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Abstract
In this paper, a stochastic space fractional advection diffusion equation of Itô type
with one-dimensional white noise process is presented. The fractional derivative is
defined in the sense of Caputo. A stochastic compact finite difference method is used
to study the proposed model numerically. Stability analysis and consistency for the
stochastic compact finite difference scheme are proved. Two test examples are given
to test the performance of the proposed method. Numerical simulations show that
the results obtained are compatible with the exact solutions and with the solutions
derived in the literature.
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1 Introduction
Many physical phenomena are simulated using mathematical models that lead to partial
differential deterministic equations (PDEs). Due to a lack of data on parameters and initial
data, the behavior of the system might be far away from the ideal deterministic represen-
tation. To counter this lack of information and make a system explanation more practical,
one adds random inputs that can be random variables or stochastic processes. This leads
to stochastic partial differential equations (SPDEs).

SPDEs are used in multiple fields including computational mathematics, electronics,
statistical mechanics, theoretical physics, theoretical psychology, advanced chemical re-
action analysis, fluid dynamics, hydrology, and mathematical finance. In certain types of
SPDEs, analytical approaches, such as Prato et al. and Gyongy et al. [1–4], can be pro-
vided. For the numerical simulations of SPDEs, Allen et al., Walsh and Deb et al. [5–7]
used the finite element approximation. In [8] high-resolution finite volume methods are
used to solve SPDE. Roth [9] used an explicit finite difference method to approximate a
solution of some stochastic hyperbolic equations. Soheili et al. [10] presented two meth-
ods for solving linear parabolic SPDE’s based on Saul’yev method and a high order finite
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difference scheme. Kamrani and Hosseini [11] reported explicit and implicit finite dif-
ference methods for general SPDE. Kamrani et al. and Ashyralyev [12, 13] used spectral
method for spatial variable discretization and solved the resulting system via the stochas-
tic Runge–Kutta method.

Integer order differential equations might not be capable of explaining the experimen-
tal and field measurement data, as an alternate approach, the differential fractional-order
equation (FDE) is introduced [14–22]. Models described by FDEs are now being widely
used, and the theory of fractional calculus is a useful mathematical tool for applied science
[23–26]. Pardisi et al. and Baeumer et al. [27, 28] have developed models in fractional or-
der containing various concepts. Fractional derivatives are adapted to model diffusion by
stochastic fractional differential equations (SFDEs).

In SFDEs the particles distributed differently than predicted by the classical Brownian
model of motion are expected [29–31]. The impetus to considering such equations de-
rives from the idea that there is some ambiguity in other science processes that have been
modeled by fractional differential equations, and we require SFDE solutions to test more
precise solutions.

Advection-diffusion equation (ADE) explains the transfer of mass, heat, or energy due
to the combination of advection and diffusion effect. In addition, ADE describes other nat-
ural processes such as air contamination, groundwater contamination, the distribution of
chemical solutes, the infiltration of seawater and thermal penetration of river systems, to
explain the time and space differences of particle behavior [32, 33]. Fractional advection-
diffusion equations (FADEs) are used to model transportation through a porous medium
with passive tracers provided by fluid movement. Liu et al. [34] found and used vector
transformation to solve the time-fractional ADE. Huang and Liu [35] obtained space time-
fractional ADE solution, Meerschaert et al. [36] proposed functional computational meth-
ods for solving the space fractional ADE solution.

Stochastic simulations include evidence on the statistical features of particle behavior
[37]. Such equations are very helpful because moving sediments experience significant
variations, rendering it impossible to calculate mean values. Among these stochastic mod-
els, the most common approach consists of random walk models [38]. In [39] Soheili and
Bishehniasar considered the approximation of stochastic advection-diffusion equation us-
ing compact finite difference technique and investigated their numerical results.

In this paper, we introduced a stochastic fractional advection-diffusion equation (SFADE),
which can be considered as a generalization of the classical ADE with a one-dimensional
multiplicative white noise process, replacing the second and first-order space derivatives
with the Caputo fractional-order derivative α ∈ (1, 2] and β ∈ (0, 1], respectively. Our goal
in the current research is to approximate the solution of SFADE with respect to an R1-
valued Wiener process (W (t), Ft)t∈[0,T] defined on a complete probability space (Ω , F , P)
[9] adapted to standard filtration (Ft)t∈[0,T]. The efficiency of the stochastic compact finite
difference (SCFD) process for the SFADE is shown and its key qualifications are examined.

The paper is structured as follows: The considered SFADE and some mathematical tools
are given in Sect. 2. SCFD scheme to approximate the solution of SFADE is introduced in
Sect. 3. In Sect. 4 we investigate the consistency and stability analysis of the proposed
method. Numerical simulations are given in Sect. 5. Finally, the conclusions are drawn in
Sect. 6.
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2 Preliminaries and fundamentals
In the first part of this section, we introduce the stochastic fractional advection-diffusion
equation (SFADE) with Dirichlet boundary conditions, then we recall some mathematical
tools.

