiωc

q –
D

e2iωc – e–iωc
q
}

,

g21 =
〈
q∗,B(q,ω20)

〉
+ 2

〈
q∗,B(q,ω11)

〉
+

〈
q∗,C(q, q, q)

〉

= Db0(q,ω20) + 2Db0(q,ω11) + Dc0(q, q, q), (47)
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Table 7 Formulas for the b0, c0 terms and inner products in the the critical constant c1(τc)

Versions HIV ψc = hmτc

1 (dnn) 3 (nnd), 5 (dnd) 6 (ndd), 7 (ddd)

b0(q,q) –2εψce2imωc –2εψceimωc –2εψc

b0(q,q) –2εψc –εψc(eimωc + e–imωc ) –2εψc

b0(q,q) –2εψce–2imωc –2εψce–imωc –2εψc

b0(q,ω11) –2εψceimωcω11,0 –εψc{eimωcω11,m +ω11,0} –2εψcω11,m

b0(q,ω20) –2εψce–imωcω20,0 –εψc{e–imωcω20,m +ω20,0} –2εψcω20,m

Versions ELM Model ψc = hmτc , Λ = β – r, ν = β
K (

Λ
β )

γ –1
γ , ξ = β

K2
(Λβ )

γ –2
γ

1 (dnn) 3 (nnd), 5 (dnd) 6 (ndd), 7 (ddd)

b0(q,q) –(γ 2 + γ )νψce2imωc –νψc{(γ 2 – γ ) + 2γ eimωc } –(γ 2 + γ )νψc

b0(q,q) –(γ 2 + γ )νψc –νψc{(γ 2 – γ )

+ γ (eimωc + e–imωc )}
–(γ 2 + γ )νψc

b0(q,q) –(γ 2 + γ )νψce–2imωc –νψc{(γ 2 – γ ) + 2γ e–imωc } –(γ 2 + γ )νψc

c0(q,q,q) –(γ 3 – γ )ξψceimωc –ξψc{(γ 3 – 3γ 2 + 2γ )

+ 3(γ 2 – γ )eimωc }
–ξψc(γ 3 – γ )

b0(q,ω11) –(γ 2 + γ )νψc

× eimωcω11,0

–νψc{(γ 2 – γ )ω11,m

+ γ (eimωcω11,m +ω11,0)}
–(γ 2 + γ )νψc

× eimωcω11,m

b0(q,ω20) –(γ 2 + γ )νψc

× e–imωcω20,0

–νψc{(γ 2 – γ )ω20,m

+ γ (e–imωcω20,m +ω20,0)}
–(γ 2 + γ )νψc

× e–imωcω20,m

D = (e–imωc – ηeiωc )–1,

P1(1) =ψc(η – ρ),P1(e2iωc ) = e2(m+1)iωc – e2iωc +ψc(η – ρe2iωc ),

ω11,0 = b0(q,q){ 1
P1(1)

– Deimωc

1–eiωc
– De–imωc

1–e–iωc
},

ω11,m = b0(q,q){ 1
P1(1)

– D
1–eiωc

– D
1–e–iωc

},
ω20,0 = b0(q,q){ e2imωc

P1(e
2iωc )

– Deimωc

e2iωc –eiωc
– De–imωc

e2iω–e–iωc
},

ω20,m = b0(q,q){ 1
P1(e

2iωc )
– D

e2iωc –eiωc
– D

e2iωc –e–iωc
}.

and

p(λ) =
(
λm,λm–1, . . . ,λ, 1

)T . (48)

The formulas for the b0, c0 and inner products required to compute the terms in (46) are
shown in Table 7. The values of the characteristic polynomial P1(λ) (Eq. (20)) required in
(46) are P1(1) = hmτ (η – ρ) and P1(e2iωc ) = e2i(m+1)ωc – e2imωc + hmτ (η – ρe2imωc ). The values
of p(1) and p(λ2

c ) can be obtained from (48).

8 Numerical simulations
In this section, we present results of numerical simulations to illustrate the analytical re-
sults obtained in previous sections. We show the following.

