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Abstract
The stochastic research and development (R&D) model plays an important role in
economic growth theories. To explain the growth performance of the economy
under regime switching, we first establish sufficient criteria that ensure economic
prosperity, nonprosperity and depression in the R&D model disturbed by white and
color noise. Then, we determine the threshold between prosperity and depression.
Furthermore, we estimate an upper bound of the growth rates of technological
progress and capital accumulation in the prosperity case. The results indicate that
color noise sensitively impacts the growth performance of the economy in the R&D
model. Finally, numerical simulations are conducted to verify our theoretical work.

Keywords: Stochastic R&D model; Markov chain; Prosperity and depression in the
mean

1 Introduction
The stochastic research and development (R&D) model has been the center of attention in
economic growth theories for a long time, because it can be used to describe the growth
rates of technological progress and capital accumulation [1–3]. Impacted by the exist-
ing economic reality, the uncertainty of the R&D model is affected by many factors, such
as the accumulation of knowledge, government intervention, introduction of talent re-
sources, and population fluctuation. The effect of uncertainty on the growth performance
of the economy has been studied by several authors [4–8]. For example, Canton [6] an-
alyzed a two-sector model of endogenous growth to reveal the impact of uncertainty on
long-run economic growth. He showed that economic growth was higher in the presence
of business cycles because people devoted more time to learning activities in an uncertain
economic environment. To study endogenous economic growth, the authors of [2, 7, 8]
regarded technological progress as a production process similar to the production of out-
put, and the long-run economic growth rate was determined completely by the popula-
tion growth rate. Based on various references [2, 7, 8], Romer [9] fully described the R&D
model, interpreted the effectiveness of labor as knowledge, and modeled the determinants
of its evolution over time. Wu et al. [4] introduced the uncertainty from population growth
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and transformed the R&D model of [9] into a simple form via Itô’s formula. They computed
the sample average of the growth rates of both technology and capital accumulation and
proved that the long-run growth rate of the economic system was ultimately bounded in
mean. Zhang et al. [10] explored a numerical approximate method that could preserve the
positivity of the numerical solution of the R&D model shown in [4] and revealed that the
new numerical approximate method was effective and practical.

However, all these works [2, 4, 7–10] assumed that the parameters of the R&D model
are all determined constants. In fact, a stochastic R&D system may experience abrupt
changes in the structure and parameters. For example, the fixed capital of the listed com-
pany is affected by the stock price of the market. Capital accumulation may have optimistic
asymptotic behavior when stock prices rise, and capital accumulation may have another
asymptotic behavior if stock prices decrease; additionally, the company may enter another
development level under the state of talent introduction. Meanwhile, a continuous time
Markov chain, namely, color noise, can delineate the system switch from one environmen-
tal regime to another in a population system [11–17]. For instance, Liu et al. [13] showed
that an ergodic Markov chain could accurately describe the stochastic phenomena of a
population system in practice. Liu et al. [14] added Markovian switching to a stochastic
multigroup mutualistic system and investigated the ergodicity property and positive re-
currence, which provided a good explanation of some biological phenomena. Yu et al. [15]
introduced Markovian switching to the phytoplankton–zooplankton model, they also an-
alyzed the extinction, weak persistence, and nonpersistence in the mean. Zhao et al. [17]
developed a stochastic phytoplankton allelopathy model with Markovian switching and
showed that the Markovian switching had a great impact on the evolution of the phyto-
plankton populations.

Inspired by these studies, we introduce Markovian switching into the stochastic R&D
model to describe the development trend of the economy under different situations. The
switching is memoryless, and the waiting time for the next switch has an exponential dis-
tribution. Therefore, the research on the threshold between economic prosperity and de-
pression in the R&D model under regime switching supports our trending analysis and
forecasting of the economic environment. Motivated by these features, our natural aims
in this paper are as follows:

• To get sufficient criteria that maintain economic strong prosperity, weak prosperity,
nonprosperity, and depression in the mean.

• To obtain the threshold between stochastic depression and prosperity in the mean.
• To estimate the upper bound of the rates of both technological progress and capital

accumulation in the prosperity case.
The rest of this paper is structured as follows. In Sect. 2, we recall the fundamental

theory necessary for later discussion and provide sufficient conditions to ensure the ex-
istence of a global positive solution of the R&D model under white and color noise. Sec-
tion 3 shows that the R&D model with regime switching shows either stochastic economic
prosperity or depression under some assumptions and obtains the threshold between de-
pression and prosperity. Finally, some numerical examples are presented to confirm our
theory in Sect. 4.
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2 Model formulation and preliminaries
2.1 Model formulation
Romer [9] fully described the deterministic R&D model based on [2, 7, 8]:

⎧
⎨

⎩

Y (t) = [(1 – aK )K(t)]1–α[A(t)(1 – aL)L(t)]α = CY K1–α(t)(A(t)L(t))α ,

Ȧ(t) = B[aK K(t)]ξ [aLL(t)]ηA1+θ (t) = CK K ξ (t)A1+θ (t)Lη(t).
(1)

The deterministic R&D model involves four variables: labor (L), capital (K ), technology
(A), and output (Y ). There are two sectors, a goods-producing sector, where output is
produced, and an R&D sector, where additions to the stock of knowledge (technological
progress) are produced. Fraction aL of the labor force is used in the R&D sector, and frac-
tion 1 – aL is used in the goods-producing sector. Similarly, fraction aK of the capital stock
is used in the R&D sector, and the remaining 1 – aK is used in the goods-producing sector.
Technological progress is regarded as a production process, such as production of output
in the model. Both sectors use the full stock of knowledge, where CY = (1 – aK )1–α(1– aL)α ,
CK = Baξ

K aη

L, B is a parameter which measures efficiency in the R&D sector. The popula-
tion growth of model (1) is regarded as exogenous, and L̇(t) = nL(t).

Wu [4] introduced uncertainty resulting from population growth, and by means of Itô’s
formula, the deterministic R&D model (1) can be simplified as a system of stochastic dif-
ferential equations (SDEs):

⎧
⎨

⎩

dx(t) = x(t)(θx(t) + ξy(t) + ηn – ηη′
2 σ 2) dt + ησx(t) dw(t),

dy(t) = y(t)(αx(t) – αy(t) + αn – αα′
2 σ 2) dt + ασy(t) dw(t),

(2)

where η′ = 1–η, α′ = 1–α, x(t) = Ȧ(t)
A(t) , y(t) = K̇ (t)

K (t) = sY (t)
K (t) , i.e., they represent the growth rates

of technological progress in the R&D sector and the growth rates of capital accumulation
in the goods-producing sector, s ∈ (0, 1) means the saving rate, the depreciation rate here
of capital K(t) is not considered. Also dL(t) = L(t)(ndt + σ dw(t)), where w(t) is a standard
Brownian motion. The features of parameters in model (2) are shown in Table 1.

