
Veeresha et al. Advances in Difference Equations        (2020) 2020:174 
https://doi.org/10.1186/s13662-020-02617-w

R E S E A R C H Open Access

Analytical approach for fractional
extended Fisher–Kolmogorov equation
with Mittag-Leffler kernel
P. Veeresha1, D.G. Prakasha2, Jagdev Singh3, Ilyas Khan4* and Devendra Kumar5

*Correspondence:
ilyaskhan@tdtu.edu.vn
4Faculty of Mathematics and
Statistics, Ton DucThang University,
Ho Chi Minh City, Vietnam
Full list of author information is
available at the end of the article

Abstract
A new solution for fractional extended Fisher–Kolmogorov (FEFK) equation using the
q-homotopy analysis transform method (q-HATM) is obtained. The fractional
derivative considered in the present work is developed with Atangana–Baleanu (AB)
operator, and the technique we consider is a mixture of the q-homotopy analysis
scheme and the Laplace transform. The fixed point hypothesis is considered for the
existence and uniqueness of the obtained solution of this model. For the validation
and effectiveness of the projected scheme, we analyse the FEFK equation in terms of
arbitrary order for the two distinct cases. Moreover, numerical simulation is
demonstrated, and the nature of the achieved solution in terms of plots for distinct
arbitrary order is captured.

Keywords: Extended Fisher–Kolmogorov equation; Atangana–Baleanu derivative;
Fixed point theorem; Laplace transform; q-Homotopy analysis method

1 Introduction
The concept of fractional calculus (FC) is as old as the classical calculus. Even though its
roots are planted in the period of Newton, recently it has magnetized the attention of a
class of mathematicians and scientists. More precisely, the intriguing leaps of evolution
and innovation in the associated fields of science and technology are found from the last
thirty years within the frame of FC. There have been diverse definitions for the differen-
tial and integral with arbitrary order suggested by many pioneers in order to overcome
the limitation of the previous definition, and this orientation lays the foundation [1–6].
Fractional calculus is comprehensively applied to investigate the nature and correspond-
ing consequences of various phenomena, for instance, chaos theory [7], human diseases
[8], optics [9], nanotechnology [10], and other areas [11–14].

The main purpose of studying the concept of FC is the heterogeneities phenomenon
associated with complexities. Also it is proved that FC is the most efficient weapon to
illustrate the mechanism related to the diffusion process since the integer order calculus
is unable to capture the interesting behaviour of complex and nonlinear model related to
time, history and their corresponding consequence. However, recently many researchers
have proved and illustrated that the fractional calculus is able to describe these essential
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properties. Moreover, the authors [15–30] considered newly defined fractional operators
in order to analyse and capture the simulating nature of various phenomena. For instance,
the authors in [23] considered the fractional operator derived with the aid of Mittag-Leffler
function in order to analyse the outbreak of dengue fever and presented some interesting
results. The optimal control of tuberculosis and diabetes co-existence was investigated in
[24], and the model of spring pendulum was analysed in [27] with the help of fractional
calculus for different kernels. Many young researchers began to study generalised calculus
due to rapid growth in the computer software with mathematical algorithms in order to
examine the diverse class of complex phenomena and execute their viewpoints.

We investigate an EFK equation in the present study, and the EFK equation was sug-
gested by Coullet, Elphick and Repauxin in 1987 [31], and later, in 1988, Dee and Saarloos
[32, 33] proposed the generalization of the standard FK equation. Here, we consider the
EFK equation [34, 35]

ut + μ�2u – �u + φ(u) = 0, x ∈ Ω , t ∈ (0, T], (1)

where φ(u) = u3 –u, T > 0, Ω ∈ (0, 1) with boundary ∂Ω and μ signifies a positive constant.
For μ = 0, Eq. (1) reduces to the classical FK equation. Including fourth-order term to the
classical FK equation, the authors in [31] illustrated and natured Eq. (1). This term plays
an important role in phase transitions near critical points (Lipschitz points).