1. The different behaviors of the five versions of the differential and difference
equations which show bifurcations as the reproductive numbers and time delays are
varied. In particular, we show the qualitatively different behavior of the supercritical
limit cycles of the five versions.

2. The convergence of the Neimark–Sacker critical values to the Andronov–Hopf
critical values as the value of m is increased.

3. The applications of the HIV models to HIV control and of the ELM models to the
study of animal populations.
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Table 8 Values of parameters used for numerical simulation of HIV model

Parameter name B α p0 β0 C δ ε

Set 1 0.005 0.01 0.1 0.5 0.5 0.0045 0.24
Set 2 [46] 0.05 0.05 0.01 0.5 0.5 0.0495 0.2
Set 3 0.05 0.05 0.0035 0.175 0.5 0.0498 0.0375

Table 9 Values of parameters used for numerical simulation of ELM model [1]

Parameter name r β K γ

Used values 3 4 4 2

Table 10 Values of equilibrium points and R0 of HIV and ELM models from Tables 8 and 9

Parameters Disease-free Endemic R0

HIV x∗0 = w∗
0 x∗1 = w∗

1 = 1 – δ
ε

ε
δ

Set 1 0 0.9813 53.333
Set 2 0 0.7525 4.0404
Set 3 0 – 0.7526

ELM x∗0 = w∗
0 x∗1 = w∗

1 = K (1 – r
β )

1
γ β

r

Set 1 0 2 1.333

The parameter values used in the HIV simulations are given in Table 8 and were selected
from [46]. The parameter values used in the ELM simulations are shown in Table 9 and
were selected from [1].

8.1 Comparison of qualitative behavior of versions
As shown previously, the equilibrium populations and values of R0 for the differential
equation and difference equation models are the same. The equilibrium population and
R0 values for the data sets in Tables 8 and 9 are shown in Table 10.

Therefore, for zero time delay for both the differential equation and the difference equa-
tion models, the disease-free equilibrium is locally asymptotically stable for HIV set 3 of
Table 8 and the endemic equilibria exist and are locally asymptotically stable for HIV sets
1 and 2 of Table 8 and ELM set 1 of Table 9.

8.2 Andronov–Hopf and Neimark–Sacker bifurcations
For the parameter values in Tables 8 and 9, critical delay conditions for Andronov–Hopf
bifurcation (Theorem 1) and Neimark–Sacker bifurcation (Theorem 3) of the endemic
equilibria for the five HIV and ELM versions are shown in Tables 11 and 12. It can be
seen that the results for the HIV and ELM models are similar. For the HIV model, the
Andronov–Hopf and Neimark–Sacker bifurcations occur for the bounded region 1 < R0 <
3 for version 1, and for unbounded regions R0 > 1 for versions 3, 5, 7, and for R0 > 3 for
version 6. Similarly, for the ELM model, the Andronov–Hopf and Neimark–Sacker bifur-
cations occur for the bounded region 1 < R0 < 2 for version 1, and for unbounded regions
R0 > 1 for versions 3, 5, 7, and for R0 > 2 for version 6. It can also be seen from these ta-
bles, that, for version 1 of both models, the C5 conditions of Theorem 3 correspond to a
repelling invariant closed curve for τ > τc, whereas for versions 3, 5, 6, 7 the C5 conditions
correspond to an attracting invariant closed curve for τ > τc.

Examples of plots of the time dependence of the solutions for time delays τ < τc are
shown in Fig. 3 for the differential equations in Table 1 and in Fig. 4 for the difference
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Table 11 Critical bifurcation values for endemic equilibrium of the HIV models

Version 1(dnn) 3(nnd), 7(ddd) 5(dnd) 6(ndd)

Range of R0 1 < R0 < 3 R0 > 1 R0 > 1 R0 > 3
R0 1.1 2.9 2.9 2.9 3.5
ρ 0.00405 –0.00405 0 0.0045 –0.0045
η 0.0045 0.0045 0.0086 0.0131 0.0068

DDE

τc 229.94 1371.68 183.72 99.492 457.26
φc 1.962e–3 1.962e–3 8.550e–3 0.01225 5.031e–3
dμ
dτ |τc 1.848e–5 7.663e–8 2.108e–5 8.381e–5 1.729e–6

