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Abstract
This work mainly investigates the separation and stability of solutions to nonlinear
systems involving Caputo–Fabrizio fractional derivatives. An inequality ensuring the
positivity of the fractional derivative at a given point is derived, by which the sufficient
conditions for the separation of solutions are obtained. The comparison principle and
the inequality for the fractional derivatives of convex functions are obtained, by which
the approach of the convex Lyapunov functions is extended effectively to establish
the criteria for the stability of solutions in the context of Caputo–Fabrizio fractional
derivatives. Applications of the main results are illustrated by using examples.
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1 Introduction
The fractional derivative, in which the order of the derivative is permitted to be noninteger,
originated in 1695. Although it is as old as the classical calculus, the world of analysis seems
to be always dominated by the latter. It has been thought out of mainstream science for
over 300 years, and it is only in the last 40 years that it has come back to life.

It is worth stressing that the recovery of vitality is not just another way of presenting
old stories, since the fractional derivatives and fractional differential equations have been
applied to numerous fields such as viscoelasticity, signal processing, biology, engineer-
ing, neuroscience and materials science in the last four decades, and have become a well-
accepted instrument in the description of complex systems [1–5].

Many important results have been obtained for the investigation of the theory of dif-
ferential equations with the Riemann–Liouville or Caputo fractional derivatives. For in-
stance, the existence of solutions to the boundary value problems was discussed in [6–12]
for some specific fractional differential or integro-differential equations or inclusions by
the use of certain fixed point theorems; and new results were derived in [13] on exact
controllability of a class of fractional neutral integro-differential systems. Moreover, the
boundary value problems involving the ψ-Caputo fractional derivative were studied in
[14].
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It is also worth pointing out that the concepts of fractional derivatives are also modified
and further developed to adapt to the new requirements of theory and practice. Up to now,
there exist several definitions of the fractional derivative in the literature, each being con-
structed to satisfy various constraints and to be consistent with physical background and
experimental data, among which the most popular ones are the Riemann–Liouville and
Caputo fractional derivatives. The integral kernels in the previous two kinds of fractional
derivatives are singular, which describe the processes involving memory effects.

The retarded effects in many dynamical processes can also be depicted by using inte-
grals with nonsingular kernels, among which the exponential kernels were used in [15, 16]
to capture the temporal memory. Based on the previous considerations, a new fractional
derivative with nonsingular kernel was proposed recently by Caputo and Fabrizio in
[17, 18], and then the concept of the Atangana–Baleanu derivative with Mittag-Leffler
kernel was introduced in [19] and the existence of solutions to some integral equations
was discussed in [20, 21].

Moreover, the definition of the conformable fractional derivative was also suggested in
[22] such that the chain rule holds for the new derivative, and some results for this type of
derivative have been already achieved [23–26].

The Caputo and Fabrizio fractional derivative (CFFD) and the differential equations in-
volving the CFFD have received growing attention. In recent years, a considerable litera-
ture has sprung up in the framework of CFFDs. The definition of the CFFD and its prop-
erties were deeply explored and further extended in [27–34], among which the definition
of the extended CFFD was first introduced in [34]. The well-posedness for the differen-
tial systems with the CFFD was well investigated in the published studies [35–42]; among
them, the existence of solutions for a coupled system of differential inclusions was dis-
cussed in [37] by using some fixed point theorems for the multivalued maps, the exis-
tence of solutions and of approximate solutions for some high-order fractional integro-
differential equations were completely considered in [38] and [39–41], respectively, by
means of fixed point theorems and by virtue of approaches involving α-contractive maps,
and the results for the existence and dimension of the set of solutions were obtained in [42]
for the second fractional integro-differential inclusion problem with the extended CFFD.
And more importantly, the differential equations involving the CFFD have found a wide
range of applications [43–49].

