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Abstract
This paper employs an efficient technique, namely q-homotopy analysis transform
method, to study a nonlinear coupled system of equations with Caputo
fractional-time derivative. The nonlinear fractional coupled systems studied in this
present investigation are the generalized Hirota–Satsuma coupled with KdV, the
coupled KdV, and the modified coupled KdV equations which are used as a model in
nonlinear physical phenomena arising in biology, chemistry, physics, and
engineering. The series solution obtained using this method is proved to be reliable
and accurate with minimal computations. Several numerical comparisons are made
with well-known analytical methods and the exact solutions when α = 1. It is evident
from the results obtained that the proposed method outperformed other methods in
handling the coupled systems considered in this paper. The effect of the fractional
order on the problem considered is investigated, and the error estimate when
compared with exact solution is presented.

Keywords: Hirota–Satsuma coupled with KdV; Coupled KdV; Modified coupled KdV;
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1 Introduction
The study of fractional calculus, which involves fractional derivatives and integrals, has
allured the interest of many in the field of engineering and natural sciences due to its
monumental applications such as found in biotechnology [1], chaos theory [2], electro-
dynamics [3], random walk [4], signal and image processing [5, 6], nanotechnology [7],
viscoelasticity [8], and other various fields [9–18]. We also refer the reader to [19–26]
for some recent applications of fractional calculus. Many researchers have also described
the essential properties of this fractional calculus, see [27–30] for more details. However,
solving a fractional coupled system of equations is generally more difficult than the clas-
sical type. This is due to the fact that its operators are defined by integral. In the present
investigation, we consider the coupled systems: the generalized Hirota–Satsuma coupled
with KdV, the coupled KdV, and the modified coupled KdV with Caputo fractional time
derivative. Hirota and Satsuma in [31] introduced the coupled KdV equation, while the
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generalized Hirota–Satsuma coupled KdV and the modified coupled KdV equations were
introduced by Wu et al. in [32].

In general, the KdV equations are found in the study of nonlinear dispersive waves [33].
They were introduced in 1895 by Korteweg and de Vries for modeling shallow water waves
in a canal [34]. The proposed coupled KdV equations play a prominent role in diverse ar-
eas of applied sciences and engineering such as hydrodynamics, plasma physics, water
waves, and quantum field theory. They describe the interactions between two long waves
with different dispersion relations. These systems have attracted the attention of many
researchers, and a great deal of work has been done. For instance, the generalized Hirota–
Satsuma coupled with KdV has been handled via different approaches such as the new
iterative method (NIM) [35], homotopy perturbation method (HPM) [36], Adomian’ de-
composition method (ADM) [37], homotopy analysis (HAM) [38], variational iteration
method (VIM) [39], and reduced differential transformation method (RDTM) [40]. Fan
in [41] used an extended tanh-function method and symbolic computation to obtain four
types of soliton solutions of the generalized Hirota–Satsuma coupled KDV and modified
coupled KDV equations. Arife et al. presented the numerical solutions of the general-
ized Hirota–Satsuma coupled KdV and modified coupled KDV equations through homo-
topy analysis method (HAM) [42]. In [43], approximate solutions of generalized Hirota–
Satsuma coupled KDV and modified coupled KDV equations have been obtained by NIM.
Ganji et al. in [44] used modified homotopy perturbation method to solve time-fractional
generalized Hirota–Satsuma coupled KdV equations. Ghoreishi et al. used HAM to ob-
tain approximate solutions of modified coupled KdV equations [45]. Kaya and Inan in [46]
obtained traveling wave solutions of the coupled KdV and modified coupled KdV equa-
tions.

Due to the complicated nature of these coupled systems, the present study employs a
combination of q-HAM (a modification of HAM) and the Laplace transform method,
named q-homotopy analysis transform method (q-HATM), on these coupled KdV equa-
tions. The HAM was proposed in 1992 by Liao [28, 47]. The search for a better way to
expand the convergence region led to the modification of HAM, called q-HAM, more of a
general method than HAM [48]. Many authors have taken advantage of q-HAM and used
it to solve nonlinear fractional partial differential equations [49–55]. The q-HATM was
proposed by Singh et al. [56] and did not require any form of discretization, linearization,
or perturbation as compared to other methods. It requires neither polynomials like ADM
nor Lagrange multiplier like VIM and overcomes the limitations of these methods. The
q-HATM uses two convergence parameters � and n that provide greater flexibility in ad-
justing and controlling the convergence region as well as convergence rate of the series
solution. With all these advantages, we refer to the q-HATM as a simple, very effective,
accurate method that has a wide-ranging feasibility and gives more refined convergent
series solution. It is worth mentioning that q-HATM has been used extensively by many
researchers due to consistency and efficacy of this method in analyzing nonlinear prob-
lems [57–62].

This paper is organized as follows. Some useful definitions, properties, and notations
used in the sequel are presented in Sect. 2. The fundamental idea of the proposed method,
the convergence theorem, and error analysis are detailed in Sect. 3. Section 4 is focused
on the implementation of q-HATM on several examples of coupled KdV system of equa-
tions, the effects of fractional order α, and the �-curves for optimal choice of the auxiliary
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parameter h. In Sect. 5, we present comparison of the solutions obtained by the proposed
method q-HATM with several other analytical methods such as HPM, NIM, DTM, RDTM
using exact solutions as benchmark. Finally, in Sect. 6, we summarize the result in the con-
clusion.

2 Preliminaries
Here, we present some useful definitions, properties, and notations that will be used in
this work.

Definition 2.1 The Riemann–Liouville (R–L) fractional integral of order α (α ≥ 0) of a
function Q(x, t) ∈ Cm, m ≥ –1, is given as [29, 63–65]

JαQ(x, t) =
1

Γ (α)

∫ t

0
(t – E)α–1Q(x,E) dE , α, t > 0, (1)

where J0Q(x, t) = Q(x, t) and Γ denotes the classical gamma function. For example,

Jαtμ =
Γ (μ + 1)

Γ (μ + 1 + α)
tμ+α .

Definition 2.2 In the Caputo sense the fractional derivative of Q(x, t) (denoted by
DαQ(x, t)) for ϕ – 1 < α < ϕ, ϕ ∈N is defined as [29, 65]

DαQ(x, t) =

⎧⎨
⎩

Q(ϕ)(x, t), α = ϕ,

Jϕ–αQ(ϕ)(x, t), ϕ – 1 < α < ϕ,
(2)

where

Jϕ–αQ(ϕ)(x, t) =
1

Γ (ϕ – α)

∫ t

0
(t – E)ϕ–α–1Q(ϕ)(x,E) dE , α, t > 0, (3)

with the following properties:
a. Dα(ξ1Q(x, t) + ξ2S(x, t)) = ξ1DαQ(x, t) + ξ2DαS(x, t), ξ1, ξ2 ∈R,
b. DαJαQ(x, t) = Q(x, t),
c. JαDαQ(x, t) = Q(x, t) –

∑ϕ–1
j=0 Qj

0(x, t) tj

j! .