Consider the SFADE:

ut(x, t) = ρDα
x u(x, t) – γ Dβ

x u(x, t) + σu(x, t)Ẇ (t),

0 < t ≤ T , 0 < x < X,

u(x, 0) = u0(x), 0 < x < X,

u(0, t) = f1(t), u(X, t) = f2(t), 0 < t ≤ T ,

(1)

where u is the quantity being transported, ρ > 0 is the dispersion/diffusion coefficient, γ >
0 is the advection coefficient, and σ > 0 is noise intensity; T , X, ρ , γ , and σ are constants
and Dα

x , Dβ
x are the Caputo space fractional derivatives of order α, β , respectively, 1 < α ≤ 2

and 0 < β ≤ 1, f1(t) and f2(t) are continuous given functions. W (t) is a one-dimensional
standard Wiener process such that the white noise �W (t) is a random variable generated
from Gaussian distribution with zero mean and standard deviation �t, and we will define
it later[40]. We need the following assumption in sequel.

Assumption 1 We assume that u ∈ C6,1(Ω), Ω = [0, X]× [0, T], to ascertain the sufficient
smoothness conditions for the existence of the fractional derivatives as well as the validity
of the stochastic compact finite difference scheme, where C6,1 is the well-known space of
all u such that ∂6u

∂x6 and ∂u
∂t are continuous.

Numerically, finite difference methods have vast applications [9, 10]. These schemes
discretize continuous space and time into an evenly distributed grid system, and the values
of the state variables are evaluated at each node of the grid. Introduce the grid points xi =
ih, for h = X

N and i = 0, 1, . . . , N . tn = n�t, where �t = T
M and n = 0, 1, . . . , M, where N and

M are the total number of grid points for the space and time discretizations, respectively.
Let ui(t) be the finite difference approximation to [u(t, x1), . . . , u(t, xN–1)]T .

To discretize in time, we apply the Euler–Maruyama method with time step �t > 0. This
method gives approximations un

i to [u(tn, x1), . . . , u(tn, xN–1)]T .

Definition 1 (Euler–Maruyama scheme, [9]) For the d-dimensional SDE of Itô type

⎧
⎨

⎩

du(t) = f (t, u(t)) dt + g(t, u(t)) dW (t),

t ≥ 0, u(0) = u0 ∈ R
d,

where f , g : Rd → R
d , the Euler–Maruyama scheme for computing approximations un

i

takes the form

un+1
i = un

i + f
(
un

i
)
�t + g

(
un

i
)
�Wn,

where �Wn = W (tn+1) – W (tn) = W ((n + 1)�t) – W ((n)�t) and �Wn ∼N (0,�t).
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There are different ways to define fractional derivatives, the most commonly used are the
Grünwald–Letnikov derivative, the Riemann–Liouville derivative, and the Caputo deriva-
tive [41], [48–52].

Definition 2 The Caputo fractional derivative of order μ is defined as [42]

Dμf (x) =
1

Γ (m – μ)

∫ x

0
(x – t)m–μ–1 dm

dtm f (t) dt, m – 1 < μ < m, x > 0, (2)

where μ is a fractional number and m is an integer number.

Note 3 ([42]) Assumption 1 ascertains the existence of the fractional derivatives Dα
x , Dβ

x .

Substituting Eq. (2) in Eq. (1), we obtain

ut(xi, t) =
ρ

Γ (2 – α)

∫ xi

0
(xi – ζ )1–α ∂2

∂ζ 2 u(ζ , t) dζ

–
γ

Γ (1 – β)

∫ xi

0
(xi – ζ )–β ∂

∂ζ
u(ζ , t) dζ + σu(xi, t)Ẇ (t),

ut(xi, t) =
ρ

Γ (2 – α)

∫ xi

0
(xi – ζ )1–α ∂2

∂ζ 2 u(ζ , t) dζ

–
γ

Γ (1 – β)

∫ xi

0
(xi – ζ )–β ∂

∂ζ
u(ζ , t) dζ + σu(xi, t)Ẇ (t),

by disctretizing the integrals, we get

=
ρ

Γ (2 – α)

i–1∑

r=0

∫ (r+1)h

rh
(xi – ζ )1–α ∂2

∂ζ 2 u(ζ , t) dζ

–
γ

Γ (1 – β)

i–1∑

r=0

∫ (r+1)h

rh
(xi – ζ )–β ∂

∂ζ
u(ζ , t) dζ + σu(xi, t)Ẇ (t). (3)

3 The numerical method of SFADE
In this section, we introduce a stochastic compact finite difference method (SCFDM) for
solving the stochastic fractional advection-diffusion equation (SFADE).

3.1 Stochastic compact finite difference approximation
Compact finite difference approximates ux and uxx to order of accuracy higher than two
[43]. Here ux and uxx are approximated by fourth order approximation with truncation
error O(h4).

In the explicit compact method, the time and space derivatives in the SFADE are ap-
proximated in the following form [43]:

uxx(ih, n�t) =
–1
12 un

i–2 + 4
3 un

i–1 – 5
2 un

i + 4
3 un

i+1 – 1
12 un

i+2

h2 + O
(
h4),

ux(ih, n�t) =
1

12 un
i–2 – 4

3 un
i–1 + 4

3 un
i+1 – 1

12 un
i+2

h
+ O

(
h4).