To describe the stochastic R&D model under different states, we introduce Markovian
switching in (2) and assume that there are m regimes, then model (2) obeys:

⎧
⎨

⎩

dx(t) = x(t)[θ (i)x(t) + ξ (i)y(t) + η(i)n(i) – η(i)η′(i)
2 σ 2(i)] dt + η(i)σ (i)x(t) dw(t),

dy(t) = y(t)[α(i)x(t) – α(i)y(t) + α(i)n(i) – α(i)α′(i)
2 σ 2(i)] dt + α(i)σ (i)y(t) dw(t),

(3)

Table 1 Parameter values for R&D model (2)

Parameter Value

n, the expected population growth rate > 0
σ , the size of uncertainty coming from the population growth > 0
ξ , the “production” of technology returns to scale on capital > 0
η, the labor-input ratio in the R&D sector > 0
α, the capital-input ratio in the goods-producing sector > 0
θ , the “production” of technology returns to scale on technology (–1, 0)
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in regime i (1 ≤ i ≤ m). The switching between these m regimes is controlled by a Markov
chain and the R&D model (2) with both white and color noise becomes

⎧
⎨

⎩

dx(t) = x(t)[θ (ς (t))x(t) + ξ (ς (t))y(t) + bx(ς (t))] dt + η(ς (t))σ (ς (t))x(t) dw(t),

dy(t) = y(t)[α(ς (t))x(t) – α(ς (t))y(t) + by(ς (t))] dt + α(ς (t))σ (ς (t))y(t) dw(t),
(4)

where

bx
(
ς (t)

)
= η

(
ς (t)

)
n
(
ς (t)

)
–

η(ς (t))η′(ς (t))
2

σ 2(ς (t)
)
,

by
(
ς (t)

)
= α

(
ς (t)

)
n
(
ς (t)

)
–

α(ς (t))α′(ς (t))
2

σ 2(ς (t)
)
.

The analysis of the next sections is focused on model (4).

2.2 Preliminary results
For mathematical simplicity, we introduce several notations. Throughout this paper, let
(Ω ,F, {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the
usual conditions (that is, it is right continuous and increasing, while F0 contains all P-null
sets), E denotes the expectation corresponding to P. Let {w(t)}t≥0 be a standard Brown-
ian motion defined on the above complete probability space. For a set A, we denote its
indicator function by 1A, namely 1A(x) = 1 if x ∈ A and 0 otherwise. Denote by R

n
+ the

positive cone in R
n, that is, Rn

+ = {x ∈ R
n : xi > 0 for all 1 ≤ i ≤ n}. If x ∈ R

n, its Euclidean
norm is |x| = (

∑n
i=1 x2

i ) 1
2 [18]. For two real numbers a and b, we use a ∨ b = max{a, b} and

a ∧ b = min{a, b}. If A is a vector or matrix, its transpose is denoted by A� and the trace
norm of A is defined as |A| =

√
trace(A�A). If A is an n×n symmetric matrix, we introduce

the following definition:

λ+
max(A) = sup

x∈Rn
+,|x|=1

x�Ax, λmax(A) = sup
x∈Rn ,|x|=1

x�Ax.

It is clear that λ+
max(A) ≤ λmax(A) and x�Ax ≤ λ+

max(A)|x|2 for any x ∈R
n
+ [19]. In model (4),

{ς (t), t ≥ 0} is a right-continuous Markov chain on the probability space (Ω ,F, {Ft}t≥0,P)
taking values in a finite-state S = {1, 2, . . . , m} with the generator Θ = (κij)m×m given by

P
{
ς (t + δ) = j|ς (t) = i

}
=

⎧
⎨

⎩

κijδ + o(δ), if i 	= j,

1 + κijδ + o(δ), if i = j,

where δ > 0. Here κij is the transition rate from i to j if i 	= j while

κii = –
∑

i	=j

κij.

In this paper we note that κij > 0 if i 	= j. As a standing hypothesis, we assume that the
Markov chain {ς (t), t ≥ 0} is independent of the Brownian motion w(·) and it is irreducible,
which means that the system can switch from any regime to any other [20]. This is equiv-
alent to the condition that for any i, j ∈ S, there are finite numbers i1, i2, . . . , ii ∈ S such that
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κi,i1κi1,i2 · · ·κii ,j > 0 and this implies the ergodicity property in view of Markov theory for
finite states. If Θ has a trivial eigenvalue, then the algebraic interpretation of irreducbil-
ity is rank(Θ) = n – 1. Under this assumption, the Markov chain has a unique stationary
distribution π = (π1,π2, . . . ,πm) ∈ R

1×m which can be determined by solving the linear
equation πΘ = 0,

∑m
k=1 πk = 1 and πk > 0, ∀k ∈ S. The details of the theory have been

studied by many authors [11–13, 21]. For any vector φ = (φ(1),φ(2), . . . ,φ(m))�, we note
that limt→∞ 1

t
∫ t

0 φ(ς (s)) ds =
∑

k∈S πkφ(k), φ̂(k) = {minφ(k)|k ∈ S} = minm
ς (t)=1 φ(ς (t)) and

φ̌(k) = {maxφ(k)|k ∈ S} = maxm
ς (t)=1 φ(ς (t)). Inspired by Liu and Wang in [16], we also list

the following notations: 〈f (t)〉 = 1
t
∫ t

0 f (s) ds, f∗ = lim inft→∞ f (t) and f ∗ = lim supt→∞ f (t).
Let (z(t),ς (t)) be the diffusion process described by the following equation:

⎧
⎨

⎩

dz(t) = f (z(t),ς (t)) dt + g(z(t),ς (t)) dw(t),

z(0) = z, ς (0) = ς ,
(5)

where w(·) and ς (·) are the d-dimensional Brownian motion and the right-continuous
Markov chain in the above discussion, respectively. Functions f (·, ·) : Rn × S→R

n, g(·, ·) :
R

n × S → R
n×d satisfy g(z, k)gT (z, k) = D(z, k). For each k ∈ S, and for any twice continu-

ously differentiable function V (·, k), (z(t),ς (t)) has a generator L given as follows [12, 21]:

LV (z, k) =
n∑

i=1

fi(z, k)
∂V (z, k)

∂zi
+

1
2

n∑

i,j=1

Dij(z, k)
∂2V (z, k)
∂zi∂zj

+ ΘV (z, ·)(k),

where

ΘV (z, ·)(k) =
n∑

i=1

κkiV (z, i) =
∑

i	=k∈S
κki

(
V (z, i) – V (z, k)

)
, k ∈ S.

For convenience, model (4) can be rewritten in matrix form as

dX(t) = diag
(
x(t), y(t)

){[
A

(
ς (t)

)
X(t) + B

(
ς (t)

)]
dt + β

(
ς (t)

)
dw(t)

}
, (6)

where

X(t) =
(
x(t), y(t)

)�, β
(
ς (t)

)
=

(
η
(
ς (t)

)
σ
(
ς (t)

)
,α

(
ς (t)

)
σ
(
ς (t)

))�,

B
(
ς (t)

)
=

(
bxς (t), byς (t)

)�, A
(
ς (t)

)
=

(
θ (ς (t)) ξ (ς (t))
α(ς (t)) –α(ς (t))

)

.

Theorem 2.1 For any i ∈ S, if θ (i) + ξ (i) < 0 holds, then for any given initial value
(x(0), y(0),ς (0)) ∈ R+ × R+ × S, there exists a unique solution to model (4) for t ≥ 0, and
the solution will remain in R+ ×R+ × S almost surely.

Proof The proof can be found in Appendix A. �

Theorem 2.1 implies that if the returns of technology scale to the capital and technology
sectors are decreasing, then the technology and capital show positive long-run growth.
This useful property offers us a great opportunity to construct different types of Lyapunov
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functions to research the asymptotic properties of model (4) in R
2
+ in more detail. Next, we

attempt to obtain sufficient criteria to ensure economic strong prosperity, weak prosperity,
nonprosperity, and depression in the mean. Moreover, we obtain an estimate of the upper
bound of economic growth rates.

