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Abstract
In this paper, we consider a predator–prey metapopulation model with a
ring-structured configuration of an arbitrary and finite number of patches. The prey
are assumed to disperse between the connected patches with a constant dispersal
delay. We show that the dispersal delay can induce stability switches exhibiting both
stabilizing and destabilizing roles in the stability of the symmetric coexistence
equilibrium. Numerical simulations are presented to further illustrate the effects of
the dispersal delay, the dispersal rate, the fraction of dispersal due to predation
avoidance and the network topology on the number of stability switches.

1 Introduction
The predator–prey relationship is one of the fundamental relationships in ecological sys-
tems and has been extensively studied in the literature [1]. Recently, there has been a
growing interest in integrating the spatial heterogeneity into modeling metapopulation
dynamics. A metacommunity is a set of local communities linked by dispersal of species.
It has been shown that metacommunity dynamics can be greatly influenced by dispersal
between discrete patches [2, 3].

Many factors such as lack of food, competition, sex, age, climate, seasons and overpop-
ulation in a patch contribute to the dispersal of either prey, or predator or both between
patches [4]. For instance, prey may choose to move to other patches on the basis of re-
source availability and predation risk, while predator tend to move to patches with more
prey. Many mathematical models have been proposed to study the impacts of dispersal
over patches on metacommunity dynamics. For example, the dispersal of a single species
is considered in [5–9], while the case with the dispersal of both prey and predator is studied
in [10–15]. It has been shown that the dispersal plays an important role on the persistence
and stability of the resulting ecosystems.

Since it always takes time for species to complete the dispersal from one patch to another,
it is natural to incorporate the travel time into modeling. Along this line, dispersal delay
is considered in [16–19] and it is shown that the dispersal delay may induce very complex
dynamics. For instance, under the framework of a two-patch predator–prey model with
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delayed dispersal of predator, it is found that if the dispersal rates are in an intermediate
range and the mean time that the predator spent in one patch is much shorter than the
timescale of reproduction of the prey and is larger than the double mean time of capture
of prey, the dispersal delay can induce stability switches such that an otherwise unstable
coexistence equilibrium can be stabilized over a finite number of stability intervals [19].

Most of the aforementioned work considered the case that dispersal occurs only be-
tween two patches. If the environment involves more than two patches, then there could
be many different configurations of network topology. How the impacts of dispersal differ
under different configurations of network topology has not been well addressed in the lit-
erature [20]. Recently, Mai et al. considered a predator–prey metapopulation model over
an arbitrary and finite number of identical patches [18], where the dispersal is assumed
to occur among all patches in the environment with the same rates. Such figuration is
referred to as the fully connected configuration. In this paper, we shall consider the ring-
structured configuration: the patches under consideration form a ring structure, and dis-
persal occurs only between two neighbouring patches. We allow the number of patches
to be arbitrary and finite. In order to have a comparison with the results with the fully
connected configuration, we also assume that all patches are identical and the dispersal
rates of the prey are the same.

The rest of the paper is organized as follows. In Sect. 2 we present the metapopulation
model. The stability analysis of the symmetric coexistence equilibrium is given in Sect. 3.
A specific example is presented in Sect. 4. Some numerical simulations based on our the-
oretical analysis are reported in Sect. 5. We summarize our results in Sect. 6.

2 The model
We use a general predator–prey model given in [21] to describe the interaction between
prey and predator in an isolated patch,

{
dx
dt = xg(x) – εyp(x),
dy
dt = y[p(x) – q(x)].

(2.1)

Here x represents the density of prey, and y denotes the density of predator. In the absence
of predator, prey have the per capita growth rate g(x). p(x) is the functional response, and ε

is the conversion ratio of loss of prey due to predation. q(x) denotes the death rate (which
may depend on the prey density) of predator. We assume g(x), p(x) and q(x) satisfy the
following assumptions:

(A1) g(0) > 0 and there exists K > 0 such that g(K) = 0 and (x – K)g(x) < 0 for x �= K ;
(A2) p(0) = 0 and p′(x) > 0 for x > 0 with p∞ := limx→∞ p(x) ≤ ∞;
(A3) q(0) > 0, q′(x) ≤ 0 for x ≥ 0 and limx→∞ q(x) = q∞ > 0 exists satisfying q∞ < p∞.

Typical functions satisfying the above assumptions include

g(x) = r
(

1 –
x
K

)
, p(x) =

ax
1 + ahx

, q(x) =
ex + f
rx + s

(with fr > es),

which are widely used in the literature [21, 22].
It then follows from the assumptions (A2) and (A3) that there exists a unique positive

number, which we denote by x∗, such that p(x∗) = q(x∗). If further, x∗ < K , then (A1) implies
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that y∗ = x∗g(x∗)/εp(x∗) > 0 and (x∗, y∗) is the unique coexistence equilibrium of system
(2.1).

For simplicity, we assume that all patches under the ring-structured configuration are
identical and the dynamics in each patch is governed by (2.1). In addition, only prey are
assumed to disperse from its habitat patch to its two neighboring patches with a dispersal
rate d, while the predator does not move between patches. As in [17], we assume that
the dispersal of prey is due to two factors: a random effect and predation avoidance, and
we use α ∈ [0, 1] to denote the fraction of prey dispersal due to predation avoidance. Let τ

denote the finite travel time during the process of dispersal. Then we can use the following
metapopulation model to describe the interactions of predator and prey under a ring-
structured configuration:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dxi(t)
dt = xi(t)g(xi(t)) – εyi(t)p(xi(t)) – 2d[αγ yi(t)p(xi(t)) + (1 – α)xi(t)]

+ d[αγ yi+1(t – τ )p(xi+1(t – τ )) + (1 – α)xi+1(t – τ )]
+ d[αγ yi–1(t – τ )p(xi–1(t – τ )) + (1 – α)xi–1(t – τ )],

dyi(t)
dt = yi(t)[p(xi(t)) – q(xi(t))],

(2.2)

for i = 1, 2, . . . , n, n ≥ 3, where γ is a scaling factor proportional to ε. To close the ring, we
define x0 = xn, xn+1 = x1, y0 = yn and yn+1 = y1.