(4)
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The stochastic partial differential equation Eq. (1) should be read as

du(x, t) =
[
ρDα

x u(x, t) – γ Dβ
x u(x, t)

]
dt + σu(x, t) dW (t),

which is equivalent to

du = ϕ(u) dt + ψ(u) dW (t),

where the stochastic integral is the usual Itô-integral. ϕ(u) = ρDα
x u(x, t) – γ Dβ

x u(x, t) and
ψ(u) = σu(x, t) are Lipschitz-continuous functions in u(x, t), ux(x, t), and uxx(x, t).

According to [9], a solution of stochastic differential equation is a random field
(u(x, t))x∈R,t∈[0,T] with the following properties:

• (u(x, t))x∈R,t∈[0,T] is an adapted process to the standard filtration (Ft)t∈[0,T] for every
x ∈R.

• There exists continuous ∂2u(x,t)
∂x2 for every t ∈ [0, T] with probability 1.

• u(·, t) is L2(R) valued.
• u(x, 0) = u0(x) ∈ L2(R).
• Equation du = ϕ(u) dt + ψ(u) dW (t) holds for all t ∈ [0, T] and x ∈ R with

probability 1.
Assumption (1) guarantees the existence of a unique solution of the last equation ([44],

Theorem 8.18, p. 335).
Now, by using the Euler–Maruyama method and substituting Eqs. (4) in (3), we have

un+1
i = un

i +
�tρh–α

Γ (3 – α)

i–1∑

r=0

(
–1/12un

i–r–2 + 4/3un
i–r–1 – 5/2un

i–r + 4/3un
i–r+1 – 1/12un

i–r+2
)

× [
(i – r + 1)2–α – (i – r)2–α

]

–
�tγ h–β

Γ (2 – β)

i–1∑

r=0

(
1/12un

i–r–2 – 4/3un
i–r–1 + 4/3un

i–r+1 – 1/12un
i–r+2

)

× [
(i – r + 1)1–β – (i – r)1–β

]
+ σun

i �Wn.

Let i – r = k,

un+1
i = un

i +
�tρh–α

Γ (3 – α)

i∑

k=1

(
–1/12un

i–k–2 + 4/3un
i–k–1 – 5/2un

i–k + 4/3un
i–k+1 – 1/12un

i–k+2
)

× [
(k)2–α – (k – 1)2–α

]

–
�tγ h–β

Γ (2 – β)

i∑

k=1

(
1/12un

i–k–2 – 4/3un
i–k–1 + 4/3un

i–k+1 – 1/12un
i–k+2

)

× [
(k)1–β – (k – 1)1–β

]
+ σun

i �Wn. (5)

Let

bα =
ρ�t

hαΓ (3 – α)
, bβ =

γ�t
hβΓ (2 – β)

,
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gα
k = (k)2–α – (k – 1)2–α , gβ

k = (k)1–β – (k – 1)1–β .

Taking the boundary conditions into consideration ([43], p. 39, HW1.5.12), we have

un+1
i = un

i

+ bα

i∑

k=1

gα
k
(
–1/12un

i–k–2 + 4/3un
i–k–1 – 5/2un

i–k + 4/3un
i–k+1 – 1/12un

i–k+2
)

– bβ

i∑

k=1

gβ

k
(
1/12un

i–k–2 – 4/3un
i–k–1 + 4/3un

i–k+1 – 1/12un
i–k+2

)
+ σun

i �Wn. (6)

Equation (6), together with boundary conditions, yields the following linear system of
equations:

Un+1 = Un + AUn – BUn + σUn�Wn, (7)

where Un = (un
1, un

2, . . . , un
N–1)T , and AN–1×N–1 = (ajk) and BN–1×N–1 = (bjk) are the coeffi-

cient matrices with the following elements:

ajk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, k ≥ j + 3;

–1/12bα , k = j + 2;

bα(4/3 – 1/12gα
1 ), k = j + 1;

bα(–5/2 + 4/3gα
1 – 1/12gα

2 ), k = j = 3, . . . , N – 1;

bα(4/3 – 5/2gα
1 + 4/3gα

2 – 1/12gα
3 ), k = j – 1;

bα(–1/12gα
j–k–2 + 4/3gα

j–k–1

– 5/2gα
j–k + 4/3gα

j–k+1 – 1/12gα
j–k+2), k ≤ j – 2;

for k = 3, 4, . . . , N – 1 and j = 1, 2, . . . , N – 1, while

a11 = –5/2bα , a21 = bα

(
4
3

–
5
2

gα
1

)

,

aj1 = bα
(
–1/12gα

j–3 + 4/3gα
j–2 – 5/2gα

j–1
)
, 3 ≤ j ≤ N – 1,

a12 =
4
3

bα , a22 = bα
(
–5/2 + 4/3gα

1
)
,

a32 = bα
(
4/3 – 5/2gα

1 + 4/3gα
2
)
,

aj2 = bα
(
–1/12gα

j–4 + 4/3gα
j–3 – 5/2gα

j–2 + 4/3gα
j–1

)
, 4 ≤ j ≤ N – 1.