3 The threshold between depression and prosperity in the mean
In the R&D model, we are concerned about whether the rates of technological progress
and capital accumulation will continue to grow or be stable in the long term. In this section,
our aim is to discuss the economic growth rate and give the threshold between depression
and prosperity of the system. These are also the main conclusions of this paper.

Definition 3.1
• The R&D system (4) is said to be in depression, if limt→∞ x(t) = 0 and limt→∞ y(t) = 0

a.s.
• The R&D system (4) is said to be in nonprosperity if 〈x(t)〉∗ = 0 and 〈y(t)〉∗ = 0 a.s.
• The R&D system (4) is said to be in weak prosperity in the mean if 〈x(t)〉∗ > 0 and

〈y(t)〉∗ > 0 a.s.
• The R&D system (4) is said to be in strong prosperity in the mean if 〈x(t) + y(t)〉∗ > 0

a.s.

Remark 3.1 Definition 3.1 is inspired by [16]. Liu and Wang introduced weak and
strong persistence in a stochastic single-specie model if lim supt→∞

1
t
∫ t

0 y(s) ds > 0 and
lim inft→∞ 1

t
∫ t

0 y(s) ds > 0 a.s., respectively. Clearly, the condition of strong prosperity in
the mean is stronger than that of weak prosperity. However, we define strong prosperity
differently from [16] to satisfy the following certifications and actual background.

Definition 3.2 The economic growth rate of model (4) is said to be stochastically ulti-
mately bounded if for any ε ∈ (0, 1), there exists a positive B = B(ε) such that for any initial
value (x(0), y(0),ς (0)) ∈R+ ×R+ × S, the solution of model (4) has the property that

lim sup
t→∞

P
{∣
∣x(t)

∣
∣ ≤ B(ε)

} ≥ 1 – ε, lim sup
t→∞

P
{∣
∣y(t)

∣
∣ ≤ B(ε)

} ≥ 1 – ε.

Theorem 3.1 For any i ∈ S, if θ (i) + ξ (i) < 0 holds, then the expected growth rates of both
technology and capital accumulation are ultimately bounded in the long-run.

Proof According to Theorem 2.1, the solution (x(t), y(t),ς (t)) ∈ R+ ×R+ × S a.s. For any
γ > 0, we define V : R+ ×R+ ×R+ × S→ R+ as

V (t, x, y, i) = eγ t
(

x(t) –
2θ (i) + ξ (i)

α(i)
y(t)

)

.

For any positive integer k ≥ (x2(0) + y2(0)) 1
2 , define the stopping time as ρk = inf{t ∈ (0, τe) :

(x2(t) + y2(t)) 1
2 ≥ k}. By the generalized Itô’s formula [21] applied to V (t, x(t), y(t), i), we
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have

LV
(
t, x(t), y(t), i

)
= eγ t

{

θ (i)x2(t) – 2θ (i)x(t)y(t) +
[
2θ (i) + ξ (i)

]
y2(t)

–
[
2θ (i) + ξ (i)

]
[

n(i) –
(1 – α(i))

2
σ 2(i) +

γ (i)
α(i)

]

y(t)

+
[

η(i)n(i) –
η(i)(1 – η(i))

2
σ 2(i) + γ (i)

]

x(t)
}

+
m∑

j=1

κijeγ t
(

x(t) –
2θ (j) + ξ (j)

α(j)
y(t)

)

.

Letting D̄(i) = diag(1, – 2θ (i)+ξ (i)
α(i) ), F(i) = [η(i)n(i) – η(i)(1–η(i))

2 σ 2(i) + γ (i), –(2θ (i) + ξ (i))(n(i) –
(1–α(i))

2 σ 2(i) + γ (i)
α(i) )], from the condition of θ (i) + ξ (i) < 0, we get that D̄(i)A is a negative

definite matrix and, denoting –λ := maxi∈S λ+
maxD̄(i)A, then we have

LV
(
t, x(t), y(t), i

) ≤ eγ t{(∣∣F(i)
∣
∣ + κi

)∣
∣X(t)

∣
∣ – λ

∣
∣X(t)

∣
∣2} ≤ Ceγ t . (7)

where κi =
∑

j 	=i κij(1 + ( 2θ (j)+ξ (j)
α(j) )2) 1

2 , C = maxm
i=1

(|F(i)|+κi)2

4λ
. Integrating both sides of (7) from

0 to t ∧ ρk and taking expectations, we obtain

EV
(
t ∧ ρk , x(t ∧ ρk), y(t ∧ ρk),ς (t ∧ ρk)

) ≤ V
(
0, x(0), y(0),ς (0)

)
+

C
γ

(
eγ (t∧ρk ) – 1

)
.

Letting k → ∞, we get

EV
(
t, x(t), y(t),ς (t)

) ≤ V
(
0, x(0), y(0),ς (0)

)
+

C
γ

(
eγ t – 1

)
,

while letting t → ∞ yields

lim
t→∞ supE

(

x(t) –
2θ (ς (t)) + ξ (ς (t))

α(ς (t))
y(t)

)

≤ C
γ

,

by the positivity property of V . Also letting C1 = α̌(ς (t))
2θ̌(ς (t))+ξ̌ (ς (t))

, we get

lim
t→+∞ supEx(t) ≤ C

γ
, lim

t→+∞ supEy(t) ≤ –C1
C
γ

, (8)

as required. Now for any ε > 0, let B1(ε) = C
εγ

, then, according to the Chebyshev’s inequal-
ity, we have

P
{∣
∣x(t)

∣
∣ > B1(ε)

} ≤ E(|x(t)|)
B1(ε)

,

so

lim sup
t→∞

P
{∣
∣x(t)

∣
∣ > B1(ε)

} ≤ ε,
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which implies that

lim sup
t→∞

P
{∣
∣x(t)

∣
∣ ≤ B1(ε)

} ≥ 1 – ε.

In the same way, letting B2(ε) = – α̌(ς (t))
2θ̌ (ς (t))+ξ̌ (ς (t))

C
εγ

, we have

lim sup
t→∞

P
{∣
∣y(t)

∣
∣ ≤ B2(ε)

} ≥ 1 – ε,

thus the proof is completed. �

Remark 3.2 We denote L(x, y) = θx2 – 2θxy+ (2θ +ξ )y2 + (γ + bx)x – y
α

(2θ +ξ )(γ + by). From
[4], we know that the value of Lmax can influence the rates of technological progress and
capital accumulation in the R&D model with white noise. However, Theorem 3.1 shows
that the value of Lmax is not sufficient to determine the long-run economic trend under
regime switching. Therefore, not only Lmax but also the transition rate κij can control the
bound of economic growth in the R&D model disturbed by both white and color noise.

Theorem 3.2 For any ς (t) ∈ S, if θ (ς (t)) + ξ (ς (t)) < 0, then there is a positive constant K
such that for any initial value (x(0), y(0),ς (0)) ∈R+ ×R+ ×S, the solution of model (4) has
the property that

lim sup
t→∞

1
t

∫ t

0
Ex2(s) ds ≤ 2K

λ
,

lim sup
t→∞

1
t

∫ t

0
Ey2(s) ds ≤ 2K

λ
.

Proof By Theorem 2.1, the solution of model (4) will remain in R+ × R+ × S for all t > 0
a.s., then we define a C2-function V : R+ ×R+ × S→R+ by

V
(
x(t), y(t), i

)
= x(t) –

2θ (i) + ξ (i)
α(i)

y(t).