3 Stability of the symmetric coexistence equilibrium
Clearly, under our assumptions, system (2.2) always admits a symmetric coexistence equi-
librium E∗

n = (x∗, y∗, . . . , x∗, y∗) ∈ R2n provided that x∗ ∈ (0, K). In this section, we are con-
cerned with the linear stability analysis of the coexistence equilibrium E∗

n.

3.1 Instantaneous dispersal: τ = 0
We first consider the special case where the dispersal of prey is instantaneous, i.e., τ = 0.
Linearizing system (2.2) at the equilibrium E∗

n, we obtain the associated characteristic
equation det Jn = 0, where the 2n × 2n matrix Jn is given by

Jn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

J1 J2 0 . . . 0 0 J2

J2 J1 J2 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 . . . J2 J1 J2

J2 0 0 . . . 0 J2 J1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

with

J1 =

[
λ – A + 2d(αγ D + 1 – α) εμ + 2dαγμ

–B λ

]

and

J2 =

[
–d(αγ D + 1 – α) –dαγμ

0 0

]
,

where A = g(x∗) + x∗g ′(x∗) –εy∗p′(x∗), B = y∗(p′(x∗) – q′(x∗)), D = y∗p′(x∗), μ = p(x∗) = q(x∗).
It follows from (A2)–(A3) that B > 0, D > 0 and μ > 0. Therefore, Jn is a block-circulant
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matrix with 2 × 2 blocks. Using the formula in [23], we find that

det Jn =
n–1∏
k=0

det

(
J1 + 2J2 · cos

2kπ

n

)
.

Thus, the eigenvalues are determined by the equations

det

(
J1 + 2J2 · cos

2kπ

n

)
, k = 0, 1, . . . , n – 1. (3.1)

Note that cos(θ ) = cos(2π – θ ). Let [·] denote the greatest integer function. Then (3.1)
contains [ n

2 ] + 1 distinct equations. For example, if n = 7, then there are [ 7
2 ] + 1 = 4 distinct

characteristic equations, while if n = 8, then there are [ 8
2 ] + 1 = 5 characteristic equations.

Set

K :=
{

0, 1, 2, . . . ,
[

n
2

]}
. (3.2)

In the sequel, we always assume that k ∈ K. When τ = 0, the characteristic equations re-
duce to

λ2 – λ

(
A – 2db̃

(
1 – cos

2kπ

n

))
+ εμB + 2dã

(
1 – cos

2kπ

n

)
= 0, (3.3)

where ã = αγμB, b̃ = αγ D + 1 – α.
By the Routh–Hurwitz criterion [24], it is easy to obtain the following result.

Lemma 3.1 Consider system (2.2) with τ = 0.
(1) If A < 0, the coexistence equilibrium E∗

n is locally asymptotically stable.
(2) If A > 0, the coexistence equilibrium E∗

n is unstable.

Proof If A < 0, then A – 2db̃(1 – cos 2kπ
n ) < 0. Therefore, all characteristic roots of (3.3)

have negative real parts and hence E∗
n is locally asymptotically stable. If A > 0, then (3.3)

with k = 0 admits two roots with positive real parts. Thus E∗
n is unstable. �

Remark 3.2 Note that the stability condition of the coexistence equilibrium of the ring-
structured system is the same as that of the coexistence equilibrium of the single-patch
system. This indicates that the instantaneous dispersal of prey does not affect the stability
of the coexistence equilibrium.

3.2 Random dispersal with delay: τ > 0 and α = 0
Linearizing system (2.2) at the equilibrium E∗

n , we obtain the characteristic equations of
system (2.2):

λ2 – λ(A – 2db̃) – 2λdb̃ cos
2kπ

n
e–λτ + εμB + 2dã – 2dã cos

2kπ

n
e–λτ = 0, (3.4)

where k ∈K. When α = 0, the characteristic equations (3.4) become

λ2 – λ(A – 2d) – 2λd cos
2kπ

n
e–λτ + εμB = 0 (3.5)
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It is well known that the coexistence equilibrium E∗
n of system (2.2) is stable if and only if

all characteristic roots of (3.5) have negative real parts [25]. To explore how the dispersal
delay affects the dynamics of the coexistence equilibrium, next we use the dispersal delay τ

as the bifurcation parameter. As τ increases, the stability of the equilibrium changes only
when some characteristic roots cross the imaginary axis transversely [25–27]. It is clear
that zero is not a characteristic root of (3.5), we thus look for purely imaginary roots. Since
complex roots appear in pairs, we assume that λ = iω, with ω > 0. Substituting λ = iω into
(3.5), and separating the real and imaginary parts, we obtain

{
2d – A = 2d cosωτ · cos 2kπ

n ,
–ω2 + εμB = 2ωd sinωτ · cos 2kπ

n .
(3.6)

From (3.6), we have

(εμB – ω2)2

ω2 =
(

2d cos
2kπ

n

)2

– (2d – A)2 := Ck . (3.7)

If Ck > 0, then (3.7) admits the following two positive roots:

ω1k =
–
√

Ck +
√

Ck + 4εμB
2

, ω2k =
√

Ck +
√

Ck + 4εμB
2

. (3.8)

Lemma 3.3 Suppose at certain τ , the characteristic equations (3.5) have a pair of purely
imaginary roots ±iωjk (j = 1 or j = 2 and k ∈K). Then

d Re(λ)
dτ

∣∣∣∣
λ=iω1k

< 0,
d Re(λ)

dτ

∣∣∣∣
λ=iω2k

> 0.

Proof It follows from (3.5) that

dλ

dτ
= –

2λ2d cos 2kπ
n e–λτ

2λ – (A – 2d) – 2d cos 2kπ
n e–λτ + 2λτ cos 2kπ

n de–λτ
.