Definition 2.3 The Laplace transform (LT) of a Caputo fractional derivative is given as
[27, 65]

L
[
Dα

t Q(x, t)
]

= sαL
[
Q(x, t)

]
–

n–1∑
m=0

sα–m–1Qm(
x, 0+)

, n – 1 < α ≤ n. (4)

3 The q-homotopy analysis transform method (q-HATM)
We first give a general idea of the analysis of q-homotopy analysis transform method (q-
HATM) applied to general nonlinear differential equations. Then, some convergence and
error analysis theorems are presented.
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3.1 Analysis of q-HATM
We give a brief analysis of q-HATM applied to a general nonlinear time-fractional equa-
tion of the form

Dα
t Q(x, t) + R

(
Q(x, t)

)
+ N

(
Q(x, t)

)
= f (x, t), n – 1 < α ≤ n, (5)

where Dα
t denotes the Caputo fractional derivative, R represents a linear differential oper-

ator, N indicates the nonlinear differential operator, Q(x, t) specifies the unknown func-
tion, and f (x, t) is the given source term. Employing Laplace transform denoted by L on
Equation (5), we obtain

sαL
[
Q(x, t)

]
–

n–1∑
r=0

sα–r–1Qr(x, 0) + L
[
R
(
Q(x, t)

)]
+ L

[
N

(
Q(x, t)

)]
= L

[
f (x, t)

]
. (6)

Upon simplification, we reduce Equation (6) to

L
[
Q(x, t)

]
–

1
sα

n–1∑
r=0

sα–r–1Qr(x, 0) +
1
sα

(
L

[
R
(
Q(x, t)

)
+ N

(
Q(x, t)

)
– f (x, t)

])
= 0. (7)

To epitomize the idea of homotopy method [47], we construct the zeroth-order deforma-
tion equations for 0 ≤ q ≤ 1

n , n ≥ 1, as

(1 – nq)L
(
φ(x, t; q) – Q0(x, t)

)
= �qH(x, t)N

[
φ(x, t; q)

]
, (8)

where N [φ(x, t; q)] is defined as

N
[
φ(x, t; q)

]
= L

[
φ(x, t; q)

]
–

1
sα

n–1∑
r=0

sα–r–1φ(r)(x, t; q)
(
0+)

+
1
sα

(
L

[
Rφ(x, t; q) + Nφ(x, t; q) – f (x, t)

])
. (9)

Here, q is the embedded parameter, the nonzero � is the auxiliary parameter, and H(x, t) �=
0 indicates the auxiliary function. From Equation (8) with q = 0, 1

n , we obtain

φ(x, t; 0) = Q0(x, t), φ

(
x, t;

1
n

)
= Q(x, t). (10)

When q rises from 0 to 1
n , the solutions φ(x, t; q) range from the initial guess Q0 to the

solution Q. In case that Q0, H, and � are all chosen accordingly, then the solutions φ(x, t; q)
in Equation (8) hold in as much as 0 ≤ q ≤ 1

n . Hence, application of Taylor series expansion
[66] for φ(x, t; q) gives

φ(x, t; q) = Q0(x, t) +
∞∑

m=1

Qm(x, t)qm, (11)

where

Qm(x, t) =
1

m!
∂mφ(x, t; q)

∂qm

∣∣∣∣
q=0

. (12)
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If we choose Q0, �, and H adequately in order that Equation (11) converges at q = 1
n , from

Equation (10) we obtain

Q(x, t) = Q0(x, t) +
∞∑

m=1

Qm(x, t)
(

1
n

)m

. (13)

Differentiating Equation (8) m-times (w.r.t. to “q”), substituting q = 0, then multiplying by
1

m! , we obtain

L
[
Qm(x, t) – Υ ∗

mQm–1(x, t)
]

= �H(x, t)Rm
( �Qm–1(x, t)

)
. (14)

The vector �Qr is expressed as

�Qr(x, t) =
{

Q0(x, t), Q1(x, t), . . . , Qr(x, t)
}

. (15)

Taking use of the inverse LT on Equation (14), we obtain

Qm(x, t) = Υ ∗
mQm–1(x, t) + �L –1[H(x, t)Rm

( �Qm–1(x, t)
)]

, (16)

where

Rm
( �Qm–1(x, t)

)
= L

[
Qm–1(x, t)

]
–

(
1 –

Υ ∗
m

n

)( n–1∑
r=0

sα–r–1Qr(x, 0) +
1
sα

L
[
f (x, t)

])

+
1
sα

L
[
R
(
Q(x, t)

)
+ Hm–1

]
(17)

and

Υ ∗
m =

⎧⎨
⎩

0, m ≤ 1,

n, otherwise.
(18)

In Equation (17), H denotes homotopy polynomial defined as follows:

Hm =
1

m!
∂mφ(x, t; q)

∂qm

∣∣∣∣
q=0

, φ(x, t; q) = φ0 + qφ1 + q2φ2 + q3φ3 + · · · . (19)

3.2 Convergence and error analysis of q-HATM
Here, we give some useful theorems for the purpose of completeness. The detailed proofs
can be found in [61, 62] and the references therein.

Theorem 3.1 (Convergence theorem, [61, 62]) Let B be a Banach space and G : B → B
be a nonlinear mapping. Suppose that

∥∥G(Q) – G(Q̂)
∥∥ ≤M‖Q – Q̂‖, ∀Q, Q̂ ∈ B, (20)

where 0 < M < 1, then G has a fixed point in light of Banach’s fixed point theory [67].
Furthermore, for the arbitrary selection of Q0, Q̂0 ∈ B, the sequence generated by the q-
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HATM converges to a fixed point of G and

‖Qk – Qm‖ ≤ Mm

1 – M‖Q1 – Q0‖, ∀Q, Q̂ ∈ B. (21)

Theorem 3.2 ([48, 62]) Suppose that the series solution

∞∑
m=0

Qm(x, t)
(

1
n

)m

defined in Equation (13) is convergent to the solution Q(x, t) for a prescribed value of n
and �. If we can obtain a real number 0 < ρ < 1 satisfying

∥∥Qi+1(x, t)
∥∥ ≤ ρ

∥∥Qi(x, t)
∥∥, ∀i.

Moreover, if the truncated series

Q(N)(x, t; n;�) =
N∑

m=0

Qm(x, t)
(

1
n

)m

is used as an approximation to the solutions Q(x, t) of problem (5), then the maximum
absolute truncated errors are estimated as follows:

∥∥Q(x, t) – Q(N)(x, t; n;�)
∥∥ ≤ ρN+1

1 – ρ

∥∥Q0(x, t)
∥∥. (22)

4 q-HATM application to a coupled system of time-fractional order
We have carefully chosen a coupled system of strongly nonlinear time-fractional differen-
tial equations and have applied the q-HATM to obtain the analytical approximate solu-
tions in the form of convergent series.

Example 4.1 Consider the one-dimensional generalized Hirota–Satsuma coupled KdV
system of equations [32]

∂αQ
∂tα

=
1
2

∂3Q
∂x3 – 3Q

∂Q
∂x

+ 3S
∂T
∂x

+ 3T
∂S
∂x

, 0 < α ≤ 1,

∂αS
∂tα

= –
∂3S
∂x3 + 3Q

∂S
∂x

,

∂αT
∂tα

= –
∂3T
∂x3 + 3Q

∂T
∂x

,

(23)

having the initial condition

Q(x, 0) = 2k2 tanh2(kx) –
2k2 + r

3
,

S(x, 0) =
4k2(k2 – r) tanh(kx)

3η
–

4k2p(k2 – r)
3η2 ,

T(x, 0) = p + η tanh(kx),

(24)
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where k, r, η, and p are arbitrary constants. By implementing LT on Equation (23) with
Equation (24), we obtain

L
[
Q(x, t)

]
–

1
s

(
2k2 tanh2(kx) –

2k2 + r
3

)

–
1
sα

L

[
1
2

∂3Q
∂x3 – 3Q

∂Q
∂x

+ 3S
∂T
∂x

+ 3T
∂S
∂x

]
= 0,

L
[
S(x, t)

]
–

1
s

(
4k2(k2 – r) tanh(kx)

3η
–

4k2p(k2 – r)
3η2

)

+
1
sα

L

[
∂3S
∂x3 – 3Q

∂S
∂x

]
= 0,

L
[
T(x, t)

]
–

1
s
(
p + η tanh(kx)

)
+

1
sα

L

[
∂3T
∂x3 – 3Q

∂T
∂x

]
= 0.