The considered model has diverse significance, it has been analysed and also illustrated
by many researchers associated with science and technology. For instance, near to Lips-
chitz point the mesoscopic model of a phase transition was demonstrated by the authors
in [36], the considered model describes the reaction-diffusion system by travelling waves
[37]; in liquid crystals the authors in [38] illustrated the propagation of domain walls, pat-
tern formation in bi-stable systems [32].

Many interesting and nonlinear models arising in associated fields of science and engi-
neering have been effectively and systematically exemplified with the aid of generalised
calculus in the present scenario. Many elder researchers suggested the distinct definition
for both integral and differential operators having fractional order. Nevertheless, each ba-
sic notion has its own confines. The importance of the initial conditions is not described
by Riemann–Liouville derivative, the singular kernel is not associated with the notion of
fractional calculus described by Caputo. In order to overcome the above-mentioned lim-
itations, Caputo and Fabrizio in 2015 defined the operator [39], and later many authors
employed it to investigate and present some interesting behaviour for nonlinear complex
problems. Recently, many researchers pointed out some issues related to essential prop-
erties describing the behaviour of nonlinear problems like the non-local and non-singular
kernel. In order to overcome these limitations with the help of Mittag-Leffler functions,
Atangana and Baleanu derived the new fractional derivative in 2016, namely Atangana–
Baleanu (AB) derivative [40]. This derivative buried all the above-mentioned issues.

On the other hand, it is essential and very important to evaluate the solution for the in-
tegral and differential equations describing the above mechanisms. In connection with
this, physicist and mathematicians established more accurate and very effective tech-
niques. There are numerous methods available in the literature, for instance, decompo-
sition method, perturbation methods, homotopy methods, iteration methods and many
others. Among these schemes, the homotopy analysis method (HAM) [41, 42] has been
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extensively considered by many researchers due to its applicability, efficiency and accu-
racy. HAM has been employed to nonlinear problems for the purpose of examining the
behaviour without linearization, transformation, discretization or perturbation. However,
it necessitates huge computer memory and time, and hence the combination of HAM with
well-established transform algorithm is imposed.

Here, we consider FEFK equation of the form

ABC
a Dα

t u(x, t) + μ�2u – �u + φ(u) = 0, 0 < α ≤ 1, (2)

where α is fractional order. In this paper, we consider the improved method of HAM with
the elegant amalgamation of Laplace transform in order to reduce huge computation and
computer memory [43]. Due to efficacy and reliability, q-HATM has been applied to many
nonlinear problems as well as models which describe the various phenomena by many re-
searchers in order to present the nature, capture the behaviour and to illustrate the corre-
sponding consequences [44–51]. The novelty of the considered algorithm is that it is fab-
ricated with auxiliary and homotopy parameters, and these can help quick convergence
in the obtained solution. Also, it provides a simple computational scheme to find the an-
alytical solution. Further, it offers more freedom to consider the equation type nonlinear
problems and a distinct class of initial conditions. The proposed solution procedure can
preserve more exactness while reducing the huge computational work and time in com-
parison with other traditional schemes.

The projected model has fascinated the consideration of many authors since it plays a
substantial role in describing various nonlinear models. Recently, many researchers have
found and analysed the solution with the help of distinct methods. For instance, the au-
thors in [52] found the heteroclinic solutions for Eq. (1) by variational algorithm; the
authors in [53] employed the finite difference method and also presented existence and
stability for the corresponding solution; the attractor bifurcation was illustrated by the
authors in [54] for the proposed model; the authors in [55] presented the global dynam-
ics of stationary solutions for Eq. (1); the periodic solution was obtained by the authors
in [56]; the Fourier pseudo-spectral scheme was employed by the researchers in [35] to
presented some simulating consequences of the results to understand the nature of the
considered nonlinear problem.