By (3.6), we further have

sign

(
d Re(λ)

dτ

)∣∣∣∣
λ=iω

= sign
(
–2

(
εμB – ω2) – Ck

)
.

Note that εμB – ω2
1k = ω1k

√
Ck and εμB – ω2

2k = –ω2k
√

Ck , then

sign

(
d Re(λ)

dτ

)∣∣∣∣
λ=iω1k

= sign(–2ω1k
√

Ck – Ck)

and

sign

(
d Re(λ)

dτ

)∣∣∣∣
λ=iω2k

= sign
(
(
√

Ck +
√

Ck + 4εμB)
√

Ck – Ck
)

= sign
(√

C2
k + 4εμBCk

)
.

Then the conclusion follows immediately. �
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To analyze the stability of the system (2.2) at E∗
n , next we consider two cases: A < 0 and

A > 0, respectively.
Case 1: A < 0.
A < 0 implies that Ck < 0 for all k ∈ K. Thus (3.7) does not admit any solutions. That is,

no characteristic roots of (3.4) would cross the imaginary axis. By Lemma 3.1, E∗
n is stable

with τ = 0, thus, E∗
n remains stable for τ > 0.

Case 2: A > 0.
In this case, the coexistence equilibrium E∗

n is unstable when τ = 0 by Lemma 3.1. Next
we examine if the unstable coexistence equilibrium E∗

n still remains unstable as τ in-
creases, or can it be stabilized for some values of τ . To this end, we consider three cases:
(i) 0 < d < A

4 ; (ii) A
4 < d < A

2 ; (iii) d > A
2 .

We first consider (i) 0 < d < A
4 .

In this case, it follows from (3.7) that Ck < 0 for all k ∈ K. Therefore, there are no such
purely imaginary roots. Consequently, the coexistence equilibrium E∗

n remains unstable
as τ increases.

(ii) A
4 < d < A

2 .
In this case, there exists some k ∈ K such that Ck > 0 provided that | cos 2kπ

n | > |A–2d
2d |.

For such k, (3.7) admits two positive solutions: ω1k and ω2k , given in (3.8). Therefore,
we distinguish three different conditions: (1) cos 2kπ

n > A–2d
2d > 0; (2) cos 2kπ

n < 2d–A
2d < 0;

(3) 2d–A
2d < cos 2kπ

n < A–2d
2d ;

We denote by n(M) the number of elements in the set M. Let

K1 =
{

k ∈K
∣∣∣ cos

2kπ

n
>

A – 2d
2d

> 0
}

,

K2 =
{

k ∈K
∣∣∣ cos

2kπ

n
<

2d – A
2d

< 0
}

,

K3 =
{

k ∈K
∣∣∣2d – A

2d
< cos

2kπ

n
<

A – 2d
2d

}
.

Under condition (1), there are n(K1) characteristic equations (3.5). For these character-
istic equations, together with (3.6), we have –1 < cosωτ < 0. Then

ωτ ∈
(

π

2
+ 2lπ ,

3π

2
+ 2lπ

)
, l = 0, 1, . . . .

Note that

sinω1kτ =
√

Ck

2d
· 1

cos 2kπ
n

and sinω2kτ = –
√

Ck

2d
· 1

cos 2kπ
n

.

Thus, sinω1kτ > 0 and sinω2kτ < 0.
We define

θ
(k)
1 = cos–1

(
2d – A

2d cos 2kπ
n

)
and θ

(k)
2 = 2π – θ

(k)
1 , k ∈K1.

Then θ
(k)
1 ∈ ( π

2 ,π ) and θ
(k)
2 ∈ (π , 3π

2 ). This shows that purely imaginary roots of the char-
acteristic equations (3.5) under condition (1) are obtained at the following sequences of
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positive values of τ :

τ
(k)
l,1 =

θ
(k)
1 + 2lπ

ω1k
, τ

(k)
l,2 =

θ
(k)
2 + 2lπ

ω2k
,

where k ∈K1, l = 0, 1, 2, . . . .
It follows from d Re(λ)

dτ
|λ=iω1k < 0 and d Re(λ)

dτ
|λ=iω2k > 0 (Lemma 3.3) that, as τ increases,

the characteristic roots cross the imaginary axis through ±iω1k at τ = τ
(k)
l,1 from right to

left and the number of characteristic roots with positive real parts is reduced by 2. The
characteristic roots cross the imaginary axis through ±iω2k at τ = τ

(k)
l,2 from left to right

and the number of characteristic roots with positive real parts is increased by 2.
Similarly, under condition (2), there are n(K2) characteristic equations (3.5) satisfying

cos 2kπ
n < 2d–A

2d < 0. For these characteristic equations, in a similar manner, we can show
that there are purely imaginary roots at the following sequences of (Hopf bifurcation) val-
ues of τ :

τ
(k)
l,3 =

θ
(k)
3 + 2lπ

ω1k
, τ

(k)
l,4 =

θ
(k)
4 + 2lπ

ω2k
,

with

θ
(k)
3 = 2π –cos–1

(
2d – A

2d cos 2kπ
n

)
∈

(
3π

2
, 2π

)
, θ

(k)
4 = cos–1

(
2d – A

2d cos 2kπ
n

)
∈

(
0,

π

2

)
,

where k ∈K2, l = 0, 1, 2, . . . .
By Lemma 3.3, as τ increases, the characteristic roots cross the imaginary axis through

±iω1k at τ = τ
(k)
l,3 from right to left and the number of characteristic roots with positive

real parts is decreased by 2, while the crossing through ±iω2k occurs at τ = τ
(k)
l,4 from left

to right, and the number of characteristic roots with positive real parts is increased by 2.
Finally, condition (3) leads to 2d–A

2d < cos 2kπ
n < A–2d

2d and Ck < 0 for k ∈ K3, then these
n(K3) characteristic equations have no purely imaginary roots.

