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Abstract
The polyexponential functions were introduced by Hardy and rediscovered by Kim, as
inverses to the polylogarithm functions. Recently, the type 2 poly-Bernoulli numbers
and polynomials were defined by means of the polyexponential functions. In this
paper, we introduce the degenerate polyexponential functions and the degenerate
type 2 poly-Bernoulli numbers and polynomials, as degenerate versions of such
functions and numbers and polynomials. We derive several explicit expressions and
some identities for those numbers and polynomials.
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1 Introduction
For k ∈ Z, the polyexponential function is defined by

Eik(x) =
∞∑

n=1

xn

(n – 1)!nk (see [10]). (1)

By (1), we see that Ei1(x) = ex – 1.
The polyexponential function was first introduced by Hardy and is given by

e(x, a|s) =
∞∑

n=0

xn

(n + a)sn!
(
Re(a) > 0

)
.

We note here that e(x, 1|k) = 1
x Eik(x).

In [10], the type 2 poly-Bernoulli polynomials are defined by

1
et – 1

Eik
(
log(1 + t)

)
ext =

∞∑

n=0

B(k)
n (x)

tn

n!
. (2)

When x = 0, B(k)
n = B(k)

n (0) are called type 2 poly-Bernoulli numbers.
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From (1) and (2), we note that B(1)
n (x) = Bn(x) (n ≥ 0), where Bn(x) are ordinary Bernoulli

polynomials given by

t
et – 1

ext =
∞∑

n=0

Bn(x)
tn

n!
(see [1–18, 20–24]).

In particular, Bn = Bn(0) (n ≥ 0) are called Bernoulli numbers.
For λ ∈R, the degenerate exponential function is defined as

ex
λ(t) = (1 + λt)

x
λ , eλ(t) = e1

λ(t) = (1 + λt)
1
λ (see [11–15, 17, 19]). (3)

In [2, 3], Carlitz considered the degenerate Bernoulli polynomials which are given by

t
eλ(t) – 1

ex
λ(t) =

t

(1 + λt)
1
λ – 1

(1 + λt)
x
λ =

∞∑

n=0

βn,λ(x)
tn

n!
. (4)

When x = 0, βn,λ = βn,λ(0) are called degenerate Bernoulli numbers.
Recently, the degenerate polylogarithm function was defined by Kim–Kim as

lk,λ(x) =
∞∑

n=1

(–λ)n–1(1)n,1/λ

(n – 1)!nk xn (
k ∈ Z, |x| < 1

)
(see [17]), (5)

where (x)0,λ = 1, (x)n,λ = x(x – λ) · · · (x – (n – 1)λ) (n ≥ 1).
Note that limλ→0 lk,λ(x) =

∑∞
n=1

xn

nk = Lik(x) is the polylogarithm of index k.
For k ∈ Z, the degenerate poly-Bernoulli numbers are defined by

1
x

lk,λ(x)|x=1–eλ(–t) =
∞∑

n=0

β
(k)
n,λ

tn

n!
(see [17]). (6)

In [17], the degenerate Stirling numbers of the second kind are defined by

(x)n,λ =
n∑

l=0

S2,λ(n, l)(x)l (n ≥ 0). (7)

As an inversion formula of (7), the degenerate Stirling numbers of the first kind are defined
by

(x)n =
n∑

l=0

S1,λ(n, l)(x)l,λ (n ≥ 0) (see [23]). (8)

From (7) and (8), we note that

1
k!

(
eλ(t) – 1

)k =
∞∑

n=k

S2,l(n, k)
tn

n!
(9)

and

1
k!

(
logλ(1 + t)

)k =
∞∑

n=k

S1,λ(n, k)
tn

n!
(k ≥ 0) (see [17]), (10)
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where logλ(t) = 1
λ

(tλ – 1) is the compositional inverse of eλ(t) satisfying logλ(eλ(t)) =
eλ(logλ(t)) = t.