bjk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, k ≥ j + 3;

–1/12bβ , k = j + 2;

bβ (4/3 – 1/12gβ
1 ), k = j + 1;

bβ (4/3gβ
1 – 1/12gβ

2 ), k = j = 3, . . . , N – 1;

bβ (–4/3 + 4/3gβ
2 – 1/12gα

3 ), k = j – 1;

bβ (1/12gβ

j–k–2 – 4/3gβ

j–k–1

+ 4/3gβ

j–k+1 – 1/12gβ

j–k+2), k ≤ j – 2;
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for k = 3, 4, . . . , N – 1 and j = 1, 2, . . . , N – 1, while

b11 = 0, b21 = –4/3bβ , b31 = bβ
(
1/12 – 4/3gβ

1
)
,

bj1 = bβ
(
1/12gβ

j–3 – 4/3gβ

j–2
)
, 4 ≤ j ≤ N – 1,

b12 = 4/3bβ , b22 = 4/3bβgβ
1 , b32 = bβ

(
–4/3 + 4/3gβ

2
)
,

b24 = bβ
(
1/12 – 4/3gβ

1 + 4/3gβ
3
)
,

bj2 = bβ
(
1/12gβ

j–4 – 4/3gβ

j–3 + 4/3gβ

j–1
)
, 5 ≤ j ≤ N – 1.

In a component from Eq. (7), we have

Un+1
m = Un

m +
∑

k

AmkUn
k –

∑

k

BmkUn
k + σ

√
�tVnUn

m, (8)

in which m = 1, . . . , N – 1, where Vn is a normally distributed random variable with zero
mean and unit variance, i.e, N (0, 1) random variable [45].

4 Stability analysis of the stochastic scheme
In this section, some basic stochastic version definitions are given for the main concepts
of deterministic finite difference schemes. These concepts are extremely important for the
results of stochastic difference schemes (SDS) to converge to the solution of the stochastic
differential equations. To get a higher degree of generality, we consider a stochastic partial
differential equation (SPDE), say

Lυ(x, t) = G(x, t), x ∈ R, t ≥ 0,

with an initial condition υ(x, 0) = υ0, where L denotes the differential operator and
G ∈ L2(R) is an inhomogeneity. Assuming un

i is a solution of this problem, which is ap-
proximated by a stochastic compact finite difference scheme denoted by Ln

i , and ap-
plying the stochastic scheme to the SPDE, we have Ln

i un
i = Gn

i , whereby Gn
i is the ap-

proximation of the inhomogeneity. As before, n corresponds to the time step and i to
the spatial mesh point. For the following definitions [9], let us introduce, for the se-
quence x = {. . . , x–1, x0, x1, . . .}, the �2,�x-norm |x|2,�x =

√∑∞
i=–∞ |xi|2�x and the sup-norm

|x|∞ =
√

supi |xi|2.

Definition 4 (Consistency of a stochastic difference scheme, [9]) For a stochastic com-
pact finite difference scheme Ln

i , a stochastic difference scheme Ln
i un

i = Gn
i is pointwise

consistent with the stochastic partial differential equation Lυ = G at a point (x, t) if, for
any continuously differentiable function Φ = Φ(x, t), in the mean square

E
∥
∥(LΦ – G)|ni –

[
Ln

i Φ(i�x, n�t) – Gn
i
]∥
∥2 → 0 (9)

as �x → 0, �t → 0 and (i�x, (n + 1)�t) converges to (x, t).

Definition 5 (Stability of a stochastic difference scheme, [9]) A stochastic difference
scheme is said to be stable with respect to a norm in the mean square if there exist some
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positive constants �x0 and �t0 and non-negative constants K and θ such that

E
∥
∥un+1∥∥2 ≤ Keθ tE

∥
∥u0∥∥2 (10)

for all

0 ≤ t = (n + 1)�t, 0 ≤ �x ≤ �x0, 0 ≤ �t ≤ �t0,

where un+1 is the infinite dimensional vector:

un+1 =
(
. . . , un+1

i–2 , un+1
i–1 , un+1

i , un+1
i+2 , un+1

i+1 , . . .
)T .

Note that the norm used above was not specified. This is done in this manner because
in different situations different norms will be used.

Remark 6 By using Fourier analysis, Von Neumann [46] introduces a method to prove
stability and gives a necessary and sufficient condition for the stability of deterministic
finite difference schemes.

Assuming ûn+1 is the Fourier transformation of un+1, the Fourier-inversion formula gives

un+1
m =

1√
2π

∫ π/�x

–π/�x
eim�xξ ûn+1(ξ ) dξ , (11)

where

ûn+1 =
1√
2π

m=∞∑

m=–∞
e–im�xξ un+1

m �x, (12)

ξ is a real variable. Substituting in a stochastic difference scheme, we have

ûn+1(ξ ) = g(�xξ ,�t,�x)ûn(ξ ),

where g(�xξ ,�t,�x) is the amplification factor of the stochastic difference scheme. We
get the following necessary and sufficient condition for a scheme’s stability via its amplifi-
cation factor [9]:

E
∣
∣g(�xξ ,�t,�x)

∣
∣2 ≤ 1 + K�t.