(iii) d > A
2

In this case, we also have three cases to consider: (4) cos 2kπ
n > 2d–A

2d > 0; (5) cos 2kπ
n <

A–2d
2d < 0; (6) A–2d

2d < cos 2kπ
n < 2d–A

2d .
We define

K4 =
{

k ∈K
∣∣∣ cos

2kπ

n
>

2d – A
2d

> 0
}

,

K5 =
{

k ∈K
∣∣∣ cos

2kπ

n
<

A – 2d
2d

< 0
}

,

K6 =
{

k ∈K
∣∣∣A – 2d

2d
< cos

2kπ

n
<

2d – A
2d

}
.

Using a similar procedure to case (ii), for condition (4), we obtain sequences {τ (k)
l,5 } and

{τ (k)
l,6 } defined by

τ
(k)
l,5 =

θ
(k)
5 + 2lπ

ω1k
, τ

(k)
l,6 =

θ
(k)
6 + 2lπ

ω2k
,
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with

θ
(k)
5 = cos–1

(
2d – A

2d cos 2kπ
n

)
∈ (0,π/2), θ

(k)
6 = 2π – θ5 ∈ (3π/2, 2π ),

where ω1k and ω2k are defined in (3.7) and k ∈K4, l = 0, 1, 2, . . . . Similarly, under condition
(5), we obtain the sequences {τ (k)

l,7 } and {τ (k)
l,8 } defined by

τ
(k)
l,7 =

θ
(k)
7 + 2lπ

ω1k
, τ

(k)
l,8 =

θ
(k)
8 + 2lπ

ω2k
,

with

θ
(k)
7 = 2π – cos–1

(
2d – A

2d cos 2kπ
n

)
∈ (π , 3π/2), θ

(k)
8 = cos–1

(
2d – A

2d cos 2kπ
n

)
∈ (π/2,π ),

where ω1k and ω2k are defined in (3.7) and k ∈ K5, l = 0, 1, 2, . . . . Under condition (6), it
is easy to show that characteristic equations (3.5) with k ∈ K6 have no purely imaginary
roots.

From the above analysis, we see that, for case (ii), n(K3) characteristic equations have
no purely imaginary roots; while for n(K1) + n(K2) characteristic equations, there are se-
quences of critical values of τ at which the characteristic roots cross the imaginary axis
(either from left to right or from right to left). For case (iii), n(K6) characteristic equations
have no purely imaginary roots; while for n(K4) + n(K5) characteristic equations, there are
sequences of critical values of τ at which the characteristic roots cross the imaginary axis.

To further investigate the possibility of undergoing stability switches, we introduce some
notation. For the above obtained sequences of critical values of τ , we define

Γj =
{
τ

(k)
0,j , τ (k)

1,j , . . . , τ (k)
k,j , . . .

}
, j = 1, 2, 3, 4, 5, 6, 7, 8,

where k ∈K1 if j = 1, 2; k ∈K2 if j = 3, 4; k ∈K4 if j = 5, 6 and k ∈K5 if j = 7, 8.
For each case (case (ii) and case (iii)), we sort the obtained sequences of τ as a single

increasing sequence

{τj}∞j=1 = {τ1, τ2, τ3, . . . , τj, . . .}

with τj < τj+1, j = 1, 2, . . . . For instance, if n(K1) = 1, n(K2) = 1 and τ
(2)
0,4 < τ

(0)
0,1 < τ

(0)
0,2 < τ

(2)
0,3 <

· · · , then the new sequence reads

{τj}∞j=1 =
{
τ1 = τ

(2)
0,4 , τ2 = τ

(0)
0,1 , τ3 = τ

(0)
0,2 , τ4 = τ

(2)
0,3 , . . .

}
.

We associate each element τj of the sequence with a number σj defined by

σj =

{
+1, if τj ∈ Γ2 ∪ Γ4 ∪ Γ6 ∪ Γ8,
–1, if τj ∈ Γ1 ∪ Γ3 ∪ Γ5 ∪ Γ7,

j = 1, 2, . . . .

At τ = τj, if σj = +1, then it means a pair of purely imaginary roots cross the imaginary
axis at τ = τj from left to right, and the number of characteristic roots with positive real
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parts increases by 2 and we say the delay τj has a positive jump, otherwise, if σj = –1, then
a pair of purely imaginary roots cross the imaginary axis at τ = τj from right to left, and
the number of characteristic roots with positive real parts is reduced by 2 and we say the
delay τj has a negative jump.

Define a sequence {sj}∞j=1 as

sj =
j∑

k=1

σk .

Note that characteristic equations (3.5) with τ = 0 reduce to

λ2 – λ

(
A – 2d

(
1 – cos

2kπ

n

))
+ εμB = 0, k ∈K. (3.9)

Here, we denote by n(Re(λ) > 0) the number of characteristic roots with positive real
parts of characteristic equation (3.9).

First, we consider the three cases of k for case (ii). If k ∈ K1, then cos 2kπ
n > A–2d

2d and
A – 2d(1 – cos 2kπ

n ) > 0. So n(Re(λ) > 0) = 2n(K1); If k ∈ K2, then cos 2kπ
n < 2d–A

2d and A –
2d(1 – cos 2kπ

n ) < 0. Thus, n(Re(λ) > 0) = 0; If k ∈ K3, then 2d–A
2d < cos 2kπ

n < A–2d
2d and A –

2d(1 – cos 2kπ
n ) > 0. Therefore, n(Re(λ) > 0) = 2n(K3).