For the above-mentioned equations involving the CFFD, relatively speaking, there are
very few results in the published studies for the separation of solutions and for the stability
in the Lyapunov sense, and in the context of Caputo factional derivatives, the former has
been considered for the case where the state space is one-dimensional [2, 50–52]; while the
latter has been completely discussed in [53–59] by using the Lyapunov second’s method. It
is noted that the direct calculation of the fractional derivative of the Lyapunov functions is
far from easy, and the method of the convex Lyapunov functions was recently introduced
in [60] and then developed in [61, 62], which effectively settles the difficulty.

It is also worth remarking that the Hyers–Ulam stability was discussed in [63–65] for
the specific integro-differential equations and advection–reaction diffusion system with
the Atangana–Baleanu derivative.

Inspired by results and techniques in the aforementioned papers, in this work we will
discuss the qualitative properties and stability of solutions to the initial value problem
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(IVP) with the extend CFFD. Concretely speaking, the first goal is to investigate the sepa-
ration of trajectories of solutions to the IVP involving CFFDs as follows:

{
D(α)

a ω(t) = F(t,ω(t)), a ≤ t < ∞,
ω(a) = ωa,

(1)

where D(α)
a denotes the CFFD of order α (defined below); ω and F are vector-valued func-

tions on [a,∞) and R
d+1, respectively, and F(a,ωa) = 0. The approach employed here de-

pends on the inequality to be established in this work, which is different from any other
methods used to discuss the same problems with the Caputo fractional derivative in the
existing studies [2, 50–52]. Here the separation of solutions means that the trajectories of
solutions with different initial values do not intersect each other.

Based on the previous discussion, under the local Lipschitz condition, we then explore
the stability of the zero solution to the system

{
D(α)

a ω(t) = p(t)f (ω(t)), a ≤ t < ∞,
ω(a) = ωa,

(2)

where f is a vector-valued function on R
d , and p(t) is a scalar function on [a,∞) with

p(a) = 0.
It is also worth remarking that, in the framework of CFFDs and under the local Lip-

schitz condition, there are no global existence results for the solutions in the published
studies due to the restriction of the construction of the integral equations equivalent to
the fractional ones under consideration, which causes the difficulty to the discussion of
the stability.

To arrive at our second goal, using the comparison principle and the inequality involving
the CFFD of convex functions to be established in this work, we follow the idea from [61,
66] by extending the vector fields of fractional nonlinear systems and obtain the criteria
for the stability of solutions under the local Lipschitz condition. Moreover, we have also to
point out that the discussion of stability of autonomous systems (p(t) ≡ 1 in (2)) is trivial
(see Remark 4.1 in Sect. 4).

The paper is divided into six parts. The Caputo–Fabrizio fractional derivative and inte-
gral are introduced in Sect. 2. We first establish a comparison principle for the CFFDs in
Sect. 3, and then obtain an inequality involving CFFDs by which the result for the sepa-
ration of trajectories of solutions to the IVP (1) for the case of one dimension is derived.
We then establish an inequality involving the CFFDs of convex functions in Sect. 4, by
which, combined with the comparison principle, we discuss the stability of solutions to
the IVP (2). The validity of the main result is illustrated in Sect. 5 by using two examples,
and finally, the conclusions are discussed in Sect. 6.

2 Preliminaries
We introduce the Caputo–Fabrizio fractional derivative and integra in this section, and
show their basic properties to be used in what follows.

Given a positive integer d, the d-dimensional Euclidean space is denoted by R
d ,

equipped with the classical norm | · |. Let Ja be a left-closed interval with the left end-
point a and Ω be a connected open subset of Rd , and denote by C(Ja,Ω) the space of all



Zhong et al. Advances in Difference Equations        (2020) 2020:166 Page 4 of 15

continuous functions from Ja into Ω . The gradient vector of a function V on R
d is denoted

by ∇V .
Moreover, unless otherwise specified, it is always assumed that the exponent α is in the

interval (0, 1) throughout this work.
Given an absolutely continuous function ω in the interval [a, b], the Caputo–Fabrizio

fractional derivative of order α is defined [17, 18] by

CF
a Dα

t ω(t) =
1

1 – α

∫ t

a
eα(t – s)ω′(s) ds. (3)

Here the function eα(·) is defined by

eα(t) = exp

(
–

αt
1 – α

)
. (4)

Using the results obtained by integration by parts on the right-hand side of (3), we next
give the weak version of the CFFD, denoted by D(α)

a , without requirement for the smooth-
ness of functions.