Kaneko defined the poly-Bernoulli numbers by making use of the polylogarithm func-
tions and Kim–Kim–Kim–Jang studied degenerate poly-Bernoulli numbers and polyno-
mials by using polyexponential function [18]. The polyexponential functions were first
introduced by Hardy and rediscovered recently by Kim–Kim [10], as inverses to the poly-
logarithm functions. In addition, the type 2 poly-Bernoulli numbers and polynomials were
defined by means of the polyexponential functions. In this paper, we study the degener-
ate polyexponential functions and the degenerate type 2 poly-Bernoulli polynomials and
numbers, as degenerate versions of such functions and numbers and polynomials. We de-
rive several explicit expressions and some identities for those numbers and polynomials.

2 Type 2 degenerate poly-Bernoulli numbers and polynomials
The degenerate polyexponential function is defined in [15]. In the light of (1), we now
consider the degenerate modified polyexponential function given by

Eik,λ(x) =
∞∑

n=1

(1)n,λxn

(n – 1)!nk

(
k ∈ Z, |x| < 1

)
. (11)

Note that Ei1,λ(x) = eλ(x) – 1.
From (11), we note that

d
dx

Eik,λ(x) =
1
x

∞∑

n=1

(1)n,λxn

(n – 1)!nk–1 =
1
x

Eik–1,λ(x). (12)

For k ≥ 2, by (12), we have

Eik,λ(x) =
∫ x

0

1
t

∫ t

0

1
t

∫ t

0
· · · 1

t

∫ t

0︸ ︷︷ ︸
(k–2)-times

1
t

Ei1,λ(t) dt · · · dt

=
∫ x

0

1
t

∫ t

0

1
t

∫ t

0
· · · 1

t

∫ t

0︸ ︷︷ ︸
(k–2)-times

1
t
(
eλ(t) – 1

)
dt · · · dt. (13)

In view of (2) and using the degenerate modified polyexponential function, we define the
type 2 degenerate poly-Bernoulli polynomials by

Eik,λ(logλ(1 + t))
eλ(t) – 1

ex
λ(t) =

∞∑

n=0

B(k)
n,λ(x)

tn

n!
(k ∈ Z). (14)

When x = 0, B(k)
n,λ = B(k)

n,λ(0) are called type 2 degenerate poly-Bernoulli numbers.
It is well known that the degenerate Bernoulli polynomials of the second kind are defined

by

t
logλ(1 + t)

(1 + t)x =
∞∑

n=0

bn,λ(x)
tn

n!
(see [17]). (15)
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When x = 0, bn,λ = bn,λ(0) (n ≥ 0), are called degenerate Bernoulli numbers of the second
kind.

Note that limλ→0 bn,λ = bn (n ≥ 0). Here bn are the Bernoulli numbers of the second kind,
according to Roman [23], given by

t
log(1 + t)

=
∞∑

n=0

bn
tn

n!
(see [6, 22, 23]). (16)

From (12), we note that

d
dx

Eik,λ
(
logλ(1 + x)

)
=

d
dx

∞∑

n=1

(1)n,λ(logλ(1 + x))n

(n – 1)!nk

=
(1 + x)λ–1

logλ(1 + x)

∞∑

n=1

(1)n,λ(logλ(1 + x))n

(n – 1)!nk–1

=
(1 + x)λ–1

logλ(1 + x)
Eik–1,λ

(
logλ(1 + x)

)
. (17)

By (17), for k ≥ 2, we have

Eik,λ
(
logλ(1 + x)

)
=

∫ x

0

(1 + t)λ–1

logλ(1 + t)

∫ t

0
· · · (1 + t)λ–1

logλ(1 + t)

∫ t

0︸ ︷︷ ︸
(k–2)-times

(1 + t)λ–1

logλ(1 + t)
t dt · · · dt. (18)