Discrete

τc m = 22 229.58 1183.78 179.60 98.25 426.73
m = 23 229.60 1191.27 179.78 98.31 428.01

ωc m = 22 0.02005 0.1194 0.06981 0.05417 0.10219
m = 23 0.01920 0.1143 0.06684 0.05187 0.09785

dr
dτ |τc m = 22 8.466e–6 5.153e–7 8.693e–6 1.763e–5 2.401e–6

m = 23 7.760e–6 4.690e–7 7.959e–6 1.615e–5 2.193e–6
�[e–iωc c1(τc)] m = 22 0.3454 0.6627 (3) –0.0371 –0.0222 –0.5919

(7) –0.2868
m = 23 0.3317 0.6377 (3) –0.0355 –0.0212 –0.5667

(7) –0.2745

Table 12 Critical bifurcation values for endemic equilibrium of the ELM models

Version 1(dnn) 3(nnd), 7(ddd) 5(dnd) 6(ndd)

Range of R0 1 < R0 < 2 R0 > 1 R0 > 1 R0 > 2
γ = 2 1 < R0 < 1 + 2

γ R0 > 1 + 2
γ

R0 1.02 1.98 1.98 1.98 2.48
ρ 2.88 –2.88 0 3 –3
η 3 3 5.88 8.88 5.88

DDE

τc 0.3379 3.402 0.2671 0.1467 0.4165
φc 0.8400 0.8400 5.880 8.358 5.057
dμ
dτ |τc 8.682 5.655e–3 9.971 38.45 2.693

Discrete

τc m = 22 0.3376 2.6737 0.2612 0.14486 0.3958
m = 23 0.3377 2.7012 0.2614 0.14494 0.3967

ωc m = 22 0.0126 0.1267 0.0698 0.0545 0.0936
m = 23 0.0121 0.1213 0.0668 0.0522 0.0896

dr
dτ |τc m = 22 0.0058 1.499e–4 0.0060 0.0119 0.0030

m = 23 0.0053 1.358e–4 0.0055 0.0109 0.0028
�[e–iωc c1(τc)] m = 22 0.6968 0.0889 (3) –0.0086 –0.0063 –0.0240

(7) –0.0280
m = 23 0.6692 0.0855 (3) –0.0082 –0.0060 –0.0230

(7) –0.0268

equations in Table 2. Examples of plots of the time dependence of the solutions for time
delays τ > τc are shown in Fig. 5 for the differential equations in Table 1 and in Fig. 6 for the
difference equations in Table 2. The figures show plots for HIV and ELM versions 1 and 6.
The plots for HIV and ELM models are qualitatively similar, but slightly different in detail.
As noted in Sect. 8.2, the bifurcation occurs as τ increases through τc and the invariant
closed curve is a repelling curve for version 1 and an attracting curve for version 6.

As shown in Tables 4, 11 and 12, Andronov-Hopf and Neimark-Sacker bifurcations can
only occur for a range of R0 values for the five versions with bifurcations. The plots in
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Figure 3 Solutions of HIV and ELM differential equations versions 1 and 6 for time delay less than critical
delay τ < τc (see Tables 11 and 12)

Figure 4 Solutions of HIV and ELM difference equations versions 1 and 6 for time delay less than critical delay
atm = 22 and τ < τc (see Tables 11 and 12)
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Figure 5 Solutions of HIV and ELM differential equations versions 1 and 6 for time delay greater than critical
delay τ > τc (see Table 11 and 12)

Figure 6 Solutions of HIV and ELM difference equations versions 1 and 6 for time delay greater than critical
delay (τ > τc ) atm = 22 (see Tables 11 and 12)



Darlai et al. Advances in Difference Equations        (2020) 2020:190 Page 23 of 27

Figure 7 Plots of critical delays τc vs basic reproductive numbers R0 for HIV and ELM versions 1 and 6

Fig. 7 give examples of the change in critical τ value with R0 for version 1 (finite range)
and version 6 (lower bound).