4.1 Stability analysis of SCFD scheme
Let us prove now that the scheme in Eq. (7) fulfills the conditions of the above definitions
with �x = h.

Theorem 7 If |(1 +
∑

k Amkei(k–m)�xξ –
∑

k Bmkei(k–m)�xξ )| ≤ 1, then the SCFD scheme
Eq. (7) is conditionally stable according to the Fourier-transformation analysis for the
SFADE.
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Proof Using Eq. (11), Eq. (12) and substituting in Eq. (8), we have

Ûn+1(ξ ) = Ûn(ξ ) +
∑

k

AmkÛn(ξ )ei(k–m)�xξ –
∑

k

BmkÛn(ξ )ei(k–m)�xξ + σ
√

�tVnÛn(ξ ),

then we get

Ûn+1(ξ ) =
(

1 +
∑

k

Amkei(k–m)�xξ –
∑

k

Bmkei(k–m)�xξ + σ
√

�tVn

)

Ûn(ξ ).

Therefore, the amplification factor of the SCFD scheme is

g(�xξ ,�t,�x) =
(

1 +
∑

k

Amkei(k–m)�xξ –
∑

k

Bmkei(k–m)�xξ + σ
√

�tVn

)

.

E
∣
∣g(�xξ ,�t,�x)

∣
∣2 = E

∣
∣
∣
∣1 +

∑

k

Amkei(k–m)�xξ –
∑

k

Bmkei(k–m)�xξ + σ
√

�tVn

∣
∣
∣
∣

2

,

then we get

E
∣
∣g(�xξ ,�t,�x)

∣
∣2

= E

∣
∣
∣
∣1 +

∑

k

Amkei(k–m)�xξ –
∑

k

Bmkei(k–m)�xξ

∣
∣
∣
∣

2

+ E|σ√
�tVn|2

+ 2E
∣
∣
∣
∣

(

1 +
∑

k

Amkei(k–m)�xξ –
∑

k

Bmkei(k–m)�xξ

)

× (σ
√

�tVn)
∣
∣
∣
∣.

Due to independence of the Wiener process, with E[Vn] = 0 and E[V 2
n ] = 1, we obtain

E
∣
∣g(�xξ ,�t,�x)

∣
∣2 = E

∣
∣
∣
∣1 +

∑

k

Amkei(k–m)�xξ –
∑

k

Bmkei(k–m)�xξ

∣
∣
∣
∣

2

+ E|σ√
�t|2.

Then, if |(1 +
∑

k Amkei(k–m)�xξ –
∑

k Bmkei(k–m)�xξ )| ≤ 1 and σ 2 ≤ K , we have

E
∣
∣g(�xξ ,�t,�x)

∣
∣2 ≤ 1 + K�t.

Then, according to the Fourier-transformation analysis, SCFD scheme is stable if

E
∣
∣g(�xξ ,�t,�x)

∣
∣2 ≤ 1 + K�t. �

Before proving the following theorem, we define the following:

sup
m

∣
∣
∣
∣

∑

k

Amk

∣
∣
∣
∣ =

∑

k

Alk , (13)

sup
m

∣
∣
∣
∣

∑

k

Bmk

∣
∣
∣
∣ =

∑

k

Bqk . (14)
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Theorem 8 If (1 +
∑

k Alk –
∑

k Bqk) ≤ 1, then the SCFD scheme Eq. (7) with (n + 1)�t = t
is conditionally stable in the mean square with respect to the norm | · |∞ =

√
supi | · |2 for

the SEFKE.

Proof Applying E| · |2 to Eq. (8) and using the independence of the Wiener increment, with
E[Vn] = 0 and E[V 2

n ] = 1, we obtain

E
∣
∣Un+1

m
∣
∣2 = E

[

Un
m +

∑

k

AmkUn
k –

∑

k

BmkUn
k + σ

√
�tVnUn

m

]2

,

E
∣
∣Un+1

m
∣
∣2 = E

∣
∣
∣
∣U

n
m +

∑

k

AmkUn
k –

∑

k

BmkUn
k

∣
∣
∣
∣

2

+ σ 2�tE
∣
∣Un

m
∣
∣2.

Therefore by Eq. (13) and Eq. (14)

E
∣
∣Un+1

m
∣
∣2 ≤

[[

1 +
∑

k

Alk –
∑

k

Bqk

]2

+ σ 2�t
]

sup
m

E
∣
∣Un

m
∣
∣2,

sup
m

E
∣
∣Un+1

m
∣
∣2 ≤ [

SC2 + σ 2�t
]

sup
m

E
∣
∣Un

m
∣
∣2,

where

SC = 1 +
∑

k

Alk –
∑

k

Bqk .