For any positive integer k ≥ (x2(0)+y2(0)) 1
2 , we define the stopping time ρk = inf{t ∈ (0, τe) :

(x2(t) + y2(t)) 1
2 > k}, where τe is the explosion time defined in the proof of Theorem 2.1. By

the generalized Itô’s formula, we can get

LV
(
x(t), y(t), i

)
= x(t)

[
θ (i)x(t) + ξ (i)y(t) + bx(i)

]
+

m∑

j=1

κijV
(
x(t), y(t), j

)

–
2θ (i) + ξ (i)

α(i)
y(t)

[
α(i)x(t) – α(i)y(t) + by(i)

]
,
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then integrating both sides from 0 to t ∧ ρk and taking expectations, we have

E

(

x(t) –
2θ (i) + ξ (i)

α(i)
y(t)

)

≤ E

∫ t∧ρk

0

{{∣
∣
∣
∣

[

bx(s),
2θ (i) + ξ (i)

α(s)

]∣
∣
∣
∣ + κi

}
∣
∣X(s)

∣
∣ – λ

∣
∣X(s)

∣
∣2

}

ds

+ x(0) –
2θ (ς (0)) + ξ (ς (0))

α(ς (0))
y(0)

≤ x(0) –
2θ (ς (0)) + ξ (ς (0))

α(ς (0))
y(0) + Kt –

λ

2
E

∫ t∧ρk

0

∣
∣X(s)

∣
∣2 ds, (9)

where K = maxi∈S
b2

x(i)+( 2θ (i)+ξ (i)
α(i) by(i))2+κ2

i
λ

, κi and λ are the same as in Theorem 3.1. Using the
Fubini theorem and letting k → ∞, t → ∞, respectively, we get

lim sup
t→∞

1
t

∫ t

0
E

(
x2(s) + y2(s)

)
ds ≤ 2K

λ
, (10)

as desired. �

Theorem 3.2 shows that the growth rates of both technological progress and capital
accumulation are second moment bounded in the time average sense, and the conclusion
is stronger than that of Theorem 3.1.

Lemma 3.3 For any ς (t) ∈ S, if θ (ς (t)) + ξ (ς (t)) < 0 and θ̄ (ς (t)) + ξ (ς (t))+α(ς (t))
2 < 0 holds,

then the solution of model (4) has the explicit form

x(t) + y(t)

≤ exp

{∫ t

0

[

b̄
(
ς (s)

)
–

1
2
σ 2(ς (s)

)
η̄2(ς (s)

)
]

ds +
∫ t

0
σ
(
ς (s)

)
η̄
(
ς (s)

)
dw(s)

}

/(
1

x(0) + y(0)
+

∫ t

0
–
(

θ̄ (ς (s))
2

+
ξ (ς (s)) + α(ς (s))

4

)

· exp

{∫ t

0

(

b̄
(
ς (τ )

)
–

1
2
σ 2(ς (τ )

)
η̄2(ς (τ )

)
)

dτ +
∫ s

0
σ
(
ς (τ )

)
η̄
(
ς (τ )

)
dw(τ )

}

ds
)

,

where θ̄ (ς (t)) = –α(ς (t)) ∨ θ (ς (t)), b̄(ς (t)) = bx(ς (t)) ∨ by(ς (t)), η̄(ς (t)) = η(ς (t)) ∨α(ς (t)),
for any ς (t) ∈ S.

Proof The proof of this result is deferred until Appendix B. �

Lemma 3.3 is a preparation for researching the threshold of model (4) in the following
result.

Theorem 3.3 For any ς (t) ∈ S, if θ (ς (t)) + ξ (ς (t)) < 0 and θ̄ (ς (t)) + ξ (ς (t))+α(ς (t))
2 < 0 hold,

when b̃ – 〈 σ 2(ς (t))η̄2(ς (t))
2 〉∗ < 0, then the R&D system (4) will go into depression, where b̃ =

1
t
∫ t

0 b̄(ς (s)) ds and b̄(ς (s)), θ̄ (ς (t)), η̄(ς (t)) are the same as defined in Lemma 3.3.
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Proof From Lemma 3.3, we can easily get that

ϕ(t) ≤ ϕ(0) exp

{∫ t

0

[

b̄
(
ς (s)

)
–

1
2
σ 2(ς (s)

)
η̄2(ς (s)

)
]

ds +
∫ t

0
σ
(
ς (s)

)
η̄
(
ς (s)

)
dw(s)

}

≤ ϕ(0) exp

{

–t
[〈

1
2
σ 2(ς (s)

)
η̄2(ς (s)

)
〉

–
1
t

∫ t

0
b̄
(
ς (s)

)
ds

–
∫ t

0 σ (ς (s))η̄(ς (s)) dw(t)
t

]}

. (11)

Letting
∫ t

0 σ (ς (s))η̄(ς (s)) dw(s) = M(t), 1
t
∫ t

0 b̄(ς (s)) ds = b̃ a.s., we known that M(t) is a mar-
tingale which satisfies

〈
M(t), M(t)

〉

t ≤ σ̌ 2(ς (t)
) ˇ̄η2(ς (t)

)
t,

then, due to the ergodicity of ς (t) and the strong law of large numbers for martingales, we
can get

lim
t→∞

1
t

∫ t

0
b̄
(
ς (t)

)
ds =

m∑

i=1

πib̄(i) = b̃ a.s., (12)

so that taking limit superior of both sides of (11) leads to

lim sup
t→∞

ϕ(t) ≤ ϕ(0) exp

{

–t
[〈

1
2
σ 2(ς (t)

)
η̄2(ς (t)

)
〉

– b̃
]}

. (13)

Therefore the desired assertion follows from (13) immediately. �

Remark 3.3 In the corresponding deterministic R&D model, the growth rates of both
technological progress and capital accumulation are determined entirely by the popula-
tion growth rate. In the stochastic environment, due to the effect of white noise, if the
expected population growth rate n satisfies n < 1–(

√
α–√

η)2

2 σ 2, then the population growth
rate may have little influence on long-run economic growth because the economic growth
rate will go to zero. However, the situation changes considerably for the stochastic R&D
model under white and color noise. Theorem 3.3 shows that both the ergodicity of the
Markov chain ς (t) and the transition rate κij from i to j affect the long-run growth rates
of technological progress and capital accumulation in the stochastic R&D model under
white and color noise.

Remark 3.4 Unless otherwise specified, the values of b̃, b̄(ς (s)), θ̄ (ς (t)), η̄(ς (t)) and M(t)
are consistent with Theorem 3.3 in the following.

Theorem 3.4 For any ς (t) ∈ S, if θ (ς (t)) + ξ (ς (t)) < 0 and θ̄ (ς (t)) + ξ (ς (t))+α(ς (t))
2 < 0 hold,

when b̃ – 〈 1
2σ 2(ς (t))η̄2(ς (t))〉∗ = 0, then model (4) will be stochastically nonprosperous in

the mean.
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Proof Using the generalized Itô’s formula to logϕ(t), with ϕ(t) defined in Lemma 3.3, we
have

d logϕ(t) =
{[

θ̄ (ς (t))
2

+
ξ (ς (t)) + α(ς (t))

4

]

ϕ(t) + b̄ –
1
2
σ 2(ς (t)

)
η̄
(
ς (t)

)
}

dt

+ σ
(
ς (t)

)
η̄
(
ς (t)

)
dw(t),

and then

1
t

log
ϕ(t)
ϕ(0)

=
1
t

∫ t

0
b̄
(
ς (s)

)
ds +

1
t

∫ t

0

[
θ̄ (ς (t))

2
+

ξ (ς (s)) + α(ς (s))
4

]