(25)

The nonlinear operators where φi = φi(x, t; q), i = 1, 2, 3, are defined as follows:

N 1(φ1,φ2,φ3) = L [φ1] –
1
s

(
2k2 tanh2(kx) –

2k2 + r
3

)

–
1
sα

L

[
1
2

∂3φ1

∂x3 – 3φ1
∂φ1

∂x
+ 3φ2

∂φ3

∂x
+ 3φ3

∂φ2

∂x

]
,

N 2(φ1,φ2,φ3) = L [φ2] –
1
s

(
4k2(k2 – r) tanh(kx)

3η
–

4k2p(k2 – r)
3η2

)

+
1
sα

L

[
∂3φ2

∂x3 – 3φ1
∂φ2

∂x

]
,

N 3(φ1,φ2,φ3) = L [φ3] –
1
s
(
p + η tanh(kx)

)
+

1
sα

L

[
∂3φ3

∂x3 – 3φ1
∂φ3

∂x

]
.

(26)

Referring to Equation (14) with H(x, t) = 1, the mth-order deformation equation is

L
[
Qm – Υ ∗

mQm–1
]

= �R1,m( �Qm–1, �Sm–1, �Tm–1),

L
[
Sm – Υ ∗

mSm–1
]

= �R2,m( �Qm–1, �Sm–1, �Tm–1),

L
[
Tm – Υ ∗

mTm–1
]

= �R3,m( �Qm–1, �Sm–1, �Tm–1),

(27)

where

R1,m( �Qm–1, �Sm–1, �Tm–1)

= L [Qm–1] –
(

1 –
Υ ∗

m
n

)
1
s

(
2k2 tanh2(kx) –

2k2 + r
3

)
–

1
sα

L

[
1
2

∂3Qm–1

∂x3

– 3
m–1∑
i=0

Qi
∂Q(m–1–i)

∂x
+ 3

k–1∑
i=0

Si
∂T(m–1–i)

∂x
+ 3

m–1∑
i=0

Ti
∂S(m–1–i)

∂x

]
,

R2,m( �Qm–1, �Sm–1, �Tm–1)

= L [Sm–1] –
(

1 –
Υ ∗

m
n

)
1
s

(
4k2(k2 – r) tanh(kx)

3η
–

4k2p(k2 – r)
3η2

)
(28)
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+
1
sα

L

[
∂3Sm–1

∂x3 – 3
m–1∑
i=0

Qi
∂S(m–1–i)

∂x

]
,

R3,m( �Qm–1, �Sm–1, �Tm–1)

= L [Tm–1] –
(

1 –
Υ ∗

m
n

)
1
s
(
p + η tanh(kx)

)

+
1
sα

L

[
∂3Tm–1

∂x3 – 3
m–1∑
i=0

Qi
∂T(m–1–i)

∂x

]
.

By employing the inverse LT on Equation (27), we get

Qm = Υ ∗
j Qm–1 + �L –1[R1,m( �Qm–1, �Sm–1, �Tm–1)

]
,

Sm = Υ ∗
j Sm–1 + �L –1[R2,m( �Qm–1, �Sm–1, �Tm–1)

]
,

Tm = Υ ∗
j Tm–1 + �L –1[R3,m( �Qm–1, �Sm–1, �Tm–1)

]
.

(29)

On solving the above equation, we obtain the following:

Q0 = 2k2 tanh2(kx) –
2k2 + r

3
,

S0 =
4k2(k2 – r) tanh(kx)

3η
–

4k2p(k2 – r)
3η2 ,

T0 = p + η tanh(kx),

Q1 =
4�k3r tanh (kx) sech2 (kx)

Γ (α + 1)
tα ,

S1 =
4�k3r(k2 – r) sech2 (kx)

3ηΓ (α + 1)
tα ,

T1 =
�kηr sech2 (kx)

Γ (α + 1)
tα ,

Q2 = (� + n)Q1 –
4�2k4r2(cosh (2kx) – 2) sech4 (kx)

Γ (2α + 1)
t2α ,

S2 = (� + n)S1 –
8�2k4r2(k2 – r) tanh (kx) sech2 (kx)

3ηΓ (2α + 1)
t2α ,

T2 = (� + n)T1 –
2�2k2ηr2 tanh (kx) sech2 (kx)

Γ (2α + 1)
t2α ,

Q3 = (� + n)Q2 –
4�2k4r2(� + n)(cosh (2kx) – 2) sech4 (kx)

Γ (2α + 1)
t2α

+
2�3k5r2 tanh (kx) sech6 (kx)(40k2 cosh (2kx) – 104k2 + r cosh(4kx) – r)

Γ (3α + 1)
t3α

–
8�3k5r2Γ (2α + 1) tanh (kx) sech6 (kx)((5k2 + r) cosh (2kx) – 13k2 + r)

Γ (α + 1)2Γ (3α + 1)
t3α ,

S3 = (� + n)S2 –
8�2k4r2(� + n)(k2 – r) tanh (kx) sech2 (kx)

3ηΓ (2α + 1)
t2α
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+
2�3k5r2(k2 – r) sech6 (kx)(–2(24k2 + r) cosh (2kx) + 48k2 + r cosh(4kx) – 3r)

3ηΓ (3α + 1)
t3α

+
32�3k7r2(k2 – r)Γ (2α + 1) tanh2 (kx) sech4 (kx)

ηΓ (α + 1)2Γ (3α + 1)
t3α ,

T3 = (� + n)T2 –
2�2k2ηr2(� + n) tanh (kx) sech2 (kx)

Γ (2α + 1)
t2α

–
2�3k3ηr2 sech4 (kx)(24k2 tanh2 (kx) – r cosh(2kx) + 2r)

Γ (3α + 1)
t3α

+
24�3k5ηr2Γ (2α + 1) tanh2 (kx) sech4 (kx)

Γ (α + 1)2Γ (3α + 1)
t3α .

Accordingly, the remaining terms can be derived. Thus, the q-HATM solution is presented
as follows:

Q(N)(x, t; n;�) = Q0(x, t) +
N∑

m=1

Qm(x, t)
(

1
n

)m

,

S(N)(x, t; n;�) = S0(x, t) +
N∑

m=1

Sm(x, t)
(

1
n

)m

,

T (N)(x, t; n;�) = T0(x, t) +
N∑

m=1

Tm(x, t)
(

1
n

)m

.

(30)

For the case when α = 1, we select n = 1, � = –1, and the four-term approximate solution is

Q(3)(x, t) = –
2k2 + r

3
+ 2k2 tanh2(kx) – 4k3rt tanh (kx) sech2 (kx)

– 2k4r2t2(cosh (2kx) – 2
)

sech4 (kx)

–
4
3

k5r3t3(cosh (2kx) – 5
)

tanh (kx) sech4 (kx),

S(3)(x, t) = –
4k2p(k2 – r)

3η2 +
4k2(k2 – r) tanh(kx)

3η
–

4k3rt(k2 – r) sech2 (kx)
3η

–
4k4r2t2(k2 – r) tanh (kx) sech2 (kx)

3η

–
4k5r3t3(k2 – r)(cosh (2kx) – 2) sech4 (kx)

9η
,

T (3)(x, t) = p + η tanh(kx) – kηrt sech2 (kx) – k2ηr2t2 tanh (kx) sech2 (kx)

–
1
3

k3ηr3t3(cosh (2kx) – 2
)

sech4 (kx),

(31)

which as N → ∞ converges respectively to the exact solutions

Q(x, t) = –
2k2 + r

3
+ 2k2 tanh2(k(x – rt)

)
,

S(x, t) = –
4k2p(k2 – r)

3η2 +
4k2(k2 – r) tanh(k(x – rt))

3η
,

T(x, t) = p + η tanh
(
k(x – rt)

)
.