Definition 2.1 ([34]) Letting ω be in C(Ja,R), the Caputo–Fabrizio fractional derivative
of order α is defined by

D(α)
a ω(t) =

ω(t) – ω(a)
1 – α

eα(t – a) +
α

(1 – α)2

∫ t

a

(
ω(t) – ω(s)

)
eα(t – s) ds.

Remark 2.1

D(α)
a ω(t) =

ω(t) – ω(a)
1 – α

–
α

(1 – α)2

∫ t

a

(
ω(s) – ω(a)

)
eα(t – s) ds,

and D(α)
a ω(a) = 0.

Definition 2.2 Letting ω be in C(Ja,R), the Caputo–Fabrizio fractional integral of order
α is defined by

I (α)
a ω(t) = (1 – α)

(
ω(t) – ω(a)

)
+ α

∫ t

a

(
ω(s) – ω(a)

)
ds.

Remark 2.2 Here our definition of the fractional integral is slightly different from those in
[27, 33], by which a harmonic connection between D(α)

a I (α)
a and I (α)

a D(α)
a is established.

Lemma 2.1 If ω belongs to C(Ja,R), then D(α)
a I (α)

a ω(t) = ω(t) – ω(a) and I (α)
a D(α)

a ω(t) =
ω(t) – ω(a).
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Proof Letting β = α
1–α

and using Remark 2.1 and Definition 2.2, a direct calculation yields

D(α)
a I (α)

a ω(t)) = (1 – α)D(α)
a

(
ω(t) – ω(a)

)
+ αD(α)

a

(∫ t

a

(
ω(s) – ω(a)

)
ds

)

= ω(t) – ω(a) – β

∫ t

a

(
ω(s) – ω(a)

)
eα(t – s) ds

+ β

∫ t

a

(
ω(s) – ω(a)

)
ds – β2

∫ t

a

∫ s

a

(
ω(τ ) – ω(a)

)
eα(t – s) dτ ds

= ω(t) – ω(a) – β

∫ t

a

(
ω(s) – ω(a)

)
eα(t – s) ds

+ β

∫ t

a

(
ω(s) – ω(a)

)
ds – β2

∫ t

a

∫ t

τ

(
ω(τ ) – ω(a)

)
eα(t – s) ds dτ

= ω(t) – ω(a) – β

∫ t

a

(
ω(s) – ω(a)

)
eα(t – s) ds

+ β

∫ t

a

(
ω(s) – ω(a)

)
ds – β

∫ t

a

(
ω(τ ) – ω(a)

)(
1 – eα(t – τ )

)
dτ

= ω(t) – ω(a),

and

I (α)
a D(α)

a ω(t)) = (1 – α)D(α)
a ω(t) + α

∫ t

a
D(α)

a ω(s) ds

= ω(t) – ω(a) – β

∫ t

a

(
ω(s) – ω(a)

)
eα(t – s) ds

+ β

∫ t

a

(
ω(s) – ω(a)

)
ds – β2

∫ t

a

∫ s

a

(
ω(τ ) – ω(a)

)
eα(s – τ ) dτ ds

= ω(t) – ω(a) – β

∫ t

a

(
ω(s) – ω(a)

)
eα(t – s) ds + β

∫ t

a

(
ω(s) – ω(a)

)
ds

– β2
∫ t

a

∫ t

τ

(
ω(τ ) – ω(a)

)
eα(s – τ ) ds dτ

= ω(t) – ω(a) – β

∫ t

a

(
ω(s) – ω(a)

)
eα(t – s) ds

+ β

∫ t

a

(
ω(s) – ω(a)

)
ds – β

∫ t

a

(
ω(τ ) – ω(a)

)(
1 – eα(t – τ )

)
dτ

= ω(t) – ω(a).