ϕ(s) ds

–
1
2t

∫ t

0
σ 2(ς (s)

)
η̄2(ς (s)

)
ds +

1
t

∫ t

0
σ
(
ς (s)

)
η̄
(
ς (s)

)
dw(s), (14)

so, according to Eq. (12), we have

1
t

log
ϕ(t)
ϕ(0)

=
1
t

∫ t

0
b̄
(
ς (s)

)
ds +

〈[
θ̄ (ς (t))

2
+

ξ (ς (t)) + α(ς (t))
4

]

ϕ(t)
〉

–
1
2
〈
σ 2(ς (t)

)
η̄2(ς (t)

)〉
+

M(t)
t

. (15)

Making use of the strong law of large numbers for martingales yields limt→+∞ M(t)
t = 0 a.s.,

so for any ε > 0, there exists a constant T such that for any t > T , we have

M(t)
t

≤ ε

3
, (16)

1
t

∫ t

0
b̄
(
ς (s)

)
ds ≤ b̃ +

ε

3
, (17)

and

1
2
〈
σ 2(ς (t)

)
η̄2(ς (t)

)〉
>

1
2
〈
σ 2(ς (t)

)
η̄2(ς (t)

)〉

∗ –
ε

3
. (18)

Substituting (16), (17), and (18) into Eq. (15), we get

1
t

log
ϕ(t)
ϕ(0)

≤ b̃ +
〈[

θ̄ (ς (t))
2

+
ξ (ς (t)) + α(ς (t))

4

]

ϕ(t)
〉

–
1
2
〈
σ 2(ς (t)

)
η̄2(ς (t)

)〉

∗ + ε

≤
[

b̃ –
1
2
〈
σ 2(ς (t)

)
η̄2(ς (t)

)〉

∗ + ε

]

+
〈[

θ̄ (ς (t))
2

+
ξ (ς (t)) + α(ς (t))

4

]

ϕ(t)
〉

,

from which we deduce

logϕ(t) – logϕ(0) ≤
[

b̃ –
1
2
〈
σ 2(ς (t)

)
η̄2(ς (t)

)〉

∗ + ε

]

t

+
〈[

θ̄ (ς (t))
2

+
ξ (ς (t)) + α(ς (t))

4

]

ϕ(t)
〉

t
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≤
[

b̃ –
1
2
〈
σ 2(ς (t)

)
η̄2(ς (t)

)〉

∗ + ε

]

t

+
m

max
ς (t)=1

{
θ̄ (ς (t))

2
+

ξ (ς (t)) + α(ς (t))
4

}∫ t

0
ϕ(s) ds.

Letting
∫ t

0 ϕ(s) ds = g(t) and b̃ = 1
2 〈σ 2(ς (t))η̄2(ς (t))〉∗, we have

–
m

max
ς (t)=1

{
θ̄ (ς (t))

2
+

ξ (ς (t)) + α(ς (t))
4

}

g(t) ≤ εt – log
ϕ(t)
ϕ(0)

,

and then

exp

{

–
m

max
ς (t)=1

{
θ̄ (ς (t))

2
+

ξ (ς (t)) + α(ς (t))
4

}

g(t)
}

≤ ϕ(0)eεt

ϕ(t)
,

thus we deduce that

exp

{

–
m

max
ς (t)=1

{
θ̄ (ς (t))

2
+

ξ (ς (t)) + α(ς (t))
4

}

g(t)
}

dg(t)
dt

< ϕ(0)eεt , t > T .

Now by integrating this inequality from T to t results in

∫ t

T
exp

{

–
m

max
ς (t)=1

[
θ̄ (ς (t))

2
+

ξ (ς (t)) + α(ς (t))
4

]

g(t)
}

dg(t) <
ϕ(0)
ε

(
eεt – eεT)

. (19)

Letting – maxm
ς (t)=1{ θ̄ (ς (t))

2 + ξ (ς (t))+α(ς (t))
4 } = C2, from (19), we deduce that

eC2g(t) ≤ eC2g(T) +
C2ϕ(0)

ε

(
eεt – eεT)

,

hence
∫ t

0
ϕ(s) ds ≤ 1

C2
log

[

eC2g(T) +
C2ϕ(0)

ε

(
eεt – eεT)

]

,

and then

(∫ t
0 ϕ(s) ds

t

)∗
≤ 1

C2

{
log[eC2g(T) + C2ϕ(0)

ε
(eεt – eεT )]

t

}∗
.

By the L’Hospital’ s rule, we derive

lim
t→∞

log[eC2g(T) + C2ϕ(0)
ε

(eεt – eεT )]
t

= lim
t→∞

C2ϕ(0)eεt

eC2g(T) + C2ϕ(0)
ε

(eεt – eεT )
= ε,

so we have 〈ϕ(t)〉∗ ≤ ε
C2

and, letting ε down to zero, we get that 〈ϕ(t)〉∗ ≤ 0. Then by the
comparison theorem, we can check that 〈x(t)〉∗ = 0 and 〈y(t)〉∗ = 0. �

Theorem 3.5 For any ς (t) ∈ S, if θ (ς (t)) + ξ (ς (t)) < 0 and θ̄ (ς (t)) + ξ (ς (t))+α(ς (t))
2 < 0 hold,

when b̃ – 1
2 〈σ 2(ς (t))η̄2(ς (t))〉∗ > 0, then the R&D system (4) will be stochastically weakly

prosperous in the mean.
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Proof From Theorem 3.3, we know that x(t) + y(t) ≤ ϕ(t), where ϕ(t) is defined in
(35). Under hypothetical conditions and through Corollary 3.4 in [22], we get that
lim supt→∞

logϕ(t)
t ≤ 0 a.s. Consequently, we have

(
log x(t)

t

)∗
≤ 0,

(
log y(t)

t

)∗
≤ 0. (20)

Now we need to prove

0 < lim sup
t→∞

1
t

∫ t

0
x(s) ds < lim sup

t→∞
1
t

∫ t

0
ϕ(s) ds.

In fact, we just assume P{ϕ(t)∗ = 0} > 0 is not true. Actually, from (14), we obtain that

logϕ(t)
t

–
logϕ(0)

t
–

〈[
θ̄ (ς (t))

2
–

ξ (ς (t)) + α(ς (t))
4

]

ϕ(t)
〉

=
1
t

∫ t

0
b̄
(
ς (s)

)
ds –

1
2
〈
σ 2(ς (t)

)
η̄2(ς (t)

)〉
+

M(t)
t

. (21)

We consider the set U = {ω|〈ω〉∗ = 0}, and then for any ϕ(t) ∈U, we can easily get that

〈[
ξ (ς (t)) + α(ς (t))

4
–

θ̄ (ς (t))
2

]

ϕ(t)
〉∗

≤ max
ς (t)∈S

{
ξ (ς (t)) + α(ς (t))

4
–

θ̄ (ς (t))
2

}
〈
ϕ(t)

〉∗ = 0.