(32)
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Figure 1 q-HATM vs exact solution when � = –1, k = η = 0.1, r = –1.5, p = 1.5, and n = 1 for Example 4.1

Figure 2 q-HATM vs exact solution when � = –1, k = η = 0.1, r = –1.5, p = 1.5, and n = 1 for Example 4.1

Figure 3 q-HATM vs exact solution when � = –1, k = η = 0.1, r = –1.5, p = 1.5, and n = 1 for Example 4.1

Figure 4 q-HATM Q(3)-solution with different α when � = –1, k = η = 0.1, r = –1.5, p = 1.5, and n = 1 for
Example 4.1

Figure 5 q-HATM S(3)-solution with different α when � = –1, k = η = 0.1, r = –1.5, p = 1.5, and n = 1 for
Example 4.1
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Figure 6 q-HATM T (3)-solution with different α when � = –1, k = η = 0.1, r = –1.5, p = 1.5, and n = 1 for
Example 4.1

Example 4.2 Consider the one-dimensional coupled modified Korteweg–de Vries equa-
tion [46]

∂αQ
∂tα

=
1
2

∂3Q
∂x3 – 3Q2 ∂Q

∂x
+

3
2

∂2S
∂x2 + 3Q

∂S
∂x

+ 3S
∂Q
∂x

– 3λ
∂Q
∂x

, 0 < α ≤ 1,

∂αS
∂tα

= –
∂3S
∂x3 – 3S

∂S
∂x

– 3
∂Q
∂x

∂S
∂x

+ 3Q2 ∂S
∂x

+ 3λ
∂S
∂x

,
(33)

having initial condition

Q(x, 0) =
r

2k
+ k tanh kx,

S(x, 0) =
λ(r + k)

2r
+ r tanh kx.

(34)

The solution to the coupled system Equation (33) for a special case when α = 1 is

Q(x, t) =
r

2k
+ k tanh

(
kx +

k
4

(
–4k2 – 6λ + 6

kλ

r
+

3r2

k2

)
t
)

,

S(x, t) =
λ(r + k)

2r
+ r tanh

(
kx +

k
4

(
–4k2 – 6λ + 6

kλ

r
+

3r2

k2

)
t
)

,
(35)

where λ, k, and r are parameters. By implementing LT on Equation (33), in addition to
Equation (34), we obtain

L
[
Q(x, t)

]
–

1
s

(
r

2k
+ k tanh kx

)

–
1
sα

L

[
1
2

∂3Q
∂x3 – 3Q2 ∂Q

∂x
+

3
2

∂2S
∂x2 + 3Q

∂S
∂x

+ 3S
∂Q
∂x

– 3λ
∂Q
∂x

]
= 0,

L
[
S(x, t)

]
–

1
s

(
λ(r + k)

2r
+ r tanh kx

)

+
1
sα

L

[
∂3S
∂x3 + 3S

∂S
∂x

+ 3
∂Q
∂x

∂S
∂x

– 3Q2 ∂S
∂x

– 3λ
∂S
∂x

]
= 0.

(36)
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The nonlinear operators where φi = φi(x, t; q), i = 1, 2, are defined as follows:

N 1(φ1,φ2) = L [φ1] –
1
s

(
r

2k
+ k tanh kx

)

–
1
sα

L

[
1
2

∂3φ1

∂x3 – 3φ2
1
∂φ1

∂x
+

3
2

∂2φ2

∂x2 + 3φ1
∂φ2

∂x
+ 3φ2

∂φ1

∂x
– 3λ

∂φ1

∂x

]
,

N 2(φ1,φ2) = L [φ2] –
1
s

(
λ(r + k)

2r
+ r tanh kx

)

+
1
sα

L

[
∂3φ2

∂x3 + 3φ2
∂φ2

∂x
+ 3

∂φ1

∂x
∂φ2

∂x
– 3φ2

1
∂φ2

∂x
– 3λ

∂φ2

∂x

]
.

(37)

Referring to Equation (14) with H(x, t) = 1, the mth-order deformation equation is

L
[
Qm – Υ ∗

mQm–1
]

= �R1,m( �Qm–1, �Sm–1),

L
[
Sm – Υ ∗

mSm–1
]

= �R2,m( �Qm–1, �Sm–1),
(38)

where

R1,m( �Qm–1, �Sm–1) = L [Qm–1] –
(

1 –
Υ ∗

m
n

)
1
s

(
r

2k
+ k tanh kx

)

–
1
sα

L

[
1
2

∂3Qm–1

∂x3 – 3
m–1∑
i=0

i∑
j=0

QjQi–j
∂Q(m–1–i)

∂x
+

3
2

∂2Sm–1

∂x2

]

–
1
sα

L

[
3

m–1∑
i=0

Qi
∂S(m–1–i)

∂x
+ 3

m–1∑
i=0

Si
∂Q(m–1–i)

∂x
– 3λ

∂Qm–1

∂x

]
,

R2,m( �Qm–1, �Sm–1) = L [Sm–1] –
(

1 –
Υ ∗

m
n

)
1
s

(
λ(r + k)

2r
+ r tanh kx

)

+
1
sα

L

[
∂3Sm–1

∂x3 + 3
m–1∑
i=0

Si
∂S(m–1–i)

∂x
+ 3

m–1∑
i=0

∂Qi

∂x
∂S(m–1–i)

∂x

]

+
1
sα

L

[
–3

m–1∑
i=0

i∑
j=0

QjQi–j
∂S(m–1–i)

∂x
– 3λ

∂Sm–1

∂x

]
.

(39)

By applying the inverse LT on Equation (38), we have

Qm = Υ ∗
mQm–1 + �L –1[R1,m( �Qm–1, �Sm–1)

]
,

Sm = Υ ∗
mSm–1 + �L –1[R2,m( �Qm–1, �Sm–1)

]
.

(40)

On solving the above equation and letting k = r, we obtain the following:

Q0 =
1
2

+ k tanh kx,

S0 = λ + k tanh kx,

Q1 =
�k2(4k2 – 3) sech2 (kx)

4Γ (α + 1)
tα ,
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S1 =
�k2(4k2 – 3) sech2 (kx)

4Γ (α + 1)
tα ,

Q2 = (� + n)Q1 –
�

2k3(4k2 – 3)2 tanh (kx) sech2 (kx)
8Γ (2α + 1)

t2α ,

S2 = (� + n)S1 –
�

2k3(4k2 – 3)2 tanh (kx) sech2 (kx)
8Γ (2α + 1)

t2α ,

Q3 = (� + n)Q2 –
�

2k3(� + n)(4k2 – 3)2 tanh (kx) sech2 (kx)
8Γ (2α + 1)

t2α

+ �
3k4(3 – 4k2)2((88k2 + 6) cosh (2kx) + (4k2 – 3) cosh (4kx) – 156k2 – 48k sinh (2kx) + 9) sech6 (kx)

128Γ (3α + 1)
t3α

–
3�3k5(3 – 4k2)2Γ (2α + 1)(2k cosh (2kx) – sinh (2kx) – 3k) sech6 (kx)

16Γ (α + 1)2Γ (3α + 1)
t3α ,

S3 = (� + n)S2 –
�

2k3(� + n)(4k2 – 3)2 tanh (kx) sech2 (kx)
8Γ (2α + 1)

t2α

+ �
3k4(3 – 4k2)2((6 – 200k2) cosh (2kx) + (4k2 – 3) cosh (4kx) + 228k2 + 9) sech6 (kx)

128Γ (3α + 1)
t3α

+
3�3k6(3 – 4k2)2Γ (2α + 1)(4 cosh (2kx) – 5) sech6 (kx)

16Γ (α + 1)2Γ (3α + 1)
t3α .

Accordingly, the remaining terms can be derived. Thus, the q-HATM solution is presented
as follows:

Q(N)(x, t; n;�) = Q0(x, t) +
N∑

m=1

Qm(x, t)
(

1
n

)m

,

S(N)(x, t; n;�) = S0(x, t) +
N∑

m=1

Sm(x, t)
(

1
n

)m

.

(41)

For the case when α = 1, we select n = 1, � = –1, and the four-term approximate solution is

Q(3)(x, t) =
1
2

+ k tanh kx –
1
4

k2t
(
4k2 – 3

)
sech2 (kx)

–
1

16
k3t2(4k2 – 3

)2
tanh (kx) sech2 (kx)

–
1

192
k4t3(4k2 – 3

)3(
cosh (2kx) – 2

)
sech4 (kx),

S(3)(x, t) = λ + k tanh kx –
1
4

k2t
(
4k2 – 3

)
sech2 (kx)

–
1

16
k3t2(4k2 – 3

)2
tanh (kx) sech2 (kx)

–
1

192
k4t3(4k2 – 3

)3(
cosh (2kx) – 2

)
sech4 (kx),

(42)

which as N → ∞ converges respectively to the exact solutions

Q(x, t) =
1
2

+ k tanh

(
kx +

k
4
(
3 – 4k2)t

)
,

S(x, t) = λ + k tanh

(
kx +

k
4
(
3 – 4k2)t

)
.