We define the set S2 as

S2 =
{

sj|sj = –n(K1) – n(K3), j ∈ {1, 2, . . .}}. (3.10)

Note that, for case (ii), when τ = 0, the coexistence equilibrium E∗
n is unstable and there

are 2(n(K1) + n(K3)) characteristic roots with positive real parts. Thus there are 2(n(K1) +
n(K3) + sj) characteristic roots with positive real parts for τ ∈ (τj, τj+1), j = 1, 2, . . . . There-
fore, if for some j ∈ {1, 2, . . . }, sj = –n(K1) – n(K3), then the coexistence equilibrium E∗

n is
locally asymptotically stable for τ in the interval (τj, τj+1), and if sj ≥ –n(K1) – n(K3) + 1,
then the coexistence equilibrium E∗

n is unstable for τ ∈ (τj, τj+1).
Similarly, we define the set S3 as

S3 =
{

sj|sj = –n(K4), j ∈ {1, 2, . . .}}. (3.11)

Note that, for case (iii), the number of characteristic roots with positive real parts for
characteristic equations (3.9) under the conditions (4)–(6) is n(Re(λ) > 0) = 2n(K4) by us-
ing a similar calculating method to case (ii). Thus there are 2(n(K4)+sj) characteristic roots
with positive real parts for τ ∈ (τj, τj+1), j = 1, 2, . . . . Consequently, if for some j ∈ {1, 2, . . .},
sj = –n(K4), then the coexistence equilibrium E∗

n is locally asymptotically stable for τ in the
interval (τj, τj+1), and if sj ≥ –n(K4) + 1, then the coexistence equilibrium E∗

n is unstable for
τ ∈ (τj, τj+1).

We denote by N the number of elements in the set Sj, j = 2 or j = 3, i.e.,

N = n(Sj), j = 2, 3. (3.12)

Then N determines the number of stability intervals.
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3.3 Predator-induced dispersal with delay: τ > 0 and α > 0
In this section, we study the stability of the coexistence equilibrium E∗

n of system (2.2) with
α > 0 and τ > 0.

For any fixed α > 0, we use the same method as for the case with α = 0 to find sequences
of critical values of τ at which the characteristic equations (3.4) admit purely imaginary
characteristic roots, and to compute directions of the characteristic roots crossing the
imaginary axis and then to determine if there are stability intervals.

Following the results in Sect. 5 of Cooke and Grossman [26], the characteristic equation
(3.4) admits purely imaginary roots if and only if the following inequalities hold:

2εμB + C̃k > 2
√

(εμB)2 + 4dεμBã + (2dã)2 sin2 2kπ

n
, (3.13)

where k ∈K, C̃k = 4(ã + Ab̃)d – A2 – (2db̃)2 sin2 2kπ
n , ã = αγμB > 0 and b̃ = αγ D + 1 – α > 0.

Clearly if 0 < d < A2

4(ã+Ab̃)
, then C̃k ≤ 0, for all k ∈ K, (3.13) can never hold, thus, all char-

acteristic equations (3.4) have no purely imaginary roots. If d > A2

4(ã+Ab̃)
and C̃k > 0, then it

is possible for characteristic equations (3.4) with some k ∈ K to admit purely imaginary
roots and thus the interplay of α and τ may affect the stability of coexistence equilibrium.
Substituting λ = iω̃ (with ω̃ > 0) into (3.4) and separating the real and imaginary parts, we
obtain

⎧⎨
⎩

cos ω̃τ = ãεμB+2dã2+ω̃2[2db̃2–Ab̃–ã]
2d cos 2kπ

n (b̃2ω̃2+ã2)
,

sin ω̃τ = ω̃
b̃(εμB–ω̃2)+ãA

2d cos 2kπ
n (b̃2ω̃2+ã2)

.

Squaring and adding these two equations, and solving the resulting quadratic equation of
ω̃2, we obtain

ω̃1k =
√

1
2

(C̃k + 2εμB –
√

�k), ω̃2k =
√

1
2

(C̃k + 2εμB +
√

�k)

provided that �k := C̃2
k + 4εμBC̃k – 16dεμBã – 16(dã)2(1 – cos2( 2kπ

n )) > 0. The associated
two sequences of critical values of τ are determined by

τ̃
(k)
l,1 =

θ̃
(k)
1 + 2lπ

ω̃1k
, τ̃

(k)
l,2 =

θ̃
(k)
2 + 2lπ

ω̃2k
, l = 0, 1, 2, . . .

where

θ̃
(k)
1 :=

⎧⎪⎨
⎪⎩

ξ̃
(k)
1 , if ãA+b̃(εμB–ω̃2

1k )
cos 2kπ

n
> 0,

2π – ξ̃
(k)
1 , if ãA+b̃(εμB–ω̃2

1k )
cos 2kπ

n
< 0,

and

θ̃
(k)
2 :=

⎧⎪⎨
⎪⎩

ξ̃
(k)
2 , if ãA+b̃(εμB–ω̃2

2k )
cos 2kπ

n
> 0,

2π – ξ̃
(k)
2 , if ãA+b̃(εμB–ω̃2

2k )
cos 2kπ

n
< 0,
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with

ξ̃
(k)
1 = cos–1

(
ãεμB + 2dã2 + ω̃2

1k[2db̃2 – Ab̃ – ã]
2d cos 2kπ

n (b̃2ω̃2
1k + ã2)

)

and

ξ̃
(k)
2 = cos–1

(
ãεμB + 2dã2 + ω̃2

2k[2db̃2 – Ab̃ – ã]
2d cos 2kπ

n (b̃2ω̃2
2k + ã2)

)
.

Moreover, we can calculate

sign
d Re(λ)

dτ

∣∣∣∣
λ=iω̃1k

= sign(–
√

�k)

and

sign
d Re(λ)

dτ

∣∣∣∣
λ=iω̃2k

= sign(
√

�k).

Thus, d Re(λ)
dτ

|λ=iω̃1k < 0 and d Re(λ)
dτ

|λ=iω̃2k > 0.
Similar to the case with α = 0, we define

K̃ =
{

k ∈K|C̃k > 0 and (3.13) holds, k ∈K
}

,

Γ̃j =
{
τ̃

(k)
0,j , τ̃ (k)

1,j , . . . , τ̃ (k)
k,j , . . .