This holds for all m, and therefore we get

sup
m

E
∣
∣Un+1

m
∣
∣2 ≤ [

SC2 + σ 2�t
]n+1

sup
m

E
∣
∣U0

m
∣
∣2,

Obviously, if SC ≤ 1, then with (n + 1)�t = t we have

sup
m

E
∣
∣Un+1

m
∣
∣2 ≤

[

1 + σ 2 t
t + 1

]n+1

sup
m

E
∣
∣U0

m
∣
∣2,

E
∥
∥Un+1

m
∥
∥2

∞ ≤
[

1 + σ 2 t
t + 1

]n+1

E
∥
∥U0

m
∥
∥2

∞,

E
∥
∥Un+1

m
∥
∥∞ ≤

[

1 + σ 2 t
t + 1

] n+1
2

E
∥
∥U0

m
∥
∥∞,

E
∥
∥Un+1∥∥∞ ≤ eθ tE

∥
∥U0∥∥∞,

where θ = σ 2

2 . Therefore, according to Definition 5, the proposed scheme is conditionally
stable. �

Theorem 9 If (1 +
∑

k Amk –
∑

k Bmk) ≤ 1, then the SCFD scheme Eq. (7) with (n +
1)�t = t is conditionally stable in the mean square with respect to the norm | · |2,�x =√∑∞

i=–∞ | · |2�x for the SFADE.
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Proof Applying E| · |2 to Eq. (8) and using the independence of the Wiener increment, with
E[Vn] = 0 and E[V 2

n ] = 1, we obtain

E
∣
∣Un+1

m
∣
∣2 = E

[

Un
m +

∑

k

AmkUn
k –

∑

k

BmkUn
k + σ

√
�tVnUn

m

]2

,

E
∣
∣Un+1

m
∣
∣2 = E

∣
∣
∣
∣U

n
m +

∑

k

AmkUn
k –

∑

k

BmkUn
k

∣
∣
∣
∣

2

+ σ 2�tE
∣
∣Un

m
∣
∣2.

Adding up over m yields

∞∑

m=–∞
E
∣
∣Un+1

m
∣
∣2

�x ≤ [
SC2 + σ 2�t

]
∞∑

m=–∞
E
∣
∣Un

m
∣
∣2

�x,

where

SC = 1 +
∑

k

Amk –
∑

k

Bmk .

In case, 1 +
∑

k Amk –
∑

k Bmk ≤ 1, with (n + 1)�t = t, we have

∞∑

m=–∞
E
∣
∣Un+1

m
∣
∣2

�x ≤
[

1 + σ 2 t
t + 1

]n+1 ∞∑

m=–∞
E
∣
∣Un

m
∣
∣2

�x,

E
∥
∥Un+1

m
∥
∥2

2,�x ≤
[

1 + σ 2 t
t + 1

]n+1

E
∥
∥Un

m
∥
∥2

2,�x,

E
∥
∥Un+1

m
∥
∥2

2,�x ≤
[

1 + σ 2 t
t + 1

]n+1

E
∥
∥Un

m
∥
∥2

2,�x ≤
[

1 + σ 2 t
t + 1

]n+1

E
∣
∣U0

m
∣
∣2
2,�x.

Since �t = t
(n+1) , we get

E
∥
∥Un+1

m
∥
∥2

2,�x ≤
[

1 + σ 2 t
t + 1

](n+1)

E
∥
∥U0

m
∥
∥2

2,�x,

E
∥
∥Un+1∥∥2

2,�x ≤ eθ tE
∥
∥U0∥∥

2,�x,

where θ = σ 2.
Therefore, according to Definition 5, the proposed scheme is conditionally stable. �

Theorem 10 SCFD scheme (7) is consistent in the mean square in the sense of Definition 1.

Proof Let Φ(x, t) be a smooth function, then we have

L(Φ)|nm = Φ
(
m�x, (n + 1)�t

)
– Φ(m�x, n�t)

+ γ

∫ (n+1)�t

n�t
xDβΦ(m�x, s) ds – ρ

∫ (n+1)�t

n�t
xDαΦ(m�x, s) ds

– σ

∫ (n+1)�t

n�t
Φ(m�x, s) dW (s),
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and

Ln
m(Φ) = Φ

(
m�x, (n + 1)�t

)
– Φ(m�x, n�t)

+ γ�t
∑

k=1

BmkΦ(m�x, n�t) – ρ�t
∑

k=1

AmkΦ(m�x, n�t)

– σΦ(m�x, n�t)(W
(
(n + 1)�t – W (n�t)

)
.

Note that here we have

bα =
1

hαΓ (3 – α)
, bβ =

1
hβΓ (2 – β)

.