In view of (21), we have

(
logϕ(t)

t

)∗
≥ b̃ –

1
2
〈
σ 2(ς (t)

)
η̄2(ς (t)

)〉

∗,

so we just let b̃ – 1
2 〈σ 2(ς (t))η̄2(ς (t))〉∗ > 0 and deduce

P

{(
logϕ(t)

t

)∗
> 0

}

> 0,

so that

P

{(
log x(t)

t

)∗
> 0

}

> 0,

which contradicts Eq. (20). We can use the same method to y(t) and then the proof is
completed. �

Remark 3.5 Theorems 3.3, 3.4, and 3.5 show that under the conditions θ (ς (t))+ξ (ς (t)) < 0
and θ̄ (ς (t)) + ξ (ς (t))+α(ς (t))

2 < 0, b̃ – 1
2 〈σ 2(ς (t))η̄2(ς (t))〉∗ is the threshold between stochas-

tic depression, nonprosperity, and weak prosperity in the mean. Additionally, color noise
plays an important role in determining depression or prosperity in model (4). That is,
when the Markov chain spends more time in a good state, which means

∑m
i=1 πib̄(i) takes

a large value, then the growth rates of economic progress and capital accumulation trend
toward prosperity in the long run. Conversely, if the Markov chain spends more time in a
bad state, it may lead the R&D system (4) toward depression.
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Theorem 3.6 For any ς (t) ∈ S, if θ (ς (t)) + ξ (ς (t)) < 0 holds, when h̄ > 1
2 〈σ 2(ς (t))[η(ς (t))∧

α(ς (t))]2〉∗, then the R&D system (4) will be stochastically strongly prosperous in the mean.

Proof We now consider the system on the boundary

dΦ(t) = Φ(t)
{[

θ
(
ς (t)

) ∧ (–α)
(
ς (t)

)]
Φ(t) +

[
bx

(
ς (t)

) ∧ by
(
ς (t)

)]}
dt

+ σ
(
ς (t)

)[
η
(
ς (t)

) ∧ α
(
ς (t)

)]
Φ(t) dw(t). (22)

We can easily to check that x(t) + y(t) ≥ Φ(t) a.s. for any t ≥ 0. Applying the generalized
Itô’s formula, we get from equation (22) that

logΦ(t) – logΦ(0)
t

=
[
θ
(
ς (t)

) ∧ (
–α

(
ς (t)

))]〈
Φ(t)

〉
+

∫ t
0 (bx(ς (s)) ∧ by(ς (s))) ds

t

–
1
2
〈
σ 2(ς (t)

)[
η
(
ς (t)

) ∧ α
(
ς (t)

)]2〉 +
M(t)

t
. (23)

Letting bx(ς (t)) ∧ by(ς (t)) = h(ς (t)), by the ergodicity of Markov chain ς (t), we have

∫ t
0 h(ς (s)) ds

t
=

∑

i∈S
πih(i) = h̄ a.s.,

and then Eq. (23) can be rewritten as

logΦ(t) – logΦ(0)
t

=
[
θ
(
ς (t)

) ∧ (
–α

(
ς (t)

))]〈
Φ(t)

〉
+

∫ t
0 h(ς (s)) ds

t

–
1
2
〈
σ 2(ς (t)

)[
η
(
ς (t)

) ∧ α
(
ς (t)

)]2〉 +
M(t)

t
, (24)

where M(t) =
∫ t

0 σ (ς (s))[η(ς (s)) ∧α(ς (s))] dw(s). For each sufficiently small constant ε > 0,
there is a constant T such that for all t > T , we have

M(t)
t

> –
ε

3
, (25)

1
t

∫ t

0
h
(
ς (s)

)
ds > h̄ –

ε

3
, (26)

and

1
2
〈
σ 2(ς (t)

)[
η
(
ς (t)

) ∧ α
(
ς (t)

)]2〉 <
1
2
〈
σ 2(ς (t)

)[
η
(
ς (t)

) ∧ α
(
ς (t)

)]2〉∗ +
ε

3
. (27)

Substituting (25), (26), and (27) into Eq. (24), we have

logΦ(t) – logΦ(0) ≥
{

h̄ –
1
2
〈
σ 2(ς (t)

)[
η
(
ς (t)

) ∧ α
(
ς (t)

)]2〉∗ – ε

}

t

+ min
ς (t)∈S

[
θ
(
ς (t)

) ∧ (
–α

(
ς (t)

))]
∫ t

0
Φ(s) ds (t > T). (28)
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Letting minm
ς (t)=1[θ (ς (t)) ∧ (–α(ς (t)))] = ν , h̄ – 1

2 〈σ 2(ς (t))[η(ς (t)) ∧ α(ς (t))]2〉∗ – ε = μ,
∫ t

0 Φ(s) ds = f (t), inequality (28) can be rewritten as

log
df (t)

dt
> logΦ(0) + μt + ν

∫ t

0
Φ(s) ds. (29)

Taking the exponential of both sides of (29), we have

df (t)
dt

> Φ(0)eμt+ν
∫ t

0 Φ(s) ds,

and, since
∫ t

0 Φ(s) ds = f (t), we have that

e–νf (t) df (t)
dt

> Φ(0)eμt . (30)

Integrating both sides of (30) from T to t, we obtain that

–
1
ν

[
e–νf (t) – e–νf (T)] >

Φ(0)
μ

(
eμt – eμT)

.

Hence

f (t) > –
1
ν

log

[

–Φ(0)
ν

μ
eμt + Φ(0)

ν

μ
eμT + e–νf (T)

]

,

thus we can get

{∫ t
0 Φ(s) ds

t

}

∗
≥ –

1
ν

{ log[–Φ(0) ν
μ

eμt + Φ(0) ν
μ

eμT + e–νf (T)]
t

}

∗
. (31)

By the L’Hospital’s rule, we have

lim inf
t→∞ –

1
ν

{ log[–Φ(0) ν
μ

eμt + Φ(0) ν
μ

eμT + e–νf (T)]
t

}

= lim inf
t→∞ –

1
ν

· –Φ(0)νeμt

–Φ(0) ν
μ

eμt + Φ(0) ν
μ

eμT + e–νf (T)

= –
μ

ν
.

Since minm
ς (t)=1[θ (ς (t)) ∧ (–α(ς (t)))] = ν , h̄ – 1

2 〈σ 2(ς (t))[η(ς (t)) ∧ α(ς (t))]2〉∗ – ε = μ, we
have

{∫ t
0 Φ(s) ds

t

}

∗
≥ h̄ – 1

2 〈σ 2(ς (t))[η(ς (t)) ∧ α(ς (t))]2〉∗ – ε

– minς (t)∈S[θ (ς (t)) ∧ (–α(ς (t)))]
, (32)

where ε is sufficiently small such that

〈
Φ(t)

〉

∗ >
h̄ – 1

2 〈σ 2(ς (t))[η(ς (t)) ∧ α(ς (t))]2〉∗
– minς (t)∈S[θ (ς (t)) ∧ (–α(ς (t)))]

.

According to the assumption, we have 〈x(t) + y(t)〉∗ > 0. �



Zhang and Zhang Advances in Difference Equations        (2020) 2020:173 Page 16 of 23

Remark 3.6 Theorem 3.6 shows that under the condition of h̄ – 1
2 〈σ 2(ς (t))[η(ς (t)) ∧

α(ς (t))]2〉∗ > 0, both technological progress and capital accumulation will be increased
significantly in the mean. Clearly, the condition of Theorem 3.6 is stronger than that of
Theorem 3.5, which means that if

∑m
i=1 πih(i) is relatively large or the uncertainty from

white noise is relatively low, then the economy will be characterized by strong prosperity.

4 Numerical experiments
In this section, we verify our theory from the previous sections via numerical examples.

Example 4.1 Let ς (t) be a Markov chain on the state space S = {1, 2}, and the generator
Θ is given as Θ =

( –1 1
3 –3

)
. Fig. 1(a) shows sample paths of the Markov chain, which has

two reachable states. The dwell time of the system in these two reachable states depends
on the stationary distribution in Fig. 1(b). We can also know that the Markov chain ς (t)
spends more time in state 1 and less time in state 2.