8.3 Comparison of critical values for Andronov–Hopf and Neimark–Sacker
bifurcations

From Tables 11 and 12, we have for condition (C3) of the Andronov–Hopf theorem that
the values for the derivatives of the real part of the eigenvalues at the critical point dμ

dτ
|τc are

greater than zero for all versions. Therefore, the Andronov–Hopf bifurcations will occur
as τ increases through τc for all versions. It can also be seen from Tables 11 and 12 that
case (1) of the condition (C5) of the Neimark–Sacker theorem occurs for version 1 (dnn)
of the HIV and ELM discrete models and that case (2) occurs for versions 3 (nnd), 5 (dnd),
6 (ndd) and 7 (ddd). Therefore the Neimark–Sacker bifurcations will occur as τ increases
through τc for all versions, but version 1 will have a repelling limit cycle and versions 3, 5,
6, 7 will have attracting limit cycles.

A comparison of the critical delay values τc for the Andronov–Hopf and Neimark–
Sacker bifurcations are shown in Fig. 8. It can be seen that the Neimark–Sacker values tend
to the Andronov–Hopf values as the value of m increases, i.e., as the step size h = 1/m in
the Euler difference equation approximation for the differential equation is reduced. These
results suggest that difference equation models based on the Euler approximation can be
used to obtain good estimates for critical delay values for models of the type studied in
this paper.
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Figure 8 Plots showing convergence of Neimark–Sacker critical delay values for increasingm to
Andronov–Hopf critical delay values for HIV and ELM version 6

8.4 Effects of antiretroviral therapy
The effects of increasing the antiretroviral therapy factor nav in (2) are shown in Fig. 9.
Figure 9(a) shows the reduction in the basic reproduction number, Fig. 9(b) shows the
effect on the equilibrium infected population and Fig. 9(c) shows the effect on the criti-
cal Andronov–Hopf bifurcation point. In practise, as stated in the introduction, it is well
known (see, e.g., [29, 30]) that antiretroviral therapy cannot completely eliminate the virus.
However, recent studies (see, e.g., [39, 41, 42]) have suggested that the therapy can reduce
the virus sufficiently that HIV transmission from an HIV+ to an uninfected person will
not occur.

An important idea in controlling diseases through vaccination and antiretroviral treat-
ment is that of “herd immunity”, i.e., the level of immunity required to make the disease-
free equilibrium stable and the endemic equilibrium negative. From Eqs. (2) and (7), we
obtain

R0 =
ε

δ
=

β0(1 – nav)C – α

1 – (1 – nav)p0B
= 1 for nav = 1 –

α + B
β0C + p0B

. (49)

For sets 1 and 2 of Table 8, we have

set 1 : nav = 0.94, R0 = 53.33, set 2 : nav = 0.60, R0 = 4.04. (50)
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Figure 9 Plots of critical delay vs antiviral infectiousness factor

9 Conclusions
In this paper, the effects of time delays and the associated Andronov–Hopf and Neimark–
Sacker bifurcation properties have been studied for two one-dimensional models. The first
model has been studied by previous authors as a model for HIV. This model includes the
effects of vertical HIV transmission from mother to baby, the effects of births and deaths
and treatment by antivirals. The second extended logistic growth model has been studied
by previous authors as a model for population growth and for the life cycle of products
and services. For each model, we have studied the dynamical behavior of a differential
equation model and an equivalent difference equation model obtained from a forward
Euler approximation.

For both HIV and ELM, we have shown that there are seven different time-delay versions
of the differential equation and equivalent difference equation models and that the seven
different versions have very different dynamical behavior. Five of these versions undergo
bifurcations from the endemic equilibrium point and two of them have stable endemic
equilibrium points for all values of time delay. We have given rigorous proofs of necessary
and sufficient conditions for the existence and stability of the equilibrium points and for
the existence of Andronov–Hopf and Neimark–Sacker bifurcations at critical values of
the time delays for the five versions. For the Neimark–Sacker bifurcations, we have proved
analytically and confirmed numerically that one version for each model has a supercritical
repelling limit cycle and the remaining four versions have supercritical attracting limit
cycles. We have also shown numerically that the same qualitative behavior occurs for the
Andronov–Hopf bifurcations.