}
, j = 1, 2, k ∈ K̃,

and then sort the obtained sequences of τ as a single increasing sequence

{τ̃j}∞j=1 = {τ̃1, τ̃2, τ̃3, . . .}

with τ̃j < τ̃j+1, j = 1, 2, . . . . The corresponding σ̃j are defined as

σ̃j =

{
+1, if τj ∈ Γ̃2,
–1, if τj ∈ Γ̃1,

j = 1, 2, . . .

and the s̃j are defined by

s̃j =
j∑

k=1

σ̃k .

To determine the number of stability intervals for the case with α > 0, we discuss three
cases: (i) A < 0, (ii) A > 0 and A – 4db̃ < 0 and (iii) A > 0 and A – 4db̃ > 0. Define

K̃0 =
{

k
∣∣∣A – 2db̃

(
1 – cos

2kπ

n

)
> 0

}
.

Note that when τ = 0, for case (i), all characteristic roots have negative real parts, for
case (ii), there are 2n(K̃0) characteristic roots with positive real parts, and for case (iii),
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there are 2[ n
2 ] + 2 characteristic roots with positive real parts. Therefore, we can define

the set S̃ as

S̃ =

⎧⎪⎨
⎪⎩

{sj|sj = 0, j ∈ {1, 2, . . .}}, if A < 0,
{sj|sj = –n(K̃0), j ∈ {1, 2, . . .}}, if A > 0 and A – 4db̃ < 0,
{sj|sj = –[ n

2 ] – 1, j ∈ {1, 2, . . .}}, if A > 0 and A – 4db̃ > 0.

Then we denote by Ñ the number of elements in the set S̃, which gives the number of
stability intervals.

4 An example
In this section, we give an example to illustrate our theoretical analysis in detail. Take n = 4.
Then the characteristic equations (3.4) of system (2.2) reduce to

λ2 – λ(A – 2db̃) – 2λdb̃ cos
2kπ

n
e–λτ + εμB + 2dã – 2dã cos

2kπ

n
e–λτ = 0 (4.1)

where k = 0, 1, 2.
When α = 0, the characteristic equations (4.1) are given by

λ2 – λ(A – 2d) – 2λde–λτ + εμB = 0, (4.2)

λ2 – λ(A – 2d) + εμB = 0, (4.3)

λ2 – λ(A – 2d) + 2λde–λτ + εμB = 0, (4.4)

By (3.7) and (3.8), we have C0 = C2 = A(4d – A) and C1 = –(2d – A)2 < 0 and then ω1 :=
ω10 = ω12 = –

√
C0+

√
C0+4εμB

2 , ω2 := ω20 = ω22 =
√

C0+
√

C0+4εμB
2 .

As analyzed in Sect. 3, if A < 0, then Ck < 0, (k = 0, 2) and the characteristic equations
(4.2) and (4.4) do not admit any purely imaginary roots. Consequently, the coexistence
equilibrium E∗

4 remains locally asymptotically stable for any values of τ > 0. If A > 0 and 0 <
d < A/4, Ck < 0, (k = 0, 2), then the coexistence equilibrium E∗

4 remains unstable for τ > 0.
While if A/4 < d < A/2 and d > A/2, we have C0 = C2 > 0, then characteristic equations
(4.2) and (4.4) can have purely imaginary roots, and thus the delay can affect the stability
of the coexistence equilibrium for system (2.2) with n = 4. Next, we discuss two cases:
A/4 < d < A/2 and d > A/2.

If A/4 < d < A/2, then the characteristic equation (4.2) admits a pair of purely imaginary
roots at the following two sequences of values of τ :

τ
(0)
l,1 =

θ
(0)
1 + 2lπ

ω10
, τ (0)

l,2 =
θ

(0)
2 + 2lπ

ω20
, l = 0, 1, 2, . . .

with

θ
(0)
1 = cos–1

(
2d – A

2d

)
∈

(
π

2
,π

)
and θ

(0)
2 = 2π – θ

(0)
1 ∈

(
π ,

3π

2

)
.

For (4.4), we obtain two sequences of positive values of τ :

τ
(2)
l,3 =

θ
(2)
3 + 2lπ

ω12
, τ

(2)
l,4 =

θ
(2)
4 + 2lπ

ω22
, l = 0, 1, 2, . . .
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with

θ
(2)
3 = 2π – cos–1

(
A – 2d

2d

)
∈

(
3π

2
, 2π

)
and θ

(2)
4 = cos–1

(
A – 2d

2d

)
∈

(
0,

π

2

)
.

For {τ (k)
0,j }, (k = 0, 2, j = 1, 2, 3, 4), we have the following relation.

Lemma 4.1 For {τ (k)
0,j } (k = 0, 2, j = 1, 2, 3, 4) obtained above, τ (2)

0,4 < τ
(0)
0,1 < τ

(0)
0,2 < τ

(2)
0,3 .

Proof It follows from the definitions of {τ (k)
0,j } that τ

(0)
0,2 < τ

(2)
0,3 , τ (2)

0,4 < τ
(0)
0,1 and τ

(2)
0,4 < τ

(2)
0,3 . Note

that the characteristic equation (4.2) has two roots with positive real parts when τ = 0.
This, together with d Re(λ)

dτ
|λ=iω1 < 0 and d Re(λ)

dτ
|λ=iω2 > 0, implies that τ increases. In order

for the characteristic equation to have the first pair of purely imaginary roots ±iω, there
must be d Re(λ)

dτ
|λ=iω < 0. This implies ω = ω1 and hence τ

(0)
0,1 < τ

(0)
0,2 . �

The case d > A
2 can be handled similarly to the case with A

4 < d < A
2 . Thus, we can obtain

four sequences {τ (0)
l,5 }, {τ (0)

l,6 }, {τ (2)
l,7 }, {τ (2)

l,8 } defined by

τ
(0)
l,5 =

θ
(0)
5 + 2jπ

ω1
, θ

(0)
5 = cos–1

(
2d – A

2d

)
∈ (0,π/2),

τ
(0)
l,6 =

θ
(0)
6 + 2jπ

ω2
, θ

(0)
6 = 2π – θ

(0)
5 ∈ (3π/2, 2π ),

τ
(2)
l,7 =

θ
(2)
7 + 2jπ

ω1
, θ

(2)
7 = 2π – cos–1

(
2d – A

2d

)
∈ (π , 3π/2),

τ
(2)
l,8 =

θ
(2)
8 + 2jπ

ω2
, θ

(2)
8 = cos–1

(
2d – A

2d

)
∈ (π/2,π ),

where l = 0, 1, 2, . . . .
By the definitions of {τ (k)

0,j }, we have the following relations.