Example 4.2 We choose parameter values for states ς (t) = 1 and ς (t) = 2 as in Table 2.
The Markov chain has the generator Θ =

( –2 2
1 –1

)
. It is easy to verify that the parameters

satisfy the conditions of Theorem 3.3, according to which we can conclude that the system
will be in depression, and the numerical simulation shown in Fig. 2 clearly supports our
conclusion.

Example 4.3 To show the strong prosperity of the R&D model, we choose parameters for
states 1 and 2 as in Table 3. The generator of the Markov chain is Θ =

( –2 2
5 –5

)
. Accord-

ing to Theorem 3.6, we can conclude that the model will be in strong prosperity, and the
numerical simulation in Fig. 3 displays this phenomenon, as expected.

Example 4.4 Inspired by [23], we obtain the stationary distributions of x(t) and y(t) for
three different environmental forcing intensities according to 10,000 numerical simula-
tion runs in Fig. 4. The smooth curves denote the probability density functions of x(t)

Figure 1 (a) Computer simulation of a sample path of Markov chain ς (t). (b) Probability density function
(PDF) of Markov chain ς (t)

Table 2 Parameter values under finite regime switching of model (4)

State θ (ς (t)) ξ (ς (t)) η(ς (t)) α(ς (t)) σ (ς (t)) n(ς (t))

ς (t) = 1 –0.9 0.1 0.1 0.4 0.4 0.04
ς (t) = 2 –0.5 0.48 0.6 0.2 2 0.4
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Figure 2 The time-series plots of x(t) and y(t) for model (4) with initial value (x0, y0) = (0.9, 0.6), and other
parameters are taken as in Table 2

Table 3 Parameter values under finite regime switching of model (4)

State θ (ς (t)) ξ (ς (t)) η(ς (t)) α(ς (t)) σ (ς (t)) n(ς (t))

ς (t) = 1 –0.8 0.2 0.3 0.6 0.1 0.6
ς (t) = 2 –0.9 0.3 0.6 0.4 0.1 1.5

Figure 3 The time-series plots of x(t) and y(t) for model (4) with initial (x0, y0) = (0.2, 0.8), and other
parameters are taken as in Table 3

and y(t). The change in the stationary distributions with increasing σ is illustrated by the
distributions displayed in the left (σ = 0.1), middle (σ = 0.4), and right (σ = 0.9) panels in
Fig. 4. The parameters of states 1, 2 and 3 are selected according to Table 4.

The results show that increasing the environmental forcing intensity may lead to
changes in the mean values and skewness of the distribution for the R&D model. More
precisely, the stationary distribution is close to a normal distribution at lower intensity
(e.g., σ = 0.1, see the left panel of Fig. 4), but the distribution is positively skewed at higher
intensity (e.g., σ = 0.9, see the right panel of Fig. 4).

5 Concluding remarks
The stochastic R&D model plays an important role in economic growth theories. The
asymptotic properties of the R&D model, which is disturbed by white and color noise, is
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Figure 4 Histogram of the probability density function of x(100) and y(100) for model (4), the smooth curves
are the probability density functions of x(t) and y(t), respectively

Table 4 Parameter values under finite regime switching of model (4)

State θ (ς (t)) ξ (ς (t)) η(ς (t)) α(ς (t)) σ (ς (t)) n(ς (t))

ς (t) = 1 –0.9 0.2 0.59 0.29 0.1 0.33
ς (t) = 2 –0.91 0.21 0.6 0.3 0.4 0.33
ς (t) = 3 –0.89 0.19 0.61 0.31 0.9 0.33

an open problem. In this paper, we obtain sufficient conditions of economic strong pros-
perity, weak prosperity, nonprosperity, and depression under regime switching. The most
important contribution of this paper is that we precisely express the threshold between
prosperity and depression. This means that:

• If b̃ – 〈 σ 2(ς (t))η̄2(ς (t))
2 〉∗ < 0, then the economy is going into a depression in the long term.

• If b̃ – 〈 σ 2(ς (t))η̄2(ς (t))
2 〉∗ = 0, then the economy is going into nonprosperity in the long

term.
• If b̃ – 〈 σ 2(ς (t))η̄2(ς (t))

2 〉∗ > 0, then the economy is going into weak prosperity in the long
term.

We also find that the growth rates of economic progress and capital accumulation can
easily increase in the long term if the Markov chain spends more time in the good
states or if the uncertainty coming from white noise is relatively low in the sense that
h̄ > 1

2 〈σ 2(ς (t))[η(ς (t)) ∧ α(ς (t))]2〉∗ (see Theorem 3.6). In contrast, if the Markov chain
spends more time in the bad states or the uncertainty coming from white noise is rel-
atively large in the sense that b̃ < 〈 σ 2(ς (t))η̄2(ς (t))

2 〉∗, it may lead to R&D system depression
(see Theorem 3.3). The conclusions of this paper may provide a good explanation for some
economic fluctuation phenomena under regime switching. Some questions that need fur-
ther discussion remain. For instance, it will be useful to extend the R&D model to consider
Poisson jumps or time delays. We will make further efforts in this direction in the future.
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Appendix A: Proof of Theorem 2.1

Proof Since the coefficients of model (4) are locally Lipschitz continuous, for any given
positive initial value (x(0), y(0),ς (0)), there exists a unique maximal local solution (x(t),
y(t),ς (t)) on t ∈ [0, τe), where τe is the explosion time. In order to explain why the local
solution is global, we only need to prove τe = ∞ with probability 1. Let k0 be a sufficiently
large positive constant such that x(0) ∈ [ 1

k0
, k0], and y(0) ∈ [ 1

k0
, k0]. For each integer k ≥ k0,

we define the stopping time

τk = inf

{

t ∈ [0, τe) : x
(
ς (t)

)
/∈

(
1
k

, k
)

, y
(
ς (t)

)
/∈

(
1
k

, k
)

for ς (t) ∈ S

}

.

It is easily to see that τk is increasing as k → ∞, and note that limk→∞ τk = τ∞. If we
prove that τ∞ = ∞ a.s., by the definition of stopping time τe, it is obvious that τe = ∞ a.s.
Now we assume this statement is not true, hence there exists a pair of positive constant
numbers (T , ε) such that P{τ∞ ≤ T(ε)} > ε, ε ∈ (0, 1). We choose k1 greater than or equal
to k0 such that for any k ≥ k1, we have P{τk ≤ T} ≥ ε. Next, we define a C2-function V :
R+ ×R+ × S →R+ by

V
(
x(t), y(t), i

)
= cx(i)

[
x(t) – 1 – log x(t)

]
+ cy(i)

[
y(t) – 1 – log y(t)

]
,

where for each i ∈ S, cx(i), cy(i) are both positive numbers. Applying the generalized Itô’s
formula to V , we obtain

LV
(
x(t), y(t), i

)
= X�(t) diag

(
cx(i), cy(i)

)
B(i) –

(
cx(i), cy(i)

)
(

θ (i)x(t) + ξ (i)y(t) + bx(i)
α(i)x(t) – α(i)y(t) + by(i)

)

+
1
2

X�(t)

(
2cx(i)θ (i) cx(i)ξ (i) + cy(i)α(i)

cx(i)ξ (i) + cy(i)α(i) –2cy(i)α(i)

)

X(t)

+
1
2
(
cx(i)η2(i)σ 2(i) + cy(i)α2(i)σ 2(i)

)
+

m∑

j=1

κijV
(
x(t), y(t), j

)
. (33)