Thus, from (14) and (18), we have

∞∑

n=0

B(k)
n,λ

xn

n!
=

1
eλ(x) – 1

Eik,λ
(
logλ(1 + x)

)

=
1

eλ(x) – 1

∫ x

0

(1 + t)λ–1

logλ(1 + t)

∫ t

0
· · · (1 + t)λ–1

logλ(1 + t)

∫ t

0︸ ︷︷ ︸
(k–2)-times

(1 + t)λ–1

logλ(1 + t)
t dt · · · dt

=
x

eλ(x) – 1

∞∑

m=0

∑

m1+···+mk–1=m

(
m

m1, . . . , mk–1

)

× bm1,λ(λ – 1)
m1 + 1

bm2,λ(λ – 1)
m1 + m2 + 1

· · · bmk–1,λ(λ – 1)
m1 + · · · + mk–1 + 1

xm

m!

=
∞∑

n=0

n∑

m=0

(
n
m

) ∑

m1+···+mk–1=m

(
m

m1, . . . , mk–1

)

× bm1,λ(λ – 1)
m1 + 1

bm2,λ(λ – 1)
m1 + m2 + 1

· · · bmk–1,λ(λ – 1)
m1 + · · · + mk–1 + 1

βn–m,λ
xn

n!
. (19)

Therefore, by (19), we obtain the following theorem.
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Theorem 1 For n ≥ 0, we have

B(k)
n,λ =

n∑

m=0

(
n
m

) ∑

m1+···+mk–1=m

(
m

m1, . . . , mk–1

)

× bm1,λ(λ – 1)
m1 + 1

bm2,λ(λ – 1)
m1 + m2 + 1

· · · bmk–1,λ(λ – 1)
m1 + · · · + mk–1 + 1

βn–m,λ. (20)

From (14), we note that

∞∑

n=0

B(k)
n,λ(x)

tn

n!
=

Eik,λ(logλ(1 + t))
eλ(t) – 1

ex
λ(t)

=
∞∑

l=0

B(k)
l,λ

tl

l!

∞∑

m=0

(x)m,λ
tm

m!

=
∞∑

n=0

( n∑

l=0

(
n
l

)
(x)n–l,λB(k)

l,λ

)
tn

n!
. (21)

Therefore, by comparing the coefficients on both sides of (21), we obtain the following
theorem.

Theorem 2 For n ≥ 0, we have

B(k)
n,λ(x) =

n∑

l=0

(
n
l

)
(x)n–l,λB(k)

l,λ .

Now, we observe that

1
eλ(t) – 1

Eik,λ
(
logλ(1 + t)

)
=

1
eλ(t) – 1

∞∑

m=1

(1)m,λ(logλ(1 + t))m

(m – 1)!mk

=
1

eλ(t) – 1

∞∑

m=1

(1)m,λ

mk–1
1

m!
(
logλ(1 + t)

)m

=
1

eλ(t) – 1

∞∑

m=1

(1)m,λ

mk–1

∞∑

n=m
S1,λ(n, m)

tn

n!

=
1

eλ(t) – 1

∞∑

n=1

( n∑

m=1

(1)m,λ

mk–1 S1,λ(n, m)

)
tn

n!

=
t

eλ(t) – 1

∞∑

n=0

1
n + 1

( n+1∑

m=1

S1,λ(n + 1, m)
(1)m,λ

mk–1

)
tn

n!
. (22)

Thus, by (4) and (22), we get

1
eλ(t) – 1

Eik,λ
(
logλ(1 + t)

)
=

∞∑

j=0

βj,λ
tj

j!

∞∑

l=0

1
l + 1

( l+1∑

m=1

S1,λ(l + 1, m)(1)m,λ

mk–1

)
tl

l!

=
∞∑

n=0

( n∑

l=0

(n
l
)

l + 1

l+1∑

m=1

S1,λ(l + 1, m)
mk–1 (1)m,λβn–l,λ

)
tn

n!
. (23)
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On the other hand,

1
eλ(t) – 1

Eik,λ
(
logλ(1 + t)

)
=

∞∑

n=0

B(k)
n,λ

tn

n!
. (24)

Therefore, by (23) and (24), we obtain the following theorem.