(43)
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Figure 7 q-HATM vs exact solution when � = –1, k = r = 0.1, λ = 1.5, and n = 1 for Example 4.2

Figure 8 q-HATM vs exact solution when � = –1, k = r = 0.1, λ = 1.5, and n = 1 for Example 4.2

Figure 9 q-HATM Q(3)-solution with different α when � = –1, k = r = 0.1, λ = 1.5, and n = 1 for Example 4.2

Figure 10 q-HATM S(3)-solution with different α when � = –1, k = r = 0.1, λ = 1.5, and n = 1 for Example 4.2

Example 4.3 Consider the one-dimensional coupled Korteweg–de Vries equation [31, 46]

∂αQ
∂tα

= –6AQ
∂Q
∂x

+ 2BS
∂S
∂x

– A∂3Q
∂x3 , 0 < α ≤ 1,

∂αS
∂tα

= –3AQ
∂S
∂x

– A∂3S
∂x3 ,

(44)
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Table 1 The q-HATM solution for Q(x, t) and S(x, t) for the first three approximations in comparison
with the exact solution Equation (35) when α = 1, � = –1, k = r = 0.1, λ = 1.5, and n = 1 for
Example 4.2

t x Q(3) Exact Absolute error S(3) Exact Absolute error

0.1 –1 0.49076638 0.49076638 1.91609× 10–11 1.49076638 1.49076638 1.91609× 10–11

–0.5 0.49574258 0.49574258 9.63507× 10–12 1.49574258 1.49574258 9.63518× 10–12

0 0.50073999 0.50073999 2.95985× 10–13 1.50073999 1.50073999 2.95985× 10–13

0.5 0.50573370 0.50573370 1.02143× 10–11 1.50573370 1.50573370 1.02145× 10–11

1 0.51069890 0.51069890 1.97036× 10–11 1.51069890 1.51069890 1.97036× 10–11

0.3 –1 0.49223566 0.49223566 1.50771× 10–09 1.49223566 1.49223566 1.50771× 10–09

–0.5 0.49722072 0.49722072 7.33337× 10–10 1.49722072 1.49722072 7.33337× 10–10

0 0.50221964 0.50221964 7.18815× 10–11 1.50221964 1.50221964 7.18814× 10–11

0.5 0.50720748 0.50720748 8.74064× 10–10 1.50720748 1.50720748 8.74064× 10–10

1 0.51215953 0.51215953 1.63955× 10–09 1.51215953 1.51215953 1.63955× 10–09

0.5 –1 0.49370833 0.49370832 1.12888× 10–08 1.49370833 1.49370832 1.12888× 10–08

–0.5 0.49870008 0.49870007 5.29376× 10–09 1.49870008 1.49870007 5.29376× 10–09

0 0.50369831 0.50369831 9.24074× 10–10 1.50369831 1.50369831 9.24074× 10–10

0.5 0.50867811 0.50867812 7.10289× 10–09 1.50867811 1.50867812 7.10289× 10–09

1 0.51361491 0.51361493 1.29837× 10–08 1.51361491 1.51361493 1.29837× 10–08

having initial condition

Q(x, 0) =
r
A sech2

(
1
2

√
r
Ax

)
,

S(x, 0) =
r√
2A

sech2
(

1
2

√
r
Ax

)
.

(45)

The solution to the coupled system Equation (44) for a special case when α = 1 is

Q(x, t) =
r
A sech2

(
1
2

√
r
A (x – rt)

)
,

S(x, t) =
r√
2A

sech2
(

1
2

√
r
A (x – rt)

)
,

(46)

where A, B, and r are real parameters. By implementing LT on Equation (44), in addition
to Equation (45), we obtain

L
[
Q(x, t)

]
–

1
s

(
r
A sech2

(
1
2

√
r
Ax

))
+

1
sα

L

[
6AQ

∂Q
∂x

– 2BS
∂S
∂x

+ A∂3Q
∂x3

]
= 0,

L
[
S(x, t)

]
–

1
s

(
r√
2A

sech2
(

1
2

√
r
Ax

))
+

1
sα

L

[
3AQ

∂S
∂x

+ A∂3S
∂x3

]
= 0.

The nonlinear operators where φi = φi(x, t; q), i = 1, 2, are define as follows:

N 1(φ1,φ2) = L [φ1] –
1
s

(
r
A sech2

(
1
2

√
r
Ax

))

+
1
sα

L

[
6Aφ1

∂φ1

∂x
– 2Bφ2

∂φ1

∂x
+ A∂3φ1

∂x3

]
,

N 2(φ1,φ2) = L [φ2] –
1
s

(
r√
2A

sech2
(

1
2

√
r
Ax

))

+
1
sα

L

[
3Aφ1

∂φ2

∂x
+ A∂3φ2

∂x3

]
.

(47)
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Referring to Equation (14) with H(x, t) = 1, the mth-order deformation equation is

L
[
Qm – Υ ∗

mQm–1
]

= �R1,m( �Qm–1, �Sm–1),

L
[
Sm – Υ ∗

mSm–1
]

= �R2,m( �Qm–1, �Sm–1),
(48)

where

R1,m( �Qm–1, �Sm–1)

= L [Qm–1] –
(

1 –
Υ ∗

m
n

)
1
s

(
r
A sech2

(
1
2

√
r
Ax

))

+
1
sα

L

[
6A

m–1∑
i=0

Qi
∂Q(m–1–i)

∂x
– 2B

m–1∑
i=0

Si
∂S(m–1–i)

∂x
+ A∂3Qm–1

∂x3

]
,

R2,m( �Qm–1, �Sm–1)

= L [Sm–1] –
(

1 –
Υ ∗

m
n

)
1
s

(
r√
2A

sech2
(

1
2

√
r
Ax

))

+
1
sα

L

[
3A

m–1∑
i=0

Qi
∂S(m–1–i)

∂x
+ A∂3S(m–1)

∂x3

]
.

(49)

By applying the inverse LT on Equation (48), we have

Qm = Υ ∗
mQm–1 + �L –1[R1,m( �Qm–1, �Sm–1)

]
,

Sm = Υ ∗
mSm–1 + �L –1[R2,m( �Qm–1, �Sm–1)

]
.

(50)

On solving the above equation with A = r and B = 3, we have

Q0 = sech2
(

x
2

)
,

S0 =
√

r
2

sech2
(

x
2

)
,

Q1 = –
�r tanh ( x

2 ) sech2 ( x
2 )

Γ (α + 1)
tα ,

S1 = –
�r3/2 tanh ( x

2 ) sech2 ( x
2 )√

2Γ (α + 1)
tα ,

Q2 = (� + n)Q1 +
�

2r2(cosh (x) – 2) sech4 ( x
2 )

2Γ (2α + 1)
t2α ,

S2 = (� + n)S1 +
�

2r5/2(cosh (x) – 2) sech4 ( x
2 )

2
√

2Γ (2α + 1)
t2α ,

Q3 = (� + n)Q2 +
�

2r2(� + n)(cosh (x) – 2) sech4 ( x
2 )

2Γ (2α + 1)
t2α

–
�

3r3(cosh (2x) – 32 cosh (x) + 39) tanh ( x
2 ) sech6 ( x

2 )
8Γ (3α + 1)

t3α

–
3�3r3Γ (2α + 1)(cosh (x) – 2) tanh ( x

2 ) sech6 ( x
2 )

2Γ (α + 1)2Γ (3α + 1)
t3α ,



Akinyemi and Iyiola Advances in Difference Equations        (2020) 2020:169 Page 17 of 27

S3 = (� + n)S2 +
�

2r5/2(� + n)(cosh (x) – 2) sech4 ( x
2 )

2
√

2Γ (2α + 1)
t2α

–
�

3r7/2(cosh (2x) – 32 cosh (x) + 39) tanh ( x
2 ) sech6 ( x

2 )
8
√

2Γ (3α + 1)
t3α

–
3�3r5/2Γ (2α + 1)(cosh (x) – 2) tanh ( x

2 ) sech6 ( x
2 )

2
√

2Γ (α + 1)2Γ (3α + 1)
t3α .