The assertions are thus verified. �

For a vector-valued function ω(t) = (ω1(t),ω2(t), . . . ,ωd(t))�, the corresponding Caputo–
Fabrizio fractional integral and derivative of order α are defined respectively by

I (α)
a ω(t) =

(
I (α)

a ω1(t),I (α)
a ω2(t), . . . ,I (α)

a ωd(t)
)�

and

D(α)
a ω(t) =

(
D(α)

a ω1(t),D(α)
a ω2(t), . . . ,D(α)

a ωd(t)
)�.
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The inequality ω(t) ≥ 0 on Ja means that ωi(t) ≥ 0 for each t in Ja and for i = 1, 2, . . . , d, and
ω(t) > 0 is defined similarly.

3 Comparison principles and separation of trajectories
The following assertion can be directly verified by using Definition 2.2.

Lemma 3.1 Let functions ω and υ belong to C(Ja,Rd). If ω(t) ≤ υ(t) on Ja with ω(a) = υ(a),
then I (α)

a ω(t) ≤ I (α)
a υ(t) on Ja.

Using Lemma 3.1, we next derive a comparison principle, which will play a key role in
the discussion of the stability.

Lemma 3.2 Let ω and υ belong to C(Ja,Rd) with ω(a) ≤ υ(a). If D(α)
a ω(t) ≤D(α)

a υ(t) on Ja,
then ω(t) ≤ υ(t) on Ja.

Proof The continuities of ω and υ ensure that both D(α)
a ω(t) and D(α)

a υ(t) lie in C(Ja,Rd).
Noting D(α)

a ω(a) = 0 = D(α)
a υ(a) and using the inequality for CFFD in the conditions, we

infer by Lemma 3.1 that

I (α)
a D(α)

a ω(t) ≤ I (α)
a D(α)

a υ(t),

and hence by Lemma 2.1 that

ω(t) – ω(a) ≤ υ(t) – υ(a),

which is equivalent to

ω(t) ≤ υ(t) –
(
υ(a) – ω(a)

)
,

which due to the condition ω(a) ≤ υ(a) yields the desired result. �

Corollary 3.1 Let ω belong to C(Ja,Rd). If D(α)
a ω(t) ≤ 0 on Ja, then ω(t) ≤ ω(a) on Ja.

An important inequality is next established to be used to discuss the separation of tra-
jectories of solutions to IVPs.

Lemma 3.3 Let a function χ belong to C(Ja,Rd). If χ (t) < 0 on the subinterval [a, t1) of Ja

with χ (t1) = 0, then D(α)
a χ (t1) > 0.

Proof From Definition 2.1 and the condition χ (t1) = 0, it follows that

D(α)
a χ (t1) =

[χ (t1) – χ (a)]eα(t1 – a)
1 – α

+
∫ t1

a

α(χ (t1) – χ (s))eα(t1 – s)
(1 – α)2 ds

= –
χ (a)
1 – α

eα(t1 – a) –
α

(1 – α)2

∫ t1

a
χ (s)eα(t1 – s) ds.

This, together with the assumption χ (t) < 0 on [a, t1), verifies the desired assertion. �
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Remark 3.1 The preceding inequality is strict, which plays a central role in the investiga-
tion on the separation of trajectories.

Before starting with the discussion of the separation of trajectories, we here have to
consider the existence of solutions.

Definition 3.1 A function ω from the interval Ja into R
d is called a solution to the IVP

(1) if it belongs to C(Ja,Rd) and solves the first equation in (1) on Ja with ω(a) = ωa.