In this paper, the equation describing the phase transitions near critical points, called
EFK equation, is considered. In order to integrate the memory effect and essential prop-
erties like kernel and non-singularity, we generalise the considered nonlinear model by
replacing time derivative with fractional derivative with the aid of AB operator. Moreover,
with the assistance of fixed point hypothesis, the existence and uniqueness are presented
for the solution of the considered problem. Moreover, we consider two different cases in
order to demonstrate the applicability and the efficiency of the considered method. We
present the numerical simulation in order to illustrate the accuracy of q-HATM. The re-
maining part of the paper is organised as follows: the essential fundamentals and basic no-
tions are defined in Sect. 2; the solution procedure of the projected scheme is presented in
Sect. 3, and in Sect. 4 we present the solution for the considered problem with the aid of q-
HATM. The existence and uniqueness for the solution of FEFK equation are presented in
Sect. 5 with the help of fixed point theorem. Further, the numerical results and discussion
for two different cases and conclusion on the obtained results are respectively presented
in Sect. 6 and Sect. 7.
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2 Preliminaries
Here, we present the fundamental notions of fractional derivative and Laplace transform
[57–61].

Definition 1 The Atangana–Baleanu–Caputo (ABC) derivative for the function f ∈
H1(a, b) (b > a, α ∈ [0, 1]) is presented as follows [40]:

ABC
a Dα

t
(
f (t)

)
=
B[α]
1 – α

∫ t

a
f ′(ϑ)Eα

[
–α

(t – ϑ)α

1 – α

]
dϑ . (3)

Definition 2 The fractional-order AB integral of a function f ∈ H1(a, b), b > a, α ∈ [0, 1],
and then its fractional-order in Riemann–Liouville (RL) sense is defined as follows [40]:

ABR
a Dα

t
(
f (t)

)
=
B[α]
1 – α

d
dt

∫ t

a
f (ϑ)Eα

[
α

(t – ϑ)α

α – 1

]
dϑ . (4)

Definition 3 The AB integral of fractional order is presented as follows [40]:

AB
a Iα

t
(
f (t)

)
=

1 – α

B[α]
f (t) +

α

B[α]Γ (α)

∫ t

a
f (ϑ)(t – ϑ)α–1 dϑ . (5)

Definition 4 As reference to AB derivative of the function f (t), the Laplace transform
(LT) of f (t) is presented as follows [40]:

L
[ABC

0 Dα
t
(
f (t)

)]
(s) =

B[α]
1 – α

sαL[f (t)] – sα–1f (0)
sα + (α/(1 – α))

. (6)

Theorem 1 The Lipschitz condition holds for the ABR and ABC derivatives [40]

∥∥ABR
a Dα

t f1(t) – ABR
a Dα

t f2(t)
∥∥ < K2

∥∥f1(x) – f2(x)
∥∥ (7)

and

∥
∥ABC

a Dα
t f1(t) – ABC

a Dα
t f2(t)

∥
∥ < K1

∥
∥f1(x) – f2(x)

∥
∥. (8)

Theorem 2 The fractional differential equation ABC
a Dα

t f1(t) = s(t) has a unique solution,
which is presented as follows [40]:

f (t) =
(1 – α)
B[α]

s(t) +
α

B[α]Γ (α)

∫ t

0
s(ς )(t – ς )α–1 dς . (9)

3 Fundamental procedure of projected scheme
In this part, we take a fractional differential equation to present the solution procedure of
the projected method [62–64]

ABC
a Dα

t v(x, t) + Rv(x, t) + N v(x, t) = f (x, t), n – 1 < α ≤ n, (10)

with the initial condition

v(x, 0) = g(x), (11)
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where ABC
a Dα

t v(x, t) symbolises the AB derivative of v(x, t). By applying LT on Eq. (10), one
can get

L
[
v(x, t)

]
–
g(x)

s
+

1
B[α]

(
1 –α +

α

sα

){
L

[
N v(x, t)

]
+L

[
Rv(x, t)

]
–L

[
f (x, t)

]}
= 0. (12)

Now, corresponding to foregoing equations, the nonlinear operator is presented as fol-
lows:

N
[
ϕ(x, t; q)

]

= L
[
ϕ(x, t; q)

]
–
g(x)

s

+
1

B[α]

(
1 – α +

α

sα

)
{
L

[
Rϕ(x, t; q)

]
+ L

[
Nϕ(x, t; q)

]
– L

[
f (x, t)