Accordingly, the remaining terms can be derived. Thus, the q-HATM solution is presented
as follows:

Q(N)(x, t; n;�) = Q0(x, t) +
N∑

m=1

Qm(x, t)
(

1
n

)m

,

S(N)(x, t; n;�) = S0(x, t) +
N∑

m=1

Sm(x, t)
(

1
n

)m

.

(51)

For the case when α = 1, we select n = 1, � = –1, and the four-term approximate solution
is

Q(3)(x, t) = sech2
(

x
2

)
+ rt tanh

(
x
2

)
sech2

(
x
2

)
+

1
4

r2t2(cosh (x) – 2
)

sech4
(

x
2

)

+
1

12
r3t3(cosh (x) – 5

)
tanh

(
x
2

)
sech4

(
x
2

)
,

S(3)(x, t) =
1√
2

r1/2 sech2
(

x
2

)
+

1√
2

r3/2t tanh

(
x
2

)
sech2

(
x
2

)

+
1

4
√

2
r5/2t2(cosh (x) – 2

)
sech4

(
x
2

)

+
1

12
√

2
r7/2t3(cosh (x) – 5

)
tanh

(
x
2

)
sech4

(
x
2

)
,

(52)

which as N → ∞ converges respectively to the exact solutions

Q(x, t) = sech2
(

1
2

(x – rt)
)

,

S(x, t) =
√

r
2

sech2
(

1
2

(x – rt)
)

. (53)

Figure 11 q-HATM vs exact solution when � = –1,A = r = 0.1, B = 3, and n = 1 for Example 4.3
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Figure 12 q-HATM vs exact solution when � = –1,A = r = 0.1, B = 3, and n = 1 for Example 4.3

Figure 13 q-HATM Q(3)-solutions with different α when � = –1,A = r = 0.1, B = 3, and n = 1 for Example 4.3

Figure 14 q-HATM S(3)-solutions with different α when � = –1,A = r = 0.1, B = 3, and n = 1 for Example 4.3

Table 2 The q-HATM solution for Q(x, t) and S(x, t) for the first three approximations in comparison
with the exact solution Equation (46) when α = 1, � = –1,A = r = 0.1, B = 3, and n = 1 for Example 4.3

t x Q(3) Exact Absolute error S(3) Exact Absolute error

0.1 –1 0.78280644 0.78280644 8.60119× 10–11 0.17504084 0.17504084 1.92328× 10–11

–0.5 0.93769338 0.93769338 2.24731× 10–10 0.20967461 0.20967461 5.02514× 10–11

0 0.99997500 0.99997500 4.16661× 10–10 0.22360121 0.22360121 9.31682× 10–11

0.5 0.94229778 0.94229778 2.27333× 10–10 0.21070419 0.21070419 5.08333× 10–11

1 0.79007490 0.79007490 8.41223× 10–11 0.17666612 0.17666612 1.88103× 10–11

0.3 –1 0.77548344 0.77548343 7.11796× 10–09 0.17340337 0.17340337 1.59162× 10–09

–0.5 0.93293648 0.93293649 1.79914× 10–08 0.20861094 0.20861094 4.02300× 10–09

0 0.99977500 0.99977503 3.37457× 10–08 0.22355649 0.22355649 7.54577× 10–09

0.5 0.94674634 0.94674636 1.86237× 10–08 0.21169892 0.21169892 4.16438× 10–09

1 0.79728485 0.79728485 6.65882× 10–09 0.17827831 0.17827831 1.48896× 10–09

0.5 –1 0.76810985 0.76810979 5.60719× 10–08 0.17175458 0.17175457 1.25381× 10–08

–0.5 0.92803044 0.92803057 1.37181× 10–07 0.20751391 0.20751394 3.06747× 10–08

0 0.99937500 0.99937526 2.60324× 10–07 0.22346704 0.22346710 5.82103× 10–08

0.5 0.95103569 0.95103584 1.45310× 10–07 0.21265805 0.21265808 3.24923× 10–08

1 0.80443236 0.80443231 5.01678× 10–08 0.17987654 0.17987653 1.12179× 10–08
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Figure 15 Nature of q-HATM solution with different α when � = –1, k = η = 0.1, r = –1.5, p = 1.5, and x = 10
for Example 4.1

Figure 16 Nature of q-HATM solution with different α when � = –1, k = r = 0.1, λ = 1.5, and x = 10 for
Example 4.2

Figure 17 Nature of q-HATM solution with different α when � = –1,A = r = 0.1, B = 3, and x = 1 for
Example 4.3

4.1 Effects of fractional order α

We study the effect of fractional order α on the solution profiles for the coupled systems
considered in this section. The dynamics of the profiles can be clearly observed, and this
justifies why these models should be studied to understand these effects in real life appli-
cations.

4.2 Optimal choice of auxiliary parameter: �-curves
The choice of the auxiliary parameter � is very important in the q-HATM to ensure fast
convergence of the series solutions. Here, we provide the so-called �-curves that guide
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Figure 18 �-curves plot with different α when k = η = 0.1, r = –1.5, p = 1.5, x = 10, and t = 0.1 for Example 4.1

Figure 19 �-curves plot with different α when k = η = 0.1, r = –1.5, p = 1.5, x = 10, and t = 0.1 for Example 4.1

Figure 20 �-curves plot with different α when k = 0.1, λ = 1.5, x = 10, and t = 0.1 for Example 4.2

Figure 21 �-curves plot with different α when k = 0.1, λ = 1.5, x = 10, and t = 0.1 for Example 4.2
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Figure 22 �-curves plot with different α when r = 0.1, B = 3, x = 1, and t = 0.1 for Example 4.3

Figure 23 �-curves plot with different α when r = 0.1, B = 3, x = 1, and t = 0.1 for Example 4.3

our optimal choice of the values of � in our analysis. Horizontal line test is used to obtain
intervals containing optimal values.

Remark 4.1
1. In Figs. 1–14, we present the graphical representation of the obtained results by

q-HATM and their respective exact solutions for different fractional order. Our
results are in perfect agreement with the exact solutions in the case where α = 1.
This is an evidence of the fast convergence nature of the series solutions given by
q-HATM when the optimal choice of the auxiliary parameter is used. In our
computations, � = –1 and n = 1 are carefully chosen and used.

2. In Figs. 15–17, the nature of q-HATM solution subject to t with different α for
Equations (23), (33), and (44) is presented, and their response helps the reader to
understand the effect of fractional order. Furthermore, we observe that � = –0.99
and –1 are in the range of convergence of series solution using the horizontal line
test in the �-curves, and when n = 2, we have a large range of values for the optimal
choice of �.