Theorem 3 For n ≥ 0, we have

B(k)
n,λ =

n∑

l=0

(n
l
)

l + 1

l+1∑

m=1

S1,λ(l + 1, m)
mk–1 (1)m,λβn–l,λ.

By letting λ → 0, we get

B(k)
n =

n∑

l=0

(n
l
)

l + 1

l+1∑

m=1

S1(l + 1, m)
mk–1 Bn–l (n ≥ 0).

From (14), we note that

Eik,λ
(
logλ(1 + t)

)
=

(
eλ(t) – 1

) ∞∑

l=0

B(k)
l,λ

tl

l!

=

( ∞∑

m=0

(1)m,λ

m!
tm – 1

) ∞∑

l=0

B(k)
l,λ

tl

l!

=
∞∑

n=0

( n∑

m=0

(
n
m

)
(1)n–m,λB(k)

m,λ – B(k)
n,λ

)
tn

n!

=
∞∑

n=1

(
B(k)

n,λ(1) – B(k)
n,λ

) tn

n!
. (25)

On the other hand,

Eik,λ
(
logλ(1 + t)

)
=

∞∑

m=1

(1)m,λ(logλ(1 + t))m

(m – 1)!mk

=
∞∑

m=1

(1)m,λ

mk–1
1

m!
(
logλ(1 + t)

)m

=
∞∑

m=1

(1)m,λ

mk–1

∞∑

n=m
S1,λ(n, m)

tn

n!

=
∞∑

n=1

( n∑

m=1

(1)m,λS1,λ(n, m)
mk–1

)
tn

n!
. (26)

Therefore, by (25) and (26), we obtain the following theorem.

Theorem 4 For n ∈N and k ∈ Z, we have

B(k)
n,λ(1) – B(k)

n,λ =
n∑

m=1

(1)m,λS1,λ(n, m)
mk–1 .
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From (11), we note that

Ei1,λ(x) =
∞∑

n=1

(1)n,λ

n!
xn = eλ(x) – 1. (27)

By (27), we get

Ei1,λ
(
logλ(1 + t)

)
=

∞∑

m=1

(1)m,λ

m!
(
logλ(1 + t)

)m

=
∞∑

m=1

(1)m,λ

∞∑

n=m
S1,λ(n, m)

tn

n!

=
∞∑

n=1

( n∑

m=1

(1)m,λS1,λ(n, m)

)
tn

n!
. (28)

On the other hand,

Ei1,λ
(
logλ(1 + t)

)
= t. (29)

Therefore, by (28) and (29), we obtain the following theorem.

Theorem 5 For n ∈N, we have

n∑

m=1

(1)m,λS1,λ(n, m) = δn,1,

where δn,k is the Kronecker delta.

Note that

lim
λ→0

(
B(1)

n,λ(1) – B(1)
n,λ

)
= Bn(1) – Bn =

⎧
⎨

⎩
1, if n = 1,

0, if n > 1.
(30)

Thus, by Theorems 4 and 5, we get

βn,λ(1) – βn,λ =
n∑

m=1

(1)m,λS1,λ(n, m) =

⎧
⎨

⎩
1, if n = 1,

0, if n > 1.
(31)

From (14), we note that

Eik,λ(logλ(1 + t))
eλ(t) – 1

=
∞∑

n=0

B(k)
n,λ

tn

n!
.
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By replacing t by eλ(t) – 1, we get

∞∑

m=0

B(k)
m,λ

1
m!

(
eλ(t) – 1

)m

=
Eik,λ(t)

eλ(eλ(t) – 1) – 1
=

eλ(t) – 1
eλ(eλ(t) – 1) – 1

t
eλ(t) – 1

1
t

Eik,λ(t)

=
∞∑

i1=0

βi1,λ
1
i1!