By the square property of Itô integral, we have

E
∣
∣L(Φ)|nm – Ln

m(Φ)
∣
∣2 = E

∣
∣
∣
∣γ

∫ (n+1)�t

n�t

(

xDβΦ(m�x, s) –
∑

k=1

BmkΦ(m�x, n�t)
)

ds

– ρ

∫ (n+1)�t

n�t

(

xDαΦ(m�x, s) –
∑

k=1

AmkΦ(m�x, n�t)
)

ds

– σ

∫ (n+1)�t

n�t

(
Φ(m�x, s) – Φ(m�x, n�t)

)
dW (s)

∣
∣
∣
∣

2

,

we can use the following inequality:

E|X + Y + Z|2 ≤ 4E|X|2 + 4E|Y |2 + 4E|Z|2,

E
∣
∣L(Φ)|nm – Ln

m(Φ)
∣
∣2

≤ 4(γ )2
E

∣
∣
∣
∣

∫ (n+1)�t

n�t

(

xDβΦ(m�x, s) –
∑

k=1

BmkΦ(m�x, n�t)
)

ds
∣
∣
∣
∣

2

+ 4(ρ)2
E

∣
∣
∣
∣

∫ (n+1)�t

n�t

(

xDαΦ(m�x, s) –
∑

k=1

AmkΦ(m�x, n�t)
)

ds
∣
∣
∣
∣

2

+ 4(σ )2
E

∣
∣
∣
∣

∫ (n+1)�t

n�t

(
Φ(m�x, s) – Φ(m�x, n�t)

)
dW (s)

∣
∣
∣
∣

2

.

Since Φ(x, t) is a deterministic function, then E|L(Φ)|nm – Ln
m(Φ)|2 → 0 as n, m → ∞.

So, the SCFD scheme is consistent in the mean square. �

5 Numerical results
In this section, the performance of the stochastic compact finite difference method
(SCFDM) for solving the proposed stochastic fractional advection diffusion equation
(SFADE) Eq. (1) is considered and applied to some test examples [47]. For computational
purposes, it is useful to consider discrete Brownian motion where W (t) is specified at dis-
crete t values. It is set 1000 code runs for each {�x,�t} with different sample of noise by
Matlab.
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5.1 Example 1
Examine the performance of the proposed SCFD schemes for stochastic diffusion equa-
tion of the form

ut(x, t) =
1

20
Dα

x u(x, t) +
5
2

u(x, t)Ẇ (t), t ∈
(

0,
3
5

]

, x ∈ (0, 1), (15)

subject to the following initial condition:

u(x, 0) = exp

(

–
(x – 1

2 )2

1
20

)

,

with the boundary conditions

u(0, t) =
1√

4t + 1
exp

(

–
(– 1

2 )2

1
20 (4t + 1)

)

,

u(1, t) =
1√

4t + 1
exp

(

–
( 1

2 )2

1
20 (4t + 1)

)

.

In the integer case α = 2, the exact solution is

u(x, t) =
1√

4t + 1
exp

(

–
(x – 1

2 )2

1
20 (4t + 1)

)

.

Let N and M be the total number of grid points for the space and time discretizations,
respectively. We plot in Fig. 1 a solution of Eq. (15) using both the SCFD scheme along
with the exact solution with α = 2, N = 100, and M = 800 at t = 3

5 . It can be seen that the
numerical method scheme performs well in comparison with reference research.

Table 1 presents the absolute error of the solution of (15) using SCFDM during the time
interval [0, 3

5 ] with α = 2 and different values of M and N . We see that the SCFD method
is stable and more accurate as h, �t → 0.

For studying the performance of the proposed SCFDM, we use the exact solution to
evaluate the error function

en
i =

∣
∣un

i – uexact(x, t)
∣
∣,

Figure 1 The exact solution and a solution of SFDE
using SCFDM
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Table 1 The absolute error

N M e(u(0.4, 0.6)) e(u(0.5, 0.6)) e(u(0.6, 0.6))

25 50 3.9E–02 1.5E–02 2.5E–03
50 200 1.6E–02 6.4E–03 2.4E–03
100 800 3.9E–03 2.2E–03 3.2E–04

N M e(u(0.7, 0.6)) e(u(0.8, 0.6))

25 50 2.7E–03 6.2E–04
50 200 5.1E–04 5.7E–04
100 800 1.4E–04 1.2E–05

Table 2 Spatial and temporal error norms for SCFDM with α = 2 at t = 0.6

N M ‖e‖L1s ‖e‖L2s ‖e‖L1t ‖e‖L2t
25 50 3.8E–03 8E–03 3.8E–03 5.1E–03
50 200 2.8E–03 6.2E–03 2.8E–03 3.9E–03
100 800 1.3E–03 2.4E–03 1.4E–03 1.2E–03

where uexact(x, t) and un
i are respectively the exact and numerical solutions at the lattice

points (xi, tn).
The spatial discrete error norms are defined by

‖e‖L1
s

= h
∑

i

|ei|, ‖e‖L2
s

=
(

h
∑

i

|ei|2
)1/2

.

And to investigate the time accuracy of the method, we define the temporal discrete error-
norms:

‖e‖L1
t

= �t
∑

n

∥
∥en∥∥

L2
s
, ‖e‖L2

t
=

(

�t
∑

n

∥
∥en∥∥2

L2
s

)1/2

,

where ‖ · ‖Lp
s

= ‖ · ‖Lp([0,X]) and ‖ · ‖Lp
t

= ‖ · ‖Lp([0,T])

denote the discrete Lp-norm in the space domain (0, X) and the time interval [0, T],
respectively.