5 Numerical comparison
This section is devoted to comparison of the results presented above with several other
analytical methods in the literature such as new iterative method (NIM) in [35, 43], dif-
ferential transformation method (DTM) and reduced differential transformation method
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Table 3 The comparison of numerical result of Q(x, t) obtained by NIM [35], HPM [44], q-HATM, and
the exact solution Equation (32), also the absolute (ABS) errors when α = 1, � = –0.99, k = η = 0.1,
p = 1.5, r = –1.5, and n = 1 for Example 4.1

t x HPM [44] NIM [35] q-HATM (Q(3)) Exact ABS error (NIM) [35] ABS error (q-HATM)

0.2 0.0 0.49335133 0.49335133 0.49335133 0.49335132 1.07975× 10–08 5.43049× 10–09

0.25 0.49339376 0.49339372 0.49339370 0.49339371 9.74133× 10–09 8.67541× 10–09

0.50 0.49346087 0.49346079 0.49346080 0.49346079 8.52453× 10–09 7.26523× 10–09

0.75 0.49355233 0.49355223 0.49355223 0.49355222 7.09823× 10–09 8.02863× 10–09

1 0.49366771 0.49366757 0.49366757 0.49366756 5.42089× 10–09 8.68105× 10–09

0.4 0.0 0.49340533 0.49340533 0.49340531 0.49340516 1.72448× 10–07 1.50992× 10–07

0.25 0.49347759 0.49347730 0.49347730 0.49347714 1.62910× 10–07 1.57735× 10–07

0.50 0.49357413 0.49357355 0.49357356 0.49357339 1.51173× 10–07 1.62699× 10–07

0.75 0.49369446 0.49369359 0.49369362 0.49369345 1.36904× 10–07 1.65861× 10–07

1 0.49383799 0.49383684 0.49383689 0.49383672 1.19824× 10–07 1.67226× 10–07

0.6 0.0 0.49349533 0.49349533 0.49349529 0.49349446 8.70802× 10–07 8.22526× 10–07

0.25 0.49359735 0.49359635 0.49359636 0.49359552 8.33414× 10–07 8.40136× 10–07

0.50 0.49372303 0.49372105 0.49372112 0.49372027 7.85653× 10–07 8.48677× 10–07

0.75 0.49387178 0.49386883 0.49386895 0.49386810 7.26548× 10–07 8.48209× 10–07

1 0.49404286 0.49403896 0.49403915 0.49403831 6.55344× 10–07 8.38955× 10–07

Table 4 The comparison of numerical result of S(x, t) obtained by NIM [35], HPM [44], q-HATM, and
the exact solution Equation (32), also the absolute (ABS) errors when α = 1, � = –1, k = η = 0.1,
p = 1.5, r = –1.5, and n = 1 for Example 4.1

t x HPM [44] NIM [35] q-HATM (S(3)) Exact ABS error (NIM) [35] ABS error (q-HATM)

0.2 0.0 –3.0139600 –3.0139600 –3.01396181 –3.01396181 1.81135× 10–06 6.52082× 10–10

0.25 –3.0089360 –3.0089360 –3.00893782 –3.00893782 1.80393× 10–06 3.36043× 10–09

0.50 –3.0039258 –3.0039258 –3.00392761 –3.00392761 1.78719× 10–06 6.03321× 10–09

0.75 –2.9989356 –2.9989356 –2.99893736 –2.99893735 1.76130× 10–06 8.64240× 10–09

1 –2.9939714 –2.9939714 –2.99397313 –2.99397312 1.72655× 10–06 1.11611× 10–08

0.4 0.0 –3.0079200 –3.0079200 –3.00793450 –3.00793448 1.44752× 10–05 2.08439× 10–08

0.25 –3.0029134 –3.0029133 –3.00292783 –3.00292776 1.43943× 10–05 6.40562× 10–08

0.50 –2.9979279 –2.9979279 –2.99794233 –2.99794223 1.42392× 10–05 1.06591× 10–07

0.75 –2.9929699 –2.9929699 –2.99298407 –2.99298392 1.40116× 10–05 1.48005× 10–07

1 –2.9880450 –2.9880450 –2.98805896 –2.98805877 1.37138× 10–05 1.87873× 10–07

0.6 0.0 –3.0018800 –3.0018800 –3.00192892 –3.00192877 4.87660× 10–05 1.57996× 10–07

0.25 –2.9968998 –2.9968997 –2.99694857 –2.99694820 4.84210× 10–05 3.75925× 10–07

0.50 –2.9919482 –2.9919482 –2.99199664 –2.99199605 4.78272× 10–05 5.89887× 10–07

0.75 –2.9870312 –2.9870312 –2.98707902 –2.98707822 4.69909× 10–05 7.97657× 10–07

1 –2.9821544 –2.9821545 –2.98220143 –2.98220043 4.59211× 10–05 9.97124× 10–07

Table 5 The comparison of numerical result of T (x, t) obtained by NIM [35], HPM [44], q-HATM, and
the exact solution Equation (32), also the absolute (ABS) errors when α = 1, � = –1, k = η = 0.1,
p = 1.5, r = –1.5, and n = 1 for Example 4.1

t x HPM [44] NIM [35] q-HATM (T (3)) Exact ABS error (NIM) [35] ABS error (q-HATM)

0.2 0.0 1.50300000 1.50300000 1.50299910 1.50299910 8.99676× 10–07 3.23882× 10–10

0.25 1.50549536 1.50549536 1.50549446 1.50549446 8.95993× 10–07 1.66909× 10–09

0.50 1.50798386 1.50798386 1.50798297 1.50798298 8.87678× 10–07 2.99663× 10–09

0.75 1.51046246 1.51046246 1.51046158 1.51046158 8.74820× 10–07 4.29258× 10–09

1 1.51292811 1.51292812 1.51292725 1.51292726 8.57559× 10–07 5.54361× 10–09

0.4 0.0 1.50600000 1.50600000 1.50599280 1.50599281 7.18965× 10–06 1.03529× 10–08

0.25 1.50848674 1.50848674 1.50847956 1.50847959 3.18160× 10–06 6.40562× 10–08

0.50 1.51096292 1.51096292 1.51095579 1.51095585 7.07245× 10–06 5.29427× 10–08

0.75 1.51342555 1.51342554 1.51341851 1.51341858 6.95939× 10–06 7.35124× 10–08

1 1.51587167 1.51587166 1.51586476 1.51586485 6.81151× 10–06 9.33146× 10–08

0.6 0.0 1.50900000 1.50900000 1.50897570 1.50897578 2.42215× 10–05 7.84747× 10–08

0.25 1.51147362 1.51147362 1.51144938 1.51144957 2.40502× 10–05 3.75925× 10–07

0.50 1.51393300 1.51393300 1.51390895 1.51390924 2.37552× 10–05 2.92990× 10–07

0.75 1.51637524 1.51637522 1.51635148 1.51635188 2.33399× 10–05 3.96187× 10–07

1 1.51879747 1.51879743 1.51877413 1.51877462 2.28085× 10–05 4.95260× 10–07
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Table 6 The comparison of Q(3) solution obtained by DTM, RDTM [40], and q-HATM with the exact
solution Equation (32) in terms of absolute error when α = 1, � = –1, k = η = 0.1, p = 1.5, r = –1.5, and
n = 1 for Example 4.1

x t DTM [40] RDTM [40] q-HATM

0.2 0.1 3.29064147× 10–06 6.71934675× 10–10 6.71934619× 10–10

0.4 5.25218196× 10–05 1.71161347× 10–07 1.71161347× 10–07

0.7 1.59782942× 10–04 1.59369985× 10–06 1.59369985× 10–06

1 3.22767452× 10–04 6.57484219× 10–06 6.57484219× 10–06

0.5 0.1 1.38149650× 10–06 6.58959998× 10–10 6.58959942× 10–10

0.4 2.31930879× 10–05 1.67074152× 10–07 1.67074152× 10–07

0.7 7.01626041× 10–05 1.54837628× 10–06 1.54837628× 10–06

1 1.40076591× 10–04 6.35798215× 10–06 6.35798215× 10–06

0.8 0.1 9.15781425× 10–07 6.36098785× 10–10 6.36098729× 10–10

0.4 6.66717054× 10–06 1.60497911× 10–07 1.60497911× 10–07

0.7 2.02965453× 10–05 1.48018652× 10–06 1.48018652× 10–06

1 4.38927993× 10–05 6.04820333× 10–06 6.04820333× 10–06

1 0.1 2.91716151× 10–06 6.15647311× 10–10 6.15647255× 10–10

0.4 2.70136817× 10–05 1.54812132× 10–07 1.54812132× 10–07

0.7 8.09801900× 10–05 1.42286375× 10–06 1.42286375× 10–06

1 1.66806976× 10–04 5.79386759× 10–06 5.79386759× 10–06

Table 7 The comparison of S(3) solution obtained by DTM, RDTM [40], and q-HATM with the exact
solution Equation (32) in terms of absolute error when α = 1, � = –1, k = η = 0.1, p = 1.5, r = –1.5, and
n = 1 for Example 4.1