Lemma 4.2 For {τ (k)
0,j } (k = 0, 2, j = 5, 6, 7, 8) obtained above, we have τ

(2)
0,8 < τ

(2)
0,7 , τ

(0)
0,5 < τ

(0)
0,6 ,

τ
(0)
0,5 < τ

(2)
0,7 and τ

(2)
0,8 < τ

(0)
0,6 . Further, if τ

(2)
0,8 < τ

(0)
0,5 , then τ

(2)
0,8 < τ

(0)
0,5 < τ

(0)
0,6 < τ

(2)
0,7 .

Proof Similar to the proof of Lemma 4.1, it is easy to obtain τ
(2)
0,8 < τ

(2)
0,7 , τ (0)

0,5 < τ
(0)
0,6 , τ (0)

0,5 < τ
(2)
0,7

and τ
(2)
0,8 < τ

(0)
0,6 .

Next we show that if τ
(2)
0,8 < τ

(0)
0,5 , then τ

(0)
0,6 < τ

(2)
0,7 . If not, τ

(0)
0,6 > τ

(2)
0,7 . By the definitions of

{τ (k)
0,j } (j = 5, 6, 7, 8), we have 2π–θ

(0)
5

π+θ
(0)
5

> ω2
ω1

. Since τ
(2)
0,8 < τ

(0)
0,5 , π–θ

(0)
5

θ
(0)
5

< ω2
ω1

. Therefore, π–θ
(0)
5

θ
(0)
5

<

2π–θ
(0)
5

π+θ
(0)
5

, which leads to θ
(0)
5 > π/2. This is a contradiction. Thus, τ

(2)
0,8 < τ

(0)
0,5 < τ

(0)
0,6 < τ

(2)
0,7 pro-

vided that τ
(2)
0,8 < τ

(0)
0,5 . �

It follows from the results obtained in Sect. 3 that

S2 =
{

sj|sj = –2, j ∈ {1, 2, . . .}}
and

S3 =
{

sj|sj = –1, j ∈ {1, 2, . . .}}.
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Theorem 4.3 Consider system (2.2) with n = 4 and α = 0. If A < 0, the coexistence equilib-
rium E∗

n is locally asymptotically stable for all τ ≥ 0. If A > 0, then the coexistence equilib-
rium E∗

n is unstable when τ = 0, and as τ increases, we have the following results.
Case (i) d ∈ (0, A/4): the coexistence equilibrium E∗

n remains unstable for τ > 0;
Case (ii) d ∈ (A/4, A/2): the coexistence equilibrium E∗

n remains unstable for τ > 0;
Case (iii) d ∈ (A/2,∞): the coexistence equilibrium E∗

n remains unstable for τ > 0
provided that τ

(2)
0,8 < τ

(0)
0,5 and there are N ≥ 1 stability intervals at which the

coexistence equilibrium E∗
n is locally asymptotically stable provided that

τ
(0)
0,5 < τ

(2)
0,8 .

Proof Based on the above analysis, we only need to consider cases (ii)–(iii). For case (ii), by
Lemma 4.1, the characteristic equations (4.2)–(4.4) admit purely imaginary roots at τ = τj,
where

{τj}∞j=1 =
{
τ

(2)
0,4 , τ (0)

0,1 , τ (0)
0,2 , τ (2)

0,3 , τ (2)
1,4 , . . .

}
.

The sequence {τj}∞j=1 has an associated sequence

{σj}∞j=1 = {+1, –1, +1, –1, +1, . . .}.

Then

s1 = 1, s2 = 0, s3 = 1, s4 = 0, s5 = 1, . . . .

Note that, for the sequence {τ (k)
l,j }∞k=0, the spacing between delays is τ

(k)
l+1,j – τ

(k)
l,j = 2π

ωik
, for

j = 1, 2, 3, 4 and i = 1, 2. By the expression of ωik , we have

2π

ω1
>

2π

ω2
. (4.5)

This indicates in the sequence {σj}, +1’s appear more frequently than –1’s do. Hence sj ≥ 0
for j = 1, 2, . . . . Consequently, the coexistence equilibrium E∗

n remains unstable for τ > 0.
For case (iii), by Lemma 4.2, we know that for the obtained four sequences of critical

values {τ (k)
k,j }∞k=0, j = 5, 6, 7, 8, we either have (iii.a) τ

(2)
0,8 < τ

(0)
0,5 or (iii.b) τ

(0)
0,5 < τ

(2)
0,8 . If τ

(2)
0,8 < τ

(0)
0,5 ,

then we have {τj}∞j=1 = {τ (2)
0,8 , τ (0)

0,5 , τ (0)
0,6 , τ (2)

0,7 , τ (2)
1,8 , . . .} and {σj}∞j=1 = {+1, –1, +1, –1, +1, . . .}. By

virtue of (4.5), we know that the coexistence equilibrium E∗
n remains unstable for τ > 0.