]}
, (13)

where q ∈ [0, 1
n

]. Now, the homotopy is presented as follows with non-zero auxiliary pa-
rameter � and embedding parameter q ∈ [0, 1

n ] (n ≥ 1):

�qN
[
ϕ(x, t; q)

]
= (1 – nq)L

[
ϕ(x, t; q) – v0(x, t)

]
, (14)

where L signifies LT . For q = 0 and q = 1
n , the following are satisfied:

ϕ(x, t; 0) = v0(x, t), ϕ

(
x, t;

1
n

)
= v(x, t). (15)

By increasing q from 0 to 1
n

, then ϕ(x, t; q) converges from v0(x, t) to v(x, t). Then, with the
help of Taylor’s theorem near to q, one can have

ϕ(x, t; q) = v0(x, t) +
∞∑

m=1

vm(x, t)qm, (16)

where

vm(x, t) =
1

m!
∂mϕ(x, t; q)

∂qm

∣∣
∣∣
q=0

. (17)

For the proper choice of v0(x, t), n and �, the series (16) converges at q = 1
n

. Then

v(x, t) = v0(x, t) +
∞∑

m=1

vm(x, t)
(

1
n

)m

. (18)

Multiplying by 1
m! after differentiating Eq. (14) m-times with q and then putting q = 0, one

gets

L
[
vm(x, t) – kmvm–1(x, t)

]
= �Rm(�vm–1), (19)

and later we define vectors as

�vm =
{

v0(x, t), v1(x, t), . . . , vm(x, t)
}

. (20)
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On applying inverse LT to Eq. (19), we obtain

vm(x, t) = �L–1[Rm(�vm–1)
]

+ kmvm–1(x, t), (21)

where

Rm(�vm–1) = L
[
vm–1(x, t)

]
–

(
1 –

km

n

)(
g(x)

s
+

1
B[α]

(
1 – α +

α

sα

)
L
[
f (x, t)

])

+
1

B[α]

(
1 – α +

α

sα

)
L[Rvm–1 + Hm–1] (22)

and

km =

{
0, m ≤ 1,
n, m > 1.

(23)

In Eq. (22), Hm is a homotopy polynomial, which is defined as

Hm =
1

m!

[
∂mϕ(x, t; q)

∂qm

]

q=0
and ϕ(x, t; q) = ϕ0 + qϕ1 + q2ϕ2 + · · · . (24)

With the assistance of Eqs. (23) and (24), we have

vm(x, t) = (km + �)vm–1(x, t) –
(

1 –
km

n

)
L–1

(
g(x)

s
+

1
B[α]

(
1 – α +

α

sα

)
L
[
f (x, t)

])

+ �L–1
{

1
B[α]

(
1 – α +

α

sα

)
L[Rvm–1 + Hm–1]

}
. (25)

Then we can find the terms of vm(x, t) with the aid of Eq. (25). The q-HATM solution is
written as follows:

v(x, t) =
∞∑

m=0

vm(x, t). (26)

4 Solution for FEFK equation
Here, we examine the FEFK equation presented in Eq. (2) to find its solution with the
assistance of the projected scheme

ABC
a Dα

t u(x, y, t) + μ�2u – �u + u3 – u = 0, 0 < α ≤ 1, (27)

with the initial conditions (ICs)

u(x, y, 0) = u0(x, y, t). (28)

Taking LT on Eq. (27) and with the aid of Eq. (28), one can have

L
[
u(x, y, t)

]
=

1
s
(
u0(x, y, t)

)
+

1
B[α]

(
1 – α +

α

sα

)
L
{
μ�2u – �u + u3 – u

}
. (29)
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Now, we present the nonlinear operator N as follows:

N
[
ϕ(x, y, t; q)

]
= L

[
ϕ(x, y, t; q)

]
–

1
s
(
u0(x, y, t)

)

+
1

B[α]

(
1 – α +

α

sα

)

× L
{
μ�2ϕ(x, y, t; q) – �ϕ(x, y, t; q) + ϕ(x, y, t; q)3 – ϕ(x, y, t; q)

}
. (30)

At H(x, y, t) = 1, the mth order deformation equation by using q-HATM is expressed as