We have carried out numerical simulations for a range of biologically reasonable pa-
rameter values and obtained results that agree with the analytical results. The numerical
results have shown that the equilibrium points and bifurcation behavior of an Euler ap-
proximation to a differential equation system have the same qualitative behavior as the dif-
ferential equation system and that the critical bifurcation points of the difference equation
converge to the critical times of the differential equation as the number of discretization
points is increased.

The results of this paper show that a difference equation approximation can be used to
study the dynamical behavior of time-delayed differential equation systems and to give
reliable information about the existence and properties of bifurcations.



Darlai et al. Advances in Difference Equations        (2020) 2020:190 Page 26 of 27

Acknowledgements
R.D. would like to thank the Faculty of Science, Energy and Environment, King Mongkut’s University of Technology North
Bangkok (Rayong Campus) for supporting her and encouraging her research activities.

Funding
This research was supported by the Centre of Excellence in Mathematics, the Commission of Higher Education, Thailand,
and by the Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok under
contract number KMUTNB-61-NEW-018. Financial support for this research was also provided by the Department of
Mathematics, King Mongkut’s University of Technology North Bangkok, Thailand. The funding bodies listed above made
no contribution to the design of the study and collection, analysis and interpretation of any data or in the writing or
editing of the manuscript.

Availability of data and materials
A published data set from Cao et al. [46] was used in the simulation of the HIV model and a published data set from He et
al. [1] was used in the numerical simulation of the extended logistic model.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors made equal contributions to the research. All authors read and approved the final manuscript.

Author details
1Faculty of Science, Energy and Environment, King Mongkuts University of Technology North Bangkok (Rayong Campus),
Rayong, Thailand. 2Department of Mathematics, King Mongkuts University of Technology North Bangkok, Bangkok,
Thailand. 3Centre of Excellence in Mathematics, CHE, Bangkok, Thailand.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 4 February 2020 Accepted: 17 April 2020

References
1. He, Z., Lai, X., Hou, A.: Stability and Neimark–Sacker bifurcation of numerical discretization of delay differential

equations. Chaos Solitons Fractals 41(4), 2010–2017 (2009)
2. Xin, B., Chen, T., Ma, J.: Neimark–Sacker bifurcation in a discrete-time financial system. Discrete Dyn. Nat. Soc. 2010,

Article ID 405639 (2010)
3. Zhu, H., Luo, Y., Chen, M.: Stability and Hopf bifurcation of a HIV infection model with CTL-response delay. Comput.

Math. Appl. 62(8), 3091–3102 (2011)
4. Hao, L., Yang, Z., Lei, J.: Bifurcation analysis of a delay differential equation model associated with the induction of

long-term memory. Chaos Solitons Fractals 81, 162–171 (2015)
5. Khan, A.: Neimark–Sacker bifurcation of a two-dimensional discrete-time predator–prey model. SpringerPlus 5(1),

126 (2016)
6. Song, Y., Xiao, W., Qi, X.: Stability and Hopf bifurcation of a predator–prey model with stage structure and time delay

for the prey. Nonlinear Dyn. 83(3), 1409–1418 (2016)
7. Darlai, R., Moore, E.J.: Andronov–Hopf bifurcation and sensitivity analysis of a time-delay HIV model with logistic

growth and antiretroviral treatment. Adv. Differ. Equ. 2017(1), 138 (2017)
8. Wang, Y., Liu, X.: Stability and Hopf bifurcation of a within-host Chikungunya virus infection model with two delays.

Math. Comput. Simul. 138, 31–48 (2017)
9. Abdelrahman, M.A., Chatzarakis, G.E., Li, T., Moaaz, O.: On the difference equation xn+1 = axn–l + bxn–k + f (xn–l , xn–k ). Adv.