(
eλ(t) – 1

)i1
∞∑

j=0

βj,λ
tj

j!

∞∑

m=0

(1)m+1,λ

(m + 1)k
tm

m!

=
∞∑

i1=0

βi1,λ

∞∑

i2=i1

S2,λ(i2, i1)
ti2

i2!

∞∑

j=0

βj,λ
tj

j!

∞∑

m=0

(1)m+1,λ

(m + 1)k
tm

m!

=
∞∑

i2=0

i2∑

i1=0

βi1,λS2,λ(i2, i1)
ti2

i2!

∞∑

j=0

βj,λ
tj

j!

∞∑

m=0

(1)m+1,λ

(m + 1)k
tm

m!

=
∞∑

i3=0

( i3∑

i2=0

i2∑

i1=0

(
i3

i2

)
βi1,λS2,λ(i2, i1)βi3–i2,λ

)
ti3

i3!

∞∑

m=0

(1)m+1,λ

(m + 1)k
tm

m!

=
∞∑

n=0

( n∑

i3=0

i3∑

i2=0

i2∑

i1=0

(
n
i3

)(
i3

i2

)
βi1,λS2,λ(i2, i1)βi3–i2,λ

(1)n–i3+1,λ

(n – i3 + 1)k

)
tn

n!
. (32)

On the other hand,

∞∑

m=0

B(k)
m,λ

1
m!

(
eλ(t) – 1

)m =
∞∑

m=0

B(k)
m,λ

∞∑

n=m
S2,λ(n, m)

tn

n!

=
∞∑

n=0

( n∑

m=0

B(k)
m,λS2,λ(n, m)

)
tn

n!
. (33)

Therefore, by (32) and (33), we obtain the following theorem.

Theorem 6

n∑

m=0

B(k)
m,λS2,λ(n, m) =

n∑

i3=0

i3∑

i2=0

i2∑

i1=0

(
n
i3

)(
i3

i2

)
βi1,λS2,λ(i2, i1)βi3–i2,λ

(1)n–i3+1,λ

(n – i3 + 1)k .

3 Further remark
The higher-order degenerate Bernoulli polynomials are defined by Carlitz and given by

(
t

eλ(t) – 1

)r

ex
λ(t) =

∞∑

n=0

β
(r)
n,λ(x)

tn

n!
(see [2, 3]), (34)

where r is a positive integer.
When x = 0, β (r)

n,λ = β
(r)
n,λ(0) are called higher-order degenerate Bernoulli numbers.
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We observe that

1
tr

(
logλ(1 + t)

)r =
r!
tr

1
r!

(
logλ(1 + t)

)r

=
r!
tr

∞∑

n=r
S1,λ(n, r)

tn

n!

=
r!
tr

∞∑

n=0

S1,λ(n + r, r)
n!

(n + r)!
tn+r

n!

=
∞∑

n=0

S1,λ(n + r, r)(n+r
r

) tn

n!
. (35)

Replacing t by logλ(1 + t) in (34), we get

(
logλ(1 + t)

t

)r

=
∞∑

m=0

β
(r)
m,λ

1
m!

(
logλ(1 + t)

)m

=
∞∑

m=0

β
(r)
m,λ

∞∑

n=m
S1,λ(n, m)

tn

n!

=
∞∑

n=0

( n∑

m=0

β
(r)
m,λS1,λ(n, m)

)
tn

n!
. (36)

Therefore, by (35) and (36), we obtain the following theorem.

Theorem 7 For n ≥ 0, we have

S1,λ(n + r, r) =
(

n + r
r

) n∑

m=0

β
(r)
m,λS1,λ(n, m).

Now, we consider the inversion formula of Theorem 7. Replacing t by eλ(t) – 1 in (35),
we get

(
t

eλ(t) – 1

)r

=
∞∑

m=0

S1(m + r, r)(m+r
r

) 1
m!