L
[
um(x, y, t) – kmum–1(x, y, t)

]
= �Rm[�um–1], (31)

where

Rm[�um–1] = L
[
um–1(x, y, t)

]
–

(
1 –

km

n

){
1
s
(
u0(x, y, t)

)}

+
1

B[α]

(
1 – α +

α

sα

)

× L

{

μ�2um–1 – �2um–1 +
i∑

j=0

m–1∑

i=0

ujui–jum–1–i – um–1

}

. (32)

By utilizing the inversion of LT on Eq. (31), we get

um(x, y, t) = kmum–1(x, y, t) + �L–1{Rm[�um–1]
}

. (33)

On solving the preceding equations by using u0(x, y, t), we can obtain the terms of

u(x, y, t) = u0(x, y, t) +
∞∑

m=1

um(x, y, t)
(

1
n

)m

. (34)

5 Existence and uniqueness of solution
Here, with the aid of fixed point theory, we demonstrate the existence and uniqueness for
the solution of the considered problem. Now, by the aid of Eq. (27), one can have

ABC
0 Dα

t
[
u(x, y, t)

]
= G(x, y, t, u). (35)

With the help of Eq. (35) and Theorem 2, one can get

u(x, y, t) – u(x, y, 0) =
(1 – α)
B(α)

G(x, y, t, u) +
α

B(α)Γ (α)

∫ t

0
G(x, y, ζ , u)(t – ζ )α–1 dζ . (36)

Theorem 3 The kernel G satisfies the Lipschitz condition and also contraction if it satisfies
0 ≤ (μ�2 – � + (a2 + b2 + ab) – 1) < 1.
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Proof Let us choose two functions u and u1 to verify the required condition, therefore we
get

∥
∥G(x, y, t, u) – G(x, y, t, u1)

∥
∥ =

∥
∥μ�2[u(x, y, t) – u(x, y, t1)

]
– �

[
u(x, y, t) – u(x, y, t1)

]

+
[
u3(x, y, t) – u3(x, y, t1)

]
–

[
u(x, y, t) – u(x, y, t1)

]∥∥

≤ ∥
∥μ�2 – � +

(
a2 + b2 + ab

)
– 1

∥
∥
∥
∥u(x, y, t) – u(x, y, t1)

∥
∥

≤ (
μ�2 – � +

(
a2 + b2 + ab

)
– 1

)∥∥u(x, y, t) – u(x, y, t1)
∥
∥.

(37)

Since u and u1 are bounded and here a = ‖u‖ and b = ‖u1‖. Inserting η = μ�2 – � + (a2 +
b2 + ab) – 1 in Eq. (37), we get

∥
∥G(x, y, t, u) – G(x, y, t, u1)

∥
∥ ≤ η

∥
∥u(x, y, t) – u(x, y, t1)

∥
∥. (38)

It is clear that the Lipschitz condition is achieved for G1. Moreover, if 0 ≤ (μ�2 – � + (a2 +
b2 + ab) – 1) < 1, then it leads to contraction. Now, the recursive form is present for the
above relation and initial condition as follows:

un(x, y, t) =
(1 – α)
B(α)

G(x, y, t, un–1) +
α

B(α)Γ (α)

∫ t

0
G(x, y, ζ , un–1)(t – ζ )α–1 dζ (39)

and

u(x, y, 0) = u0(x, y, t). (40)

The difference between successive terms is defined as follows:

φn(x, y, t) = un(x, y, t) – un–1(x, y, t)

=
(1 – α)
B(α)

(
G1(x, y, t, un–1) – G(x, y, t, un–2)

)

+
α

B(α)Γ (α)

∫ t

0
G(x, y, ζ , un–1)(t – ζ )α–1 dζ . (41)

Notice that

un(x, y, t) =
n∑

i=1

φi(x, y, t). (42)

By employing the norm on Eq. (41) and considering Eq. (38), we have

∥∥φn(x, y, t)
∥∥ ≤ (1 – α)

B(α)
η
∥∥φ(n–1)(x, y, t)

∥∥ +
α

B(α)Γ (α)
η

∫ t

0

∥∥φ(n–1)(x, y, ζ )
∥∥dζ . (43)

�

With the aid of foregoing results, we prove the following theorems.
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Theorem 4 For the projected system (27), the solution will exist and be unique for a par-
ticular t0 such that

(1 – α)
B(α)

η +
α

B(α)Γ (α)
η < 1.