Differ. Equ. 2018(1), 431 (2018)
10. Din, Q., Donchev, T., Kolev, D.: Stability, bifurcation analysis and chaos control in chlorine dioxide–iodine–malonic

acid reaction. MATCH Commun. Math. Comput. Chem. 79(3), 577–606 (2018)
11. Kaper, T.J., Vo, T.: Delayed loss of stability due to the slow passage through Hopf bifurcations in reaction–diffusion

equations. Chaos, Interdiscip. J. Nonlinear Sci. 28(9), 091103 (2018)
12. Wang, J., Li, Y., Zhong, S., Hou, X.: Analysis of bifurcation, chaos and pattern formation in a discrete time and space

Gierer Meinhardt system. Chaos Solitons Fractals 118, 1–17 (2019)
13. Kangalgil, F.: Neimark–Sacker bifurcation and stability analysis of a discrete-time prey–predator model with Allee

effect in prey. Adv. Differ. Equ. 2019, 92 (2019)
14. Din, Q.: Stability, bifurcation analysis and chaos control for a predator–prey system. J. Vib. Control 25(3), 612–626

(2019)
15. Kumar, S., Kharbanda, H.: Chaotic behavior of predator–prey model with group defense and non-linear harvesting in

prey. Chaos Solitons Fractals 119, 19–28 (2019)
16. Wu, F., Jiao, Y.: Stability and Hopf bifurcation of a predator–prey model. Bound. Value Probl. 2019(1), 129 (2019)
17. Moore, E.J., Sarathi, Y., Koonprasert, S.: Bifurcations and chaotic-type solutions in a time-delay model of

hematopoietic stem cell growth. Far East J. Math. Sci. 97(6), 729 (2015)
18. Boonrangsiman, S., Bunwong, K., Moore, E.J.: A bifurcation path to chaos in a time-delay fisheries predator–prey

model with prey consumption by immature and mature predators. Math. Comput. Simul. 124, 16–29 (2016)
19. Li, Y.: Dynamics of a discrete food-limited population model with time delay. Appl. Math. Comput. 218(12),

6954–6962 (2012)



Darlai et al. Advances in Difference Equations        (2020) 2020:190 Page 27 of 27

20. Koto, T.: Neimark–Sacker bifurcations in the Euler method for a delay differential equation. BIT Numer. Math. 39(1),
110–115 (1999). https://doi.org/10.1023/A:1022373309178

21. Jiang, X.-W., Zhan, X.-S., Guan, Z.-H., Zhang, X.-H., Yu, L.: Neimark–Sacker bifurcation analysis on a numerical
discretization of Gause-type predator–prey model with delay. J. Franklin Inst. 352(1), 1–15 (2015)

22. Khan, A.Q., Ma, J., Xiao, D.: Bifurcations of a two-dimensional discrete time plant-herbivore system. Commun.
Nonlinear Sci. Numer. Simul. 39, 185–198 (2016)

23. Kloeden, P.E., Platen, E., Schurz, H.: Numerical Solution of SDE Through Computer Experiments. Springer, Berlin (2012)
24. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, New York (2004)
25. Roberts, M.G., Saha, A.K.: The asymptotic behaviour of a logistic epidemic model with stochastic disease transmission.

Appl. Math. Lett. 12(1), 37–41 (1999)
26. Ding, Y., Xu, M., Hu, L.: Asymptotic behavior and stability of a stochastic model for AIDS transmission. Appl. Math.

Comput. 204(1), 99–108 (2008)
27. Trappey, C.V., Wu, H.: An evaluation of the extended logistic, simple logistic, and Gompertz models for forecasting

short lifecycle products and services. In: Loureiro, G., Curran, R. (eds.) Complex Systems Concurrent Engineering,
pp. 793–800. Springer, London (2007)

28. Sakanoue, S.: Extended logistic model for growth of single-species populations. Ecol. Model. 205, 159–168 (2007)
29. Rong, L., Perelson, A.S.: Modeling latently infected cell activation: viral and latent reservoir persistence, and viral blips

in HIV-infected patients on potent therapy. PLoS Comput. Biol. 5(10), 1–18 (2009)
30. Rong, L., Perelson, A.S.: Modeling HIV persistence, the latent reservoir, and viral blips. J. Theor. Biol. 260(2), 308–331

(2009)
31. Wang, Y., Liu, J. Liu, L.: Viral dynamics of an HIV model with latent infection incorporating antiretroviral therapy. Adv.