Lemma 3.4 Let F : Ja ×R
d 	→R

d be a continuous function with F(a,ωa) = 0. Then a func-
tion ω in C(Ja,Rd) is a solution to the problem (1) if and only if it is a solution in C(Ja,Rd)
to the integral equation

ω(t) = ωa + (1 – α)
[
F
(
t,ω(t)

)
– F

(
a,ω(a)

)]
+ α

∫ t

a

[
F
(
s,ω(s)

)
– F

(
a,ω(a)

)]
ds. (5)

Lemma 3.4 is easily verified by using Definitions 2.1 and 2.2 and Lemma 2.1.

Remark 3.2 If the fractional derivative in problem (1) is replaced by that in (3), then the
equivalence in Lemma 3.4 does not hold generally any more.

Theorem 3.1 Let F : [a,∞) × R
d 	→ R

d be a continuous function with F(a,ωa) = 0. If F
is Lipschitz on R

d with respect to the state variables with the Lipschitz constant L and if
2L(1 – α) < 1, then there exists a unique solution to problem (1) defined on [a,∞).

Proof The inequality 2L(1 – α) < 1 ensures that we can choose a positive number μ >
αL[1 – 2(1 – α)L]–1. Let T > a and for each ω in C([a, T],Rd) define

‖ω‖μ = sup
{
exp(–μt)

∣∣ω(t)
∣∣ : t ∈ [a, T]

}
.

And then C([a, T],Rd) becomes a Banach space equipped with the norm ‖ · ‖μ.
Define the operator A : C([a, T],Rd) 	→ C([a, T],Rd) as follows:

Aω(t) = ωa + (1 – α)
[
F
(
t,ω(t)

)
– F

(
a,ω(a)

)]
+ α

∫ t

a

[
F
(
s,ω(s)

)
– F

(
a,ω(a)

)]
ds.

And then, using the Lipschitz condition, we obtain the following estimate:

∣∣Aω(t) – Aυ(t)
∣∣ ≤ (1 – α)L

(∣∣ω(t) – υ(t)
∣∣ +

∣∣ω(a) – υ(a)
∣∣)

+ αL
∫ t

a
exp(μs) ds‖ω – υ‖μ

= (1 – α)L
(∣∣ω(t) – υ(t)

∣∣ +
∣∣ω(a) – υ(a)

∣∣)
+ αLμ–1(exp(μt) – 1

)‖ω – υ‖μ.

Multiplying both sides of the above inequality by exp(–μt) yields

‖Aω – Aυ‖μ ≤ (
2(1 – α) + αμ–1)L‖ω – υ‖μ,
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which implies that A is a contraction because of L(2(1 – α) + αμ–1) < 1. It follows from
the Banach fixed point theorem that the operator has a unique fixed point in C([a, T],Rd),
and Lemma 3.4 ensures that this fixed point is the unique solution to problem (1). Finally,
the solution is clearly defined on R

+ due to arbitrariness of choice of T . The proof is com-
plete. �

By using Lemma 3.3 and Theorem 3.1, we now present a result for the separation of
trajectories of the solutions to IVP (1) for the case where the dimension d = 1.

Theorem 3.2 (Separation of trajectories) Let the dimension d = 1. If F satisfies the condi-
tions in Theorem 3.1 except that F(a,ωa) = 0 is replaced by F(a,ω) = 0 for any ω in R, then
the trajectories of any two solutions with different initial values at t = a to the equation in
(1) do not intersect on R

+.

Proof Let ω1a and ω2a be different initial values with ω1a < ω2a, then, according to The-
orem 3.1, the corresponding solutions to the equation in (1), denoted by ω1(t) and ω2(t),
respectively, are defined on R

+.
Now suppose that the assertion of the theorem is false, and then, the inequality ω1a < ω2a

and the continuity of the solutions ensure that there exists a positive number t1 such that,
for each t in the interval [a, t1),

ω1(t) < ω2(t),

for which ω1(t1) = ω2(t1); letting χ (t) = ω1(t) – ω2(t), we thus derive by Lemma 3.3 the
inequality D(α)

a χ (t1) > 0.
On the other hand, the relation ω1(t1) = ω2(t1) implies

D(α)
a ω1(t1) = F

(
t1,ω1(t1)

)
= F

(
t1,ω2(t1)

)
= D(α)

a ω2(t1).