Proof Let u(x, y, t) be a bounded function sustaining the Lipschitz condition. With the
assistance of Eq. (43), we get

∥
∥φi(x, y, t)

∥
∥ ≤ ∥

∥un(x, y, 0)
∥
∥
[

(1 – α)
B(α)

η +
α

B(α)Γ (α)
η

]n

. (44)

This proves the continuity and existence of the achieved solution. Further, to verify that
the above equation is the solution for Eq. (27), we consider

u(x, y, t) – u(x, y, 0) = un(x, y, t) – Kn(x, y, t). (45)

Then, we consider achieving the required result

∥∥Kn(x, y, t)
∥∥ =

∥∥∥
∥

(1 – α)
B(α)

(
G(x, y, t, u) – G(x, y, t, un–1)

)

+
α

B(α)Γ (α)

∫ t

0
(t – ζ )μ–1(G(x, y, ζ , u) – G(x, y, ζ , un–1)

)
dζ

∥
∥∥∥

≤ (1 – α)
B(α)

∥
∥G(x, y, ζ , u) – G(x, y, ζ , un–1)

∥
∥

+
α

B(α)Γ (α)

∫ t

0

∥∥G(x, y, ζ , u) – G(x, y, ζ , un–1)
∥∥dζ

≤ (1 – α)
B(α)

η1‖u – un–1‖ +
α

B(α)Γ (α)
η1‖u – un–1‖t. (46)

Similarly, at t0 we can obtain

∥∥Kn(x, y, t)
∥∥ ≤

(
(1 – α)
B(α)

+
αt0

B(α)Γ (α)

)n+1

ηn+1M. (47)

We have from Eq. (47), for n tending to ∞, ‖Kn(x, y, t)‖ approaches 0. Now, it is impor-
tant to present the uniqueness for the obtained solution. Suppose that u∗(t) is a different
solution, then one can get

u(x, y, t) – u∗(x, y, t) =
(1 – α)
B(α)

(
G(x, y, t, u) – G

(
x, y, t, u∗))

+
α

B(α)Γ (α)

∫ t

0

(
G(x, y, ζ , u) – G

(
x, y, ζ , u∗))dζ . (48)
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With the help of properties of the norm, Eq. (48) reduces to

∥∥u(x, y, t) – u∗(x, y, t)
∥∥ =

∥
∥∥∥

(1 – α)
B(α)

(
G(x, y, t, u) – G

(
x, y, t, u∗))

+
α

B(α)Γ (α)

∫ t

0

(
G(x, y, ζ , u) – G

(
x, y, ζ , u∗))dζ

∥∥
∥∥

≤ (1 – α)
B(α)

η
∥∥u(x, y, t) – u∗(x, y, t)

∥∥

+
α

B(α)Γ (α)
ηt

∥
∥u(x, y, t) – u∗(x, y, t)

∥
∥. (49)

On simplification

∥
∥u(x, y, t) – u∗(x, y, t)

∥
∥
(

1 –
(1 – α)
B(α)

η –
α

B(α)Γ (α)
ηt

)
≤ 0. (50)

From the above condition, it is clear that u(t) = u∗(t), if

(
1 –

(1 – α)
B(α)

η –
α

B(α)Γ (α)
ηt

)
≥ 0. (51)

Hence, Eq. (51) shows our required result. �

Theorem 5 Let (B[0, T],‖ · ‖) be a Banach space. Suppose that un(x, y, t) and u(x, y, t) de-
fine B, if 0 < λ < 1, then the series solution presented in Eq. (26) tends towards the solution
of Eq. (10).