In Table 2, we summarize the spatial and temporal errors for the diffusion equation
Eq. (15) with different values of N and M using the SCFD method. In comparison with the
reference research, we can see the good performance of the SCFD scheme. A numerical
solution of the stochastic diffusion equation Eq. (15) using the SCFD scheme is shown in
Fig. 2 on time interval [0, 3

5 ] with α = 2, 1.6, N = 100, and M = 800. We can see that the
fractional diffusion α = 1.6 is slower than the standard diffusion α = 2.

Figure 3 shows the approximate solution of (15) obtained by SCFDM with different val-
ues of α, N = 50, and M = 200 at time t = 0.6. It can be observed that as α is decreased from
2 to 1 the amplitude of the solution behavior is increased. From Figs. 1–3 we conclude
that the behavior of the solution continuously depends on the Caputo space fractional
derivative.
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Figure 2 Mean solutions of stochastic diffusion equation using SCFDM

Figure 3 Mean solutions of SFDE using SCFDM

5.2 Example 2
In this example we investigate the efficiency of the SCFD scheme for approximating a
solution of the SFADE of the form

ut(x, t) =
1

20
Dα

x u(x, t) –
1
2

Dβ
x u(x, t) +

5
2

u(x, t)Ẇ (t), t ∈
(

0,
3
5

]

, x ∈ (0, 1), (16)

subject to the following initial condition:

u(x, 0) = exp

(

–
(x – 1

2 )2

1
20

)

,

with the boundary conditions

u(0, t) =
1√

4t + 1
exp

(

–
(– 1

2 – 1
2 t)2

1
20 (4t + 1)

)

,

u(1, t) =
1√

4t + 1
exp

(

–
( 1

2 – 1
2 t)2

1
20 (4t + 1)

)

.
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Figure 4 The exact solution and a solution of SFADE
using SCFDM

Table 3 The absolute error

N M e(u(0.4, 0.6)) e(u(0.5, 0.6)) e(u(0.6, 0.6))

25 50 1.1E–04 4.2E–04 6E–03
50 200 1.4E–06 1.2E–04 5E–03
100 800 1.5E–07 9.4E–05 1.9E–04

N M e(u(0.7, 0.6)) e(u(0.8, 0.6))

25 50 1.3E–02 2.2E–03
50 200 4.4E–03 1.9E–03
100 800 1.8E–03 8.7E–04

Table 4 Spatial and temporal error norms for SCFDM with α = 2 and β = 1 at t = 0.6

N M ‖e‖L1s ‖e‖L2s ‖e‖L1t ‖e‖L2t
25 50 9.3E–03 1.7E–02 7.5E–03 1.02E–02
50 200 5.6E–03 1.01E–02 4.9E–03 6.7E–03
100 800 1.2E–03 2.6E–03 1.3E–03 1.7E–03

In the integer, the exact solution is

u(x, t) =
1√

4t + 1
exp

(

–
(x – 1

2 – 1
2 t)2

1
20 (4t + 1)

)

.

Figure 4 shows a solution of (16) using both the SCFD scheme along with the exact solu-
tion with α = 2, β = 1, N = 100, and M = 800 at time 3

5 . We can see the good performance
of the SCFD method.

In Table 3, the absolute error of the solution of (16) using SCFDM during the time in-
terval [0, 3

5 ] with α = 2, β = 1 and different values of M and N is given.
Table 4 shows the spatial and temporal errors for SFADE Eq. (16) with several values of

N and M using the SCFDM. The results in Tables 3 and 4 show that the SCFD scheme
performs better than the reference research.

Figure 5 shows the approximations of SFADE Eq. (16) using the SCFD scheme on a 100
by 800 grid during the time interval [0, 0.6].

From the figures we see that as α and β are decreased, the amplitude of the solution
behavior is increased.
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Figure 5 Mean solutions of SFADE using SCFDM

Figure 6 An approximate solution with β = 0.4 and α = 1.4, 1.6, 1.8, 1.9, 2

Figure 6 shows an approximate solution obtained of SFADE Eq. (16) by SCFDM for
different values of α and β = 0.4 on a mesh of 100 and 800 grid points. It can be seen that
the process described by fractional α is slightly more skewed to the left than that modeled
by the standard α = 2.

Figure 7 shows an approximate solution of SFADE Eq. (16) obtained by SCFDM for
different values of β and α = 1.8 on a mesh of 100 and 800 grid points. It can be seen
that the process described by fractional β is also slightly more skewed to the left than that
modeled by the standard β = 1.
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Figure 7 An approximate solution with α = 1.8 and β = 0.4, 0.6, 0.8, 0.9, 0.9999

From Figs. 4–7, we conclude that the solution when α and β are fractional orders is
slower than the solution in the integer case when α = 2, β = 1. Furthermore, it is seen that
the solution continuously depends on the Caputo space fractional derivatives.

6 Conclusions
In this paper, a numerical solution for SFADE with real-valued Brownian motion is stud-
ied using effective SCFDM. The stability and consistency of the SCFD scheme are inves-
tigated for the SFADE with respect to a norm in the mean square, where the scheme is
conditionally stable. Some numerical results and figures are given to demonstrate that the
SCFDM performs well in approximating the exact solution of the SFADE and how it is
computationally applicable.
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