This yields D(α)
a χ (t1) = 0, which contradicts the preceding inequality D(α)

a χ (t1) > 0. Thus,
the proof is complete. �

Remark 3.3 Just as pointed out in Remark 3.1, the strict inequality in Lemma 3.3 leads
here to a concise proof of the separation of trajectories, and the approach here employed
is different from any other methods used to discuss the same problems with the Caputo
fractional derivative in the existing studies [2, 50–52].

4 Convex Lyapunov functions and stability
We explore in this section the stability of the solutions to the IVP (2).

Definition 4.1 The zero solution of the equation in (2) is stable if, for any ε > 0, there
is a positive number δ such that if |ωa| < δ, then, for the solution ω(t,ωa) of (2), we have
|ω(t,ωa)| < ε for all t ≥ a.

Remark 4.1 The discussion for the stability of autonomous systems is trivial.
To see this, let p(t) ≡ 1 in (2), and then the system (2) becomes autonomous. Let ω

be in C(Ja,Rd), then D(α)
a ω(t) belongs also to C(Ja,Rd) with D(α)

t ω(a) = 0, which forces
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f (ωa) = 0, and thus ω(t) ≡ ωa is the unique solution to (2). Accordingly, in order to discuss
the stability of system (2) with p(t) ≡ 1, it must hold that f (ω) ≡ 0 whenever |ω| < δ for
some δ > 0, which obviously is trivial.

Definition 4.2 ([67]) A continuous function κ : R+ 	→ R
+ is said to belong to class K if it

is strictly increasing and κ(0) = 0. For such a function, we shall usually write κ ∈K.

Lemma 4.1 (Kirszbraun’s theorem, [68]) If S ⊂R
m and f : S 	→R

n is Lipschitz, then f has
a Lipschitz extension fE : Rm 	→R

n with Lip(fE) = Lip(f ).

Given a positive number r, define the subsets S(r) of Rd by

S(r) =
{
ω : |ω| < r,ω ∈R

d}.

We now are in a position to present an important inequality involving the CFFD of com-
position function in this work.

Lemma 4.2 Let V : S(r) 	→ R be a continuously differentiable and convex function. Then
for any function ω in C(Ja,S(r)), the inequality

D(α)
a V

(
ω(t)

) ≤ ∇V
(
ω(t)

) ·D(α)
a ω(t),

holds on Ja. Here and in what follows, the dot · denotes an inner product on R
d .

Proof The continuity of V and ω ensures that both D(α)
a V (ω(t)) and D(α)

a ω(t) exist on Ja.
Let ψ(t, τ ) = V (ω(t)) – V (ω(τ )), and then the differentiability and convexity of V imply
that [69]

ψ(t, τ ) ≤ ∇V
(
ω(t)

) · (ω(t) – ω(τ )
)
.

Using Definition 2.1, by the inequality just derived, we deduce the following estimate:

D(α)
a V

(
ω(t)

)
=

ψ(t, a)eα(t – a)
1 – α

+
∫ t

a

αψ(t, s)eα(t – s) ds
(1 – α)2

≤ ∇V
(
ω(t)

) ·
(

(ω(t) – ω(a))eα(t – a)
1 – α

+
∫ t

a

α(ω(t) – ω(s))eα(t – s)
(1 – α)2 ds

)

= ∇V (ω(t) ·D(α)
a ω(t),

which verifies the desired inequality. �

In order to discuss the stability of solutions to problem (2), let S(r) be defined as in
Sect. 4 and we further impose several assumptions on the functions in (2):

(A1) p(·) is a nonnegative and continuous real-valued function bounded on R
+ and

p(a) = 0.
(A2) f (·) : S(r) 	→R

d is a continuous function with f (0) = 0 and satisfies on S(r) the
Lipschitz condition with 2L(1 – α) sup p(t) < 1.
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We now present a result for the stability of solutions by using convex Lyapunov func-
tions.