x t DTM [40] RDTM [40] q-HATM

0.2 0.1 5.63621150× 10–10 1.56042290× 10–10 1.56042734× 10–10

0.4 5.68117962× 10–08 5.54534330× 10–08 5.54534325× 10–08

0.7 6.66098903× 10–07 6.63837052× 10–07 6.63837052× 10–07

1 3.35673755× 10–06 3.35365276× 10–06 3.35365276× 10–06

0.5 0.1 2.12791820× 10–08 3.57261776× 10–10 3.57261776× 10–10

0.4 1.64465393× 10–07 1.06591274× 10–07 1.06591274× 10–07

0.7 1.23169306× 10–06 1.13888355× 10–06 1.13888355× 10–06

1 5.43336084× 10–06 5.30892913× 10–06 5.30892913× 10–06

0.8 0.1 1.70237973× 10–07 5.53058488× 10–10 5.53058932× 10–10

0.4 5.66500685× 10–07 1.56115444× 10–07 1.56115444× 10–07

0.7 2.23353809× 10–06 1.59675253× 10–06 1.59675253× 10–06

1 8.02493433× 10–06 7.18451241× 10–06 7.18451242× 10–06

1 0.1 4.67602796× 10–07 6.79135415× 10–10 6.79134970× 10–10

0.4 1.23973634× 10–06 1.87873466× 10–07 1.87873466× 10–07

0.7 3.48931405× 10–06 1.88914547× 10–06 1.88914547× 10–06

1 1.04684751× 10–05 8.37722635× 10–06 8.37722635× 10–06

(RDTM) in [40], and homotopy perturbation method (HPM) in [44]. We consider the case
where α = 1 in order to use exact solution as the benchmark.

6 Conclusion
In this paper, the time-fractional Hirota–Satsuma coupled with KdV, coupled KdV, and
modified coupled KdV systems, which describe interactions of two long waves with dif-
ferent dispersion relations, are considered using q-homotopy analysis transformation
method. The proposed method presents a series solution in a form of recurrence rela-
tion with high accuracy and minimal computations. Several numerical comparisons are
made with well-known analytical methods and the exact solutions when α = 1. It is evident
from Tables 3–10 that the proposed method outperformed other methods in handling
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Table 8 The comparison of T (3) solution obtained by DTM, RDTM [40], and q-HATM with the exact
solution Equation (32) in terms of absolute error when α = 1, � = –1, k = η = 0.1, p = 1.5, r = –1.5, and
n = 1 for Example 4.1

x t DTM [40] RDTM [40] q-HATM

0.2 0.1 2.79944734× 10–10 7.75046693× 10–11 7.75046693× 10–11

0.4 2.82177797× 10–08 2.75430956× 10–08 2.75430956× 10–08

0.7 3.30843826× 10–07 3.29720390× 10–07 3.29720390× 10–07

1 1.66725375× 10–06 1.66572157× 10–06 1.66572157× 10–06

0.5 0.1 1.05691302× 10–08 1.77448056× 10–10 1.77448056× 10–10

0.4 8.16881098× 10–08 5.29426858× 10–08 5.29426858× 10–08

0.7 6.11768076× 10–07 5.65670636× 10–07 5.65670636× 10–07

1 2.69868916× 10–06 2.63688533× 10–06 2.63688533× 10–06

0.8 0.1 8.45552843× 10–08 2.74697820× 10–10 2.74697820× 10–10

0.4 2.81374512× 10–07 7.75407836× 10–08 7.75407836× 10–08

0.7 1.10937322× 10–06 7.93089006× 10–07 7.93089006× 10–07

1 3.98589453× 10–06 3.56846643× 10–06 3.56846643× 10–06

1 0.1 2.32253045× 10–07 3.37318617× 10–10 3.37318617× 10–10

0.4 6.15763083× 10–07 9.33146349× 10–08 9.33146349× 10–08

0.7 1.73310301× 10–06 9.38317285× 10–07 9.38317285× 10–07

1 5.19957370× 10–06 4.16087401× 10–06 4.16087401× 10–06

Table 9 The comparison of numerical result of Q(x, t) obtained by NIM [43], q-HATM, and the exact
solution Equation (35), also the absolute (ABS) errors when α = 1, � = –1, k = r = λ = 0.1, and n = 1 for
Example 4.2

x NIM [43] q-HATM (Q(3)) Exact ABS error (NIM) [43] ABS error (q-HATM)

–50 0.400010 0.400010 0.400010 2.48113× 10–08 1.15064× 10–11

–40 0.400072 0.400072 0.400072 1.83213× 10–07 8.46214× 10–11

–30 0.400531 0.400532 0.400532 1.34729× 10–06 6.03700× 10–10

–20 0.403859 0.403868 0.403868 9.60358× 10–06 3.38628× 10–09

–10 0.425385 0.425439 0.425439 5.33734× 10–05 5.51964× 10–09

0 0.503672 0.503698 0.503698 2.60625× 10–05 9.24074× 10–10

10 0.577740 0.577670 0.577670 6.95746× 10–05 4.87746× 10–09

20 0.596671 0.596655 0.596655 1.61881× 10–05 3.31997× 10–09

30 0.599543 0.599541 0.599541 2.36055× 10–06 5.86792× 10–10

40 0.599938 0.599938 0.599938 3.22719× 10–07 8.21664× 10–11

50 0.599992 0.599992 0.599992 4.37352× 10–08 1.11710× 10–11

Table 10 The comparison of numerical result of S(x, t) obtained by NIM [43], q-HATM, and the exact
solution Equation (35), also the absolute (ABS) errors when α = 1, � = –1, k = r = λ = 0.1, and n = 1 for
Example 4.2

x NIM[43] q-HATM (S(3)) Exact ABS error (NIM) [43] ABS error (q-HATM)

–50 9.77629× 10–06 9.77690× 10–06 9.77691× 10–06 6.24540× 10–10 1.15064× 10–11

–40 7.22150× 10–05 7.22195× 10–05 7.22196× 10–05 4.60471× 10–09 8.46214× 10–11

–30 5.32373× 10–04 5.32406× 10–04 5.32406× 10–04 3.34797× 10–08 6.03701× 10–10

–20 3.86797× 10–03 3.86819× 10–03 3.86819× 10–03 2.19196× 10–07 3.38628× 10–09

–10 2.54382× 10–02 2.54388× 10–02 2.54388× 10–02 5.70005× 10–07 5.51964× 10–09

0 1.03700× 10–01 1.03698× 10–01 1.03698× 10–01 1.75596× 10–06 9.24074× 10–10

10 1.77670× 10–01 1.77670× 10–01 1.77670× 10–01 5.80831× 10–07 4.87746× 10–09

20 1.96655× 10–01 1.96655× 10–01 1.96655× 10–01 2.12492× 10–07 3.31998× 10–09

30 1.99541× 10–01 1.99541× 10–01 1.99541× 10–01 3.22892× 10–08 5.86792× 10–10

40 1.99938× 10–01 1.99938× 10–01 1.99938× 10–01 4.43792× 10–09 8.21664× 10–11

50 1.99992× 10–01 1.99992× 10–01 1.99992× 10–01 6.01862× 10–10 1.11710× 10–11
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the coupled systems considered in this paper. Hence, we can conclude that q-HATM is
highly methodical and can be used to investigate strongly nonlinear fractional mathemat-
ical models describing natural phenomena. In the future, the authors will look into other
numerical methodologies such as fourth-order nonstandard compact finite difference [68]
or sixth-order implicit finite difference [69] both of high order difference schemes to solve
the above proposed problems.
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