If τ
(0)
0,5 < τ

(2)
0,8 , then the newly sorted sequence {τj} begins with τ1 = τ

(0)
0,5 and the associ-

ated sequence {σj}∞j=1 starts with σ1 = –1. Hence s1 = –1 and N ≥ 1. It follows from the
relation (4.5) that delays with a positive jump appear more frequently than delays with a
negative jump in the sequence {τj} do. Thus, regardless of the ordering in the rest of the
sequence {τj}, there must exist a finite positive number j0 such that sj ≥ 0 for j > j0. There-
fore, there are N ≥ 1 stability intervals at which the coexistence equilibrium E∗

n is locally
asymptotically stable. �

The results of Theorem 4.3 can be summarized in Table 1.
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Table 1 Local stability result of the coexistence equilibrium of ring-structured system (2.2) with
α = 0 and n = 4

A < 0 A > 0

0 < d < A
4 Stable Unstable

A
4 < d < A

2 Stable Unstable
d > A

2 Stable Unstable if τ (2)
0,8 < τ (0)

0,5 ;

N ≥ 1 stability intervals exist if τ (0)
0,5 < τ (2)

0,8

5 Numerical simulations
In this section, we present some numerical simulations to demonstrate our theoretical
results. We consider the following ring-structured patchy model:

⎧⎪⎨
⎪⎩

dxi(t)
dt = εxi(t)(1 – xi(t)

κ
– yi(t)

1+xi(t) ) – 2d( αγ yi(t)
1+xi(t) + (1 – α))xi(t)

+ d( αγ yi+1(t–τ )
1+xi+1(t–τ ) + (1 – α))xi+1(t – τ ) + d( αγ yi–1(t–τ )

1+xi–1(t–τ ) + (1 – α))xi–1(t – τ ),
dyi(t)

dt = xi(t)yi(t)
1+xi(t) – μyi(t),

(5.1)

for i = 1, 2, 3, 4. To close the ring, define x0 = x4, x5 = x1, y0 = y4 and y5 = y1.
We take parameter values ε = 1, κ = 2, μ = 0.2, n = 4, γ = 0.5, d = 0.04, α = 0. This set

of parameter values corresponds to the case α = 0 and d > A/2 = 0.05/2 = 0.025, and the
obtained four sequences of critical values of τ are

τ
(0)
l,5 ≈ 3.50 + 18.54, τ

(0)
l,6 ≈ 12.34 + 15.21,

τ
(2)
l,7 ≈ 12.77 + 18.54, τ

(2)
l,8 ≈ 4.73 + 15.21,

for l = 0, 1, . . . . Thus the sorted sequence of critical values of τ reads

{τj}∞j=1 = {3.50, 4.73, 12.34, 12.77, 19.94, . . .}.

Therefore,

{sj}∞j=1 = {–1, 0, 1, 0, 1, . . .}

and we have an N = 1 stability interval. The coexistence equilibrium E∗
n is locally asymp-

totically stable for τ ∈ (τ1, τ2) = (3.50, 4.73). A bifurcation diagram is presented in Fig. 1.
Next we fix α = 0.5 and vary the value of the dispersal rate d. We find that the number

of stability intervals changes from 0 to 1 near d = 0.0421, then it changes to 2 when d =
0.0721, and back to 1 at about d = 0.2651. This shows that the dispersal rate can also induce
finite number of stability switches. This is illustrated in Fig. 2 .

Now we fix d = 0.13 and vary the value of α. We find that the number of stability intervals
changes from 1 to 2 and back to 1 near α = 0.023 and α = 0.939, respectively (see Fig. 3).
This indicates that the fraction of prey dispersing due to predation avoidance can also
induce stability switches.

For the case with α > 0 and A < 0, we take parameter values κ = 1.8, μ = 0.3, ε = 1.1,
n = 4, α = 0.6, d = 0.6, γ = 0.5. Regarding τ as the bifurcation parameter, we find that there
are N = 30 stability intervals. We show some of them in Fig. 4.
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Figure 1 Bifurcation diagram of ring-structured patchy model (5.1) with α = 0 and d > A/2. There isN = 1
stability interval. Parameter values used are κ = 2, μ = 0.2, ε = 1, n = 4, γ = 0.5, α = 0, d = 0.04

Figure 2 The effect of dispersal rate d. The left panel: the number of stability intervals of system (5.1); the
right panel: the distribution of stability intervals system (5.1). The parameter values are α = 0.5, ε = 1, κ = 2,
μ = 0.2, γ = 0.5, n = 4

Figure 3 The effect of α when d = 0.13 is fixed. The left panel: the number of stability intervals of system (5.1);
the right panel: the distribution of stability intervals of system (5.1). Other parameter values are the same as in
Fig. 2

Next, using Figs. 5 and 6, we illustrate that the configuration of network topology also has
an impact on the stability switches of the coexistence equilibrium by comparing our ring-
structured patchy model with the fully connected model studied in [18]. The differences
are significant when n is odd, and when α is small and d is large.



Sun and Mai Advances in Difference Equations        (2020) 2020:196 Page 17 of 19

Figure 4 Bifurcation diagram of ring-structured patchy model (5.1) under case α > 0 and A < 0. The
parameter values are κ = 1.8, μ = 0.3, ε = 1.1, n = 4, α = 0.6, d = 0.6, γ = 0.5

Figure 5 The number of stability intervalsN against α , d and n for the ring-structured patchy model (5.1).
The parameter values are κ = 2, μ = 0.2, ε = 1, γ = 0.5

6 Summary
In this paper, we have considered a metapopulation predator–prey model with delayed
dispersal within a ring-structured configuration of network topology. Prey in one patch
are assumed to move between two neighboring patches on the ring. We have shown that
the dispersal delay can induce stability switches for the case with random dispersal only
and also for the case with random dispersal and density-dependent dispersal. We have also
shown that the dispersal rate (d) and the fraction of dispersal due to predation avoidance
(α) can induce stability switches. In addition, by comparing our ring-structured patchy
model with the fully connected model studied in [18], we find that the configuration of
network topology also has an impact on the stability switches of the coexistence equilib-
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Figure 6 The number of stability intervalsN against α , d and n for the fully connected patch model in [18].
The parameter values are κ = 2, μ = 0.2, ε = 1, γ = 0.5

rium, especially when the number of patches n is odd, the fraction α of dispersal due to
predation avoidance is small and the dispersal rate d is large.
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