Theorem 4.1 Let conditions (A1) and (A2) be satisfied. If there exists a real-valued func-
tion V (ω) which is continuously differentiable and convex on S(r) with V (0) = 0 such that

κ
(|ω|) ≤ V (ω)

for some class-K function κ and

∇V (ω) · f (ω) ≤ 0

on S(r), then the zero solution of problem (2) is stable.

Proof Given a positive number r, choose an arbitrary positive number ε in the interval
(0, r). And then it follows from the continuity of V (ω) and V (0) = 0 that there exists a
positive number δ < ε such that for any ωa in S(δ),

V (ωa) < κ(ε). (6)

Using condition (A2), we infer by Lemma 4.1 that f has a Lipschitz extension fE : Rd 	→R
d

with Lip(fE) = Lip(f ) and fE = f on S(r), and using the function fE just obtained and the
initial data ωa previously chosen, construct an IVP as follows:

{
D(α)

t ω(t) = p(t)fE(ω(t)), a ≤ t < ∞,
ω(a) = ωa,

(7)

and then it follows from Theorem 3.1 that there is a unique solution to the IVP (7), denoted
by ω̄(t,ωa) and defined on R

+, and we further claim that it is also the unique solution to
the IVP (2) defined on R

+. To this end, we first verify that the inequality

∣∣ω̄(t,ωa)
∣∣ < ε (8)

holds on R
+.

Now suppose that, contrary to our assertion, the inequality is false, and then, from the
condition |ω̄(a,ωa)| = |ωa| < δ < ε and the continuity of the solution ω̄(t,ωa), it follows that
there exists a positive number t1 > 0 such that for each t in the interval [a, t1),

∣∣ω̄(t,ωa)
∣∣ < ε (9)

with |ω̄(t1,ωa)| = ε, and observing ε < r, it follows from the inequality in (9) and the con-
dition κ(|ω|) ≤ V (ω) in S(r) that

κ
(∣∣ω̄(t,ωa)

∣∣) ≤ V
(
ω̄(t,ωa)

)
. (10)

Also, by the inequality in (9) and the second inequality in the conditions, we deduce that
for each t in the interval [a, t1),

∇V
(
ω̄(t,ωa)

) · fE
(
ω̄(t,ωa)

)
= ∇V

(
ω̄(t,ωa)

) · f
(
ω̄(t,ωa)

) ≤ 0.
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Due to the differentiability and convexity of the function V , Lemma 4.2 and the preceding
inequality imply that for each t in the interval [a, t1),

D(α)
a V

(
ω̄(t,ωa)

) ≤ ∇V
(
ω̄(t,ωa)

) ·D(α)
a ω̄(t,ωa) = p(t)∇V

(
ω̄(t,ωa)

) · fE
(
ω̄(t,ωa)

) ≤ 0,

which by Corollary 3.1 yields

V
(
ω̄(t,ωa)

) ≤ V (ωa). (11)

Combined with the inequalities in (8)–(11), the chain of inequalities are derived as follows:

κ
(∣∣ω̄(t,ωa)

∣∣) ≤ V
(
ω̄(t,ωa)

) ≤ V (ωa) < κ(ε),

and for t = t1, in particular,

κ(ε) ≤ V ((ε) ≤ V (ωa) < κ(ε),

and this obvious contradiction verifies the previous assertion that the inequality in (8)
holds on R

+.
The inequality in (8) obviously implies that for each t in R

+, ω̄(t,ωa) lies in S(r) from
which we get

fE
(
ω̄(t,ωa)

)
= f

(
ω̄(t,ωa)

)
,

and thus

D(α)
a ω̄(t,ωa) = p(t)fE

(
ω̄(t,ωa)

)
= p(t)f

(
ω̄(t,ωa)

)
.