Differ. Equ. 2016, 225 (2016)
32. Callaway, D.S., Perelson, A.S.: HIV-1 infection and low steady state viral loads. Bull. Math. Biol. 64(1), 29–64 (2002)
33. Rong, L., Perelson, A.S.: Asymmetric division of activated latently infected cells may explain the decay kinetics of the

HIV-1 latent reservoir and intermittent viral blips. Math. Biosci. 217(1), 77–87 (2009)
34. May, M.T., Ingle, S.M.: Life expectancy of HIV-positive adults: a review. Sex. Health 8(4), 526–533 (2011)
35. Darlai, R., Moore, E.J., Koonprasert, S.: Andronov–Hopf and Neimark–Sacker bifurcations in time-delay models. Thai J.

Math. Special issue: The 22nd Annual Meeting in Mathematics (AMM2017), 241–261 (2018)
36. Barton, K.M., Burch, B.D., Soriano-Sarabia, N., Margolis, D.M.: Prospects for treatment of latent HIV. Clin. Pharmacol.

Ther. 93(1), 46–56 (2013)
37. Wikipedia: protease inhibitor (pharmacology). Wikipedia (2016).

https://en.wikipedia.org/wiki/Protease_inhibitor_(pharmacology)
38. Emedicine: antiretroviral therapy for HIV infection. Emedicine (2016).

http://emedicine.medscape.com/article/1533218-overview
39. Unaid: global-AIDS-update2016. Unaid (2016).

http://www.unaids.org/sites/default/files/media/asset/global-AIDS-update2016/en.pdf
40. Wikipedia: reverse-transcriptase inhibitor. Wikipedia (2017).

https://en.wikipedia.org/wiki/Reverse-transcriptase_inhibitor
41. Wilson, C.: A farewell to condoms. New Sci. 233(3112), 22–23 (2017)
42. World Health Organization: AIDS. World Health Organization (2017).

http://www.who.int/campaigns/tb-day/2017/en/
43. Burden, R.L., Faires, J.D., Burden, A.M.: Numerical Analysis. Cengage Learning, Boston (2016)
44. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for

compartmental models of disease transmission. Math. Biosci. 180(1), 29–48 (2002)
45. David, G.L.: Introduction to Dynamic Systems: Theory, Models and Applications. Wiley, Chichester (1979)
46. Cai, L., Li, X., Ghosh, M., Guo, B.: Stability analysis of an HIV/AIDS epidemic with treatment. Comput. Appl. Math. 229,

313–323 (2009)

https://doi.org/10.1023/A:1022373309178
https://en.wikipedia.org/wiki/Protease_inhibitor_(pharmacology)
http://emedicine.medscape.com/article/1533218-overview
http://www.unaids.org/sites/default/files/media/asset/global-AIDS-update2016/en.pdf
https://en.wikipedia.org/wiki/Reverse-transcriptase_inhibitor
http://www.who.int/campaigns/tb-day/2017/en/

	Andronov-Hopf and Neimark-Sacker bifurcations in time-delay differential equations and difference equations with applications to models for diseases and animal populations
	Abstract
	MSC
	Keywords

	Introduction
	Differential equation models
	HIV models
	Extended logistic growth models

	Time-delay differential equation models
	Time-delay difference equation models
	Equilibrium points, stability and Andronov-Hopf bifurcations of differential equation models
	Equilibrium points
	Local asymptotic stability
	Andronov-Hopf bifurcations of time-delay models

	Equilibrium points, stability and Neimark-Sacker bifurcations of difference equation models
	Equilibrium points and basic reproduction numbers
	Conditions for Neimark-Sacker bifurcations

	Direction and stability of the Neimark-Sacker bifurcations
	The Jacobian matrix and eigenvectors
	The second- and third-order terms

	Numerical simulations
	Comparison of qualitative behavior of versions
	Andronov-Hopf and Neimark-Sacker bifurcations
	Comparison of critical values for Andronov-Hopf and Neimark-Sacker bifurcations
	Effects of antiretroviral therapy

	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