Proof Let {Sn} be a partial sum of Eq. (26), then we need to show that {Sn} is a Cauchy
sequence in (B[0, T],‖ · ‖). Then

∥
∥Sn+1(x, y, t) – Sn(x, y, t)

∥
∥ =

∥
∥un+1(x, y, t)

∥
∥

≤ λ
∥
∥un(x, y, t)

∥
∥

≤ λ2∥∥un–1(x, y, t)
∥
∥ ≤ · · · ≤ λn+1∥∥u0(x, y, t)

∥
∥.

For every n, m ∈ N (m ≤ n), we have

‖Sn – Sm‖ =
∥
∥(Sm+1 – Sm) + · · · + (Sn–1 – Sn–2) + (Sn – Sn–1)

∥
∥

≤ ‖Sm+1 – Sm‖ + · · · + ‖Sn–1 – Sn–2‖ + ‖Sn – Sn–1‖
≤ (

λn + λn–1 + · · · + λm+1)‖u0‖
≤ λm+1(1 + λ + · · · + +λn–m–2 + λn–m–1)‖u0‖

≤
(

1 – λn–m

1 – λ

)
λm+1‖u0‖. (52)

But 0 < λ < 1, therefore limn,m→∞ ‖Sn – Sm‖ = 0. Therefore, {Sn} is the Cauchy sequence.
Hence, it shows the above-mentioned result. �
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Theorem 6 The series solution for Eq. (10) is defined in (26), then the maximum absolute
error is

∥
∥∥
∥∥

u(x, y, t) –
M∑

n=0

un(x, y, t)

∥
∥∥
∥∥

≤ λM+1
1

1 – λ1

∥
∥u0(x, y, t)

∥
∥.

Proof With the assistance of Eq. (52) we have

∥∥u(x, y, t) – Sn
∥∥ = λm+1

(
1 – λn–m

1 – λ

)∥∥u0(x, y, t)
∥∥.

But 0 < λ < 0 ⇒ 1 – λn–m < 1. Hence, we have

∥∥∥
∥∥

u(x, y, t) –
M∑

n=0

un(x, t)

∥∥∥
∥∥

≤ λM+1

1 – λ

∥∥u0(x, y, t)
∥∥.

This proves the required result. �

6 Numerical results and discussion
In this part, we consider two different cases of the FEFK equation to find the approximated
analytical solution using q-HATM, in which the equation is associated with Mittag-Leffler
kernel.

Case 1: Consider a homogeneous FEFK equation of the form

ABC
a Dα

t u(x, y, t) + μ�2u – �u + u3 – u = 0, 0 < α ≤ 1, (53)

with the initial condition

u(x, y, 0) = sin(x) sin(y). (54)

Case 2: Consider a non-homogeneous FEFK equation of the form

ABC
a Dα

t u(x, y, t) + μ�2u – �u + u3 – u = g(x, y, t), 0 < α ≤ 1, (55)

with the initial condition defined in Eq. (54). Here the non-homogeneous term is given
by g(x, y, t) = 4μ sin(x) sin(y)e–t + (sin(x) sin(y)e–t)3. The corresponding exact solution for
Eq. (55) is presented as follows:

u(x, y, t) = sin(x) sin(y)e–t . (56)

Here, we demonstrate the exactness of the future scheme with distinct fractional order.
In Fig. 1, we capture the nature of achieved solution for the homogeneous case of FEFK
equation defined in Case 1 with distinct fractional order (i.e. α = 0.5, 0.75 and 1) in terms of
2D and 3D plots. Similarly, for Case 2 the surfaces of q-HATM solution, analytical solution
and absolute error are shown in Fig. 3. The variation of attained solution for various frac-
tional order is presented in Fig. 4 for FEFK equation defined in the second case. As related
to homotopy parameter (�) and at different fractional order for both cases, we present
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Figure 1 Nature of q-HATM solution in terms of 3D and 2D for Case 1 with y = 1 at � = –1, n = 1 and t = 1
with (a) α = 0.50, (b) α = 0.75 and (c) α = 1

Figure 2 �-curves for u(x, t) defined in Case 1 with distinct α at x = 1, y = 1, n = 1 and t = 0.01 with (a) n = 1
and (b) n = 2
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Figure 3 Surfaces (a) q-HATM solution (b) analytical solution (c) absolute error defined in Case 2 at � = –1,
n = 1, t = 0.1 and α = 1