Under assertion θ (i) + ξ (i) < 0, we know that –A is a nonsingular M-matrix, so the matrix
diag(cx(i), cy(i))(–A) + (–A)� diag(cx(i), cy(i)) is positive definite [4, 24]. Then we get that

LV
(
x(t), y(t), i

) ≤ 1
2
(
cx(i)η2(i)σ 2(i) + cy(i)α2(i)σ 2(i)

)
– cx(i)bx(i) – cy(i)by(i)

+ X�(t) diag
(
cx(i), cy(i)

)
B(i) –

(
cx(i), cy(i)

)
AX(t)

+
m∑

j=1

κijV
(
x(t), y(t), j

)

≤ K1
(
1 +

∣
∣X(t)

∣
∣
)

+
m∑

j=1

κijV
(
x(t), y(t), j

)
,
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where K1 depends on the norm of diag(cx(i), cy(i)), B(i), and β(i). Now letting K2 = cx(i)
cx(j) ∨

cy(i)
cy(j) and K3 = cx(i) ∧ cy(i), for each i, j ∈ S, we have

V
(
x(t), y(t), j

)
= cx(j)

[
x(t) – 1 – log x(t)

]
+ cy(j)

[
y(t) – 1 – log y(t)

]

≤ K2
{

cx(i)
[
x(t) – 1 – log x(t)

]
+ cy(i)

[
y(t) – 1 – log y(t)

]}

= K2V
(
x(t), y(t), i

)
.

Due to the monotonicity and using the minimum value of x(t) – 2 log x(t), we easily get the
inequality x(t) ≤ 2(x(t) – log x(t)). Similarly, we can get that y(t) ≤ 2(y(t) – log y(t)). So we
have

∣
∣X(t)

∣
∣ ≤ 4 + 2

[
x(t) – 1 – log x(t) + y(t) – 1 – log y(t)

]

≤ 4 +
2

K3

[
cx(i)

(
x(t) – 1 – log x(t)

)
+ cy(i)

(
y(t) – 1 – log y(t)

)]

= 4 +
2

K3
V

(
x(t), y(t), i

)
.

Hence there is a positive constant K4 depending on K1, K2, K3, and κij such that

LV
(
x(t), y(t), i

) ≤ K4
(
1 + V

(
x(t), y(t), i

))
,

so, by Eq. (33), we have

EV
(
x(t ∧ τk), y(t ∧ τk),ς (t ∧ τk)

) ≤ V
(
x(0), y(0),ς (0)

)

+ E

∫ t∧τk

0
K4

(
1 + V

(
x(s), y(s),ς (s)

))
ds

≤ K4

∫ t

0
EV

(
x(s ∧ τk), y

(
x(s ∧ τk)

)
,ς

(
x(s ∧ τk)

))
ds

+ V
(
x(0), y(0),ς (0)

)
+ K4T .

Using the Gronwall inequality, we get that

EV
(
x(T ∧ τk), y(T ∧ τk),ς (T ∧ τk)

) ≤ K5eK4T , (34)

where K5 = V (x(0), y(0),ς (0)) + K4T . For k ≥ k1, denote Ωk = {τk ≤ T}, hence P(Ωk) ≥ ε.
Then for any ω ∈ Ωk , there exists some i ∈ S such that x(τk ,ω) = 1

k or x(τk ,ω) = k, and
y(τk ,ω) = 1

k or y(τk ,ω) = k. Due to the monotonicity of V , we have

V
(
x(τk), y(τk),ς (τk)

) ≥ [
cx

(
ς (τk)

)
+ cy

(
ς (τk)

)]
[

(k – 1 – log k) ∧
(

1
k

– 1 + log k
)]

.

From (34), we deduce that

K5eK4T ≥ E
[
IΩk (ω)V

(
x(τk), y(τk),ς (τk)

)]

≥ [
cx

(
ς (τk)

)
+ cy

(
ς (τk)

)]
[

(k – 1 – log k) ∧
(

1
k

– 1 + log k
)]

,
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and, letting k → ∞, we have K5eK4T ≥ ∞, which is contradiction to K5eK4T < ∞. The proof
is completed. �

Appendix B: Proof of Lemma 3.3

Proof According to model (4) and generalization of Theorem 1.1 in [25], let us consider
the following SDE:

dϕ(t) = ϕ(t)
[(

θ̄ (ς (t))
2

+
ξ (ς (t)) + α(ς (t))

4

)

ϕ(t) + b̄
(
ς (t)

)
]

dt

+ σ
(
ς (t)

)
η̄
(
ς (t)

)
ϕ(t) dw(t), (35)

where θ (ς (t)) ∨ (–α(ς (t))) = θ̄ (ς (t)), bx(ς (t)) ∨ by(ς (t)) = b̄(ς (t)), η(ς (t)) ∨ α(ς (t)) =
η̄(ς (t)). Applying generalized Itô’s formula to 1

ϕ(t) , we have

d
1

ϕ(t)
=

[
1

ϕ(t)
(
σ 2(ς (t)

)
η̄2(ς (t)

)
– b̄

(
ς (t)

))
–

(
θ̄ (ς (t))

2
+

ξ (ς (t)) + α(ς (t))
4

)]

dt

–
1

ϕ(t)
σ
(
ς (t)

)
η̄
(
ς (t)

)
dw(t). (36)

Letting 1
ϕ(t) = ψ(t), from Eq. (36), we can get

dψ(t) =
[

ψ(t)
(
σ 2(ς (t)

)
η̄2(ς (t)

)
– b̄

(
ς (t)

))
–

(
θ̄ (ς (t))

2
+

ξ (ς (t)) + α(ς (t))
4

)]

dt

– ψ(t)σ
(
ς (t)

)
η̄
(
ς (t)

)
dw(t), (37)

and the corresponding homogeneous linear equation of (37) is

dψ̃(t) =
[
ψ̃(t)

(
σ 2(ς (t)

)
η̄2(ς (t)

)
– b̄

(
ς (t)

))]
dt – ψ̃σ

(
ς (t)

)
η̄
(
ς (t)

)
dw(t). (38)

Now using Itô’s formula to log ψ̃(t), we have

d log ψ̃(t) =
[

1
2
σ 2(ς (t)

)
η̄2(ς (t)

)
– b̄

(
ς (t)

)
]

dt – σ
(
ς (t)

)
η̄
(
ς (t)

)
dw(t),

which results in

ψ̃(t) = ψ̃(0) exp

{∫ t

0

[
1
2
σ 2(ς (s)

)
η̄2(ς (s)

)
– b̄

(
ς (s)

)
]

ds –
∫ t

0
σ
(
ς (s)

)
η̄
(
ς (s)

)
dw(s)

}

,

so that we obtain the explicit solution of (37) as

ψ(t) = exp

{∫ t

0

[
1
2
σ 2(ς (s)

)
η̄2(ς (s)

)
– b̄

(
ς (s)

)
]

ds –
∫ t

0
σ
(
ς (s)

)
η̄
(
ς (s)

)
dw(s)

}

·
{

ψ(0) +
∫ t

0
–
(

θ̄ (ς (t))
2

+
ξ (ς (t)) + α(ς (t))

4

)
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· exp

[∫ s

0

[

b̄
(
ς (s)

)
–

1
2
σ 2(ς (s)

)
η̄2(ς (s)

)
]

dτ

+
∫ s

0
σ
(
ς (s)

)
η̄
(
ς (s)

)
dw(τ )

]

ds
}

,

as required. �
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