(
eλ(t) – 1

)m

=
∞∑

m=0

S1(m + r, r)(m+r
r

)
∞∑

n=m
S2,λ(n, m)

tn

n!

=
∞∑

n=0

( n∑

m=0

S1,λ(m + r, r)(m+r
r

) S2,λ(n, m)

)
tn

n!
. (37)

On the other hand,

(
t

eλ(t) – 1

)r

=
∞∑

n=0

β
(r)
n,λ

tn

n!
(see [2, 3]). (38)

Therefore, by (37) and (38), we obtain the following theorem.
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Theorem 8 For n ≥ 0, we have

β
(r)
n,λ =

n∑

m=0

S1,λ(m + r, m)(m+r
r

) S2,λ(n, m).

Replacing t by logλ(1 + t) in (9) and making use of (10), we get

1
k!

tk =
∞∑

m=k

S2,λ(m, k)
1

m!
(
logλ(1 + t)

)m

=
∞∑

m=k

S2,λ(m, k)
∞∑

n=m
S1,λ(n, m)

tn

n!

=
∞∑

n=k

( n∑

m=k

S2,λ(m, k)S1,λ(n, m)

)
tn

n!
. (39)

Therefore, by comparing the coefficient on both sides of (39), we get

n∑

m=k

S1,λ(n, m)S2,λ(m, k) = δn,k (0 ≤ k ≤ n), (40)

where δn,k is Kronecker’s delta.
The degenerate Bernoulli numbers of the second kind of order r are given by

(
t

logλ(1 + t)

)r

=
∞∑

n=0

b(r)
n,λ

tn

n!
. (41)

Note that limλ→0 b(r)
n,λ = b(r)

n are the Bernoulli numbers of the second kind of order r.
Replacing t by eλ(t) – 1, we get

1
tr

(
eλ(t) – 1

)r =
∞∑

m=0

b(r)
m,λ

1
m!

(
eλ(t) – 1

)m

=
∞∑

m=0

b(r)
m,λ

∞∑

n=m
S2,λ(n, m)

tn

n!

=
∞∑

n=0

( n∑

m=0

b(r)
m,λS2,λ(n, m)

)
tn

n!
. (42)

On the other hand,

1
tr

(
eλ(t) – 1

)r =
r!
tr

1
r!

(
eλ(t) – 1

)r =
r!
tr

∞∑

n=r
S2,λ(n, r)

tn

n!

=
∞∑

n=0

S2,λ(n + r, r)(n+r
r

) tn

n!
. (43)
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Thus, by (42) and (43), we get

S2,λ(n + r, r) =
(

n + r
r

) n∑

m=0

b(r)
m,λS2,λ(n, m). (44)

By the same method as in the above, the inversion formula of (44) is given by

b(r)
n =

n∑

m=0

S2,λ(m + r, r)(m+r
r

) S1,λ(n, m) (n ≥ 0). (45)

4 Conclusion
Recently, Kim–Kim introduced degenerate polyexponential functions and degenerate Bell
polynomials [15] and they studied degenerate poly-Bernoulli numbers and polynomials
from degenerate polylogarithm function. In [10], Kim–Kim also studied polyexponential
functions as an inverse to the polylogarithm functions, constructed type 2 poly-Bernoulli
polynomials by using this and derived various properties of type 2 poly-Bernoulli num-
bers. In addition, they investigated unipoly functions attached to each suitable arithmetic
function as a universal concept which includes the polylogarithm and polyexponential
functions as special cases. As the degenerate version of the type 2 poly-Bernoulli poly-
nomials, we study the degenerate polyexponential functions and the degenerate type 2
poly-Bernoulli numbers and polynomials. Finally, we derive several explicit expressions
and some identities for those numbers and polynomials. Proof techniques and results de-
veloped in this research paper are expected to be of great help to researchers in this field
in the future.
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