Therefore, the function ω̄(t,ωa) is also a unique solution to the IVP (1) defined on R
+.

Again, using the inequality in (8), the stability is consequently verified. �

Remark 4.2 ([67]) The condition that κ(|ω|) ≤ V (ω) on S(r) for some κ in K with V (0) = 0
is equivalent to V (ω) > 0 for ω in S̄(r) with ω �= 0 and V (0) = 0. And V (ω) is said to be
positive definite on S(r).

5 Illustrative examples
(I) Consider the following system of equations:

{
D(α)

0 ω1(t) = (1 – exp(–t))ω2,
D(α)

0 ω2(t) = –(1 – exp(–t)) ω1
1+ω1

.

If α > 7
8 , then the zero solution is stable.

Indeed, let ω = (ω1,ω2)�, S( 1
4 ) = {(ω1,ω2)|ω2

1 + ω2
2 < 1

4 }, f (ω) = (ω2, – ω1
1+ω1

)�, and p(t) =
1 – exp(–t). Then f (ω) is Lipschitz in S( 1

4 ) with the Lipschitz constant L = 4, and it is
obvious that 2L(1 – α) sup p(t) = 8(1 – α) < 1. Let V (ω) = 1

2ω2
2 + ω1 – ln(1 + ω1). Then, the
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Lyapunov function V is clearly positive definite on S( 1
4 ), and, moreover, it is also convex

on S( 1
4 ) since its Hessian matrix

[
1

(1+ω1)2 0
0 1

]

is positive definite. Furthermore, a routine computation implies that

∇V (ω) · f (ω) = 0.

Thus all conditions in Theorem 4.1 are satisfied and therefore the desired assertion fol-
lows.

(II) Consider the scalar equation as follows:

D(α)
0 ω(t) = –

(
1 – cos2 t

)
w3(t).

The zero solution of the above equation is stable for each α ∈ (0, 1).
To see this, set p(t) = 1 – cos2 t, f (ω) = –ω3. Obviously, function f does not satisfy the

global Lipschitz condition on R. It satisfies the Lipschitz condition in S( 1
4 ) = (– 1

4 , 1
4 ) with

L = 3
16 , and thus it is easy to check 2L(1 – α) sup p(t) = 3

8 (1 – α) < 1 for each α ∈ (0, 1).
Now, let V (ω) = ω2. The function V is obviously positive definite on S( 1

4 ) and satisfies the
inequality ∇V (ω) · f (ω) = –2ω4 ≤ 0. The corresponding conditions in Theorem 4.1 are
thus verified and consequently, the zero solution is stable for each α ∈ (0, 1).

6 Conclusions
The CFFD was introduced in 2015. Up to now, many results for the theory of differen-
tial equations with the CFFD have been obtained, and these equations have also found
a large spectrum of applications. But very little has been published on the subject of the
separation and Lyapunov stability of solutions to nonlinear systems involving CFFD.

In this work, using the techniques of inequalities we derived a sufficient condition for
the separation of solutions to the specific nonlinear equation, and by establishing the in-
equality for the convex functions, we successfully generalized the method of convex Lya-
punov functions to the context of the CFFD and set up the criteria for the stability in the
Lyapunov sense for the nonlinear system with the CFFD.

We believe that the inequalities established in this work are also significant on their
own. It is expected that the inequality in Lemma 3.3 might be used to further explore the
comparison principles, and that in Lemma 4.2 might be utilized to investigate maximum
principles for some partial differential equations involving the CFFD.

It is easy to check the validity of the results obtained in this work, and, moreover, it
remains to further explore whether or not the results and approaches here can be extended
to the systems involving the Mittag-Leffler kernel.
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