Figure 4 Nature of the obtained solution defined in
Case 2 with differentα for � = –1, n = 1, y = 1 and
x = 1

Figure 5 �-curves for q-HATM solution considered in Case 2 with different α for x = 1, y = 1 and t = 0.01 with
(a) n = 1 and (b) n = 2

the behaviour of the achieved solution respectively in Fig. 2 and Fig. 5. These curves aid
to control and adjust the region of the convergence for q-HATM solution. Meanwhile,
the horizontal line in the plots represents the convergence region. For a particular �, the
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Table 1 Numerical illustration for the q-HATM solution of FEFK equation defined in Case 2 for
distinctα at n = 1, � = 1 and y = 0.1

x t α = 0.7 α = 0.8 α = 0.9 α = 1

0.25 0.025 1.40637× 10–3 6.71262× 10–4 2.62076× 10–4 2.37588× 10–5

0.050 2.07408× 10–3 9.74998× 10–4 3.96960× 10–4 4.46453× 10–5

0.075 2.57439× 10–3 1.17156× 10–3 4.89850× 10–4 6.18806× 10–5

0.1 2.98624× 10–3 1.30695× 10–3 5.58417× 10–4 7.48574× 10–5

0.50 0.025 2.72578× 10–3 1.30527× 10–3 5.09260× 10–4 4.57329× 10–5

0.050 4.02071× 10–3 1.92679× 10–3 7.86281× 10–4 7.89672× 10–5

0.075 4.99163× 10–3 2.38024× 10–3 1.00472× 10–3 9.24355× 10–5

0.1 5.79138× 10–3 2.76164× 10–3 1.20515× 10–3 8.00485× 10–5

0.75 0.025 3.87642× 10–3 1.86469× 10–3 7.26833× 10–4 6.44136× 10–5

0.050 5.71957× 10–3 2.81353× 10–3 1.15165× 10–3 9.73346× 10–5

0.075 7.10277× 10–3 3.60183× 10–3 1.53830× 10–3 7.70330× 10–5

0.1 8.24315× 10–3 4.37972× 10–3 1.95701× 10–3 1.48722× 10–5

1 0.025 4.78660× 10–3 2.31329× 10–3 9.00816× 10–4 7.87386× 10–5

0.050 7.06455× 10–3 3.56805× 10–3 1.46487× 10–3 1.01035× 10–4

0.075 8.77561× 10–3 4.72501× 10–3 2.03957× 10–3 2.54775× 10–5

0.1 1.01876× 10–2 5.98686× 10–3 2.72760× 10–3 1.83073× 10–4

obtained solution swiftly inclines towards analytical solution. Further, the numerical sim-
ulation has been illustrated for the non-homogeneous case proposed problem in distinct
fractional order. The presented numerical study elucidates that as the order tends to the
classical case, the obtained solution gets near to the analytical solution, also it confirms
the exactness of the applied computational scheme.

7 Conclusion
In this study, we found the solution for FEKZ equation and presented the corresponding
consequence by using the q-HATM. The present investigation confirms its competence
while examining the real word problems; this is due to the considered fractional-order AB
derivatives being defined with the help of Mittag-Leffler function. This function is non-
singular and non-local kernel in nature. For the achieved solution, we considered fixed
point hypothesis to illustrate the existence and uniqueness. Further, the novelty of the
considered scheme is that it did not necessitate any perturbation, discretization or con-
version while finding the solution for the nonlinear problems. The present analysis shows
that FEKZ equation conspicuously depends on the time instance and history. These es-
sential properties are effectively and systematically illustrated with the help of generalised
calculus. More precisely, the considered nonlinear model can be effectively and accurately
analysed and exemplified with the help of newly introduced and nurtured novel numerical
methods illustrated in [65, 66], and we consider these methods for the future work to anal-
yse the numerous class of nonlinear models. Finally, we can accomplish that the projected
technique is more effective and extremely methodical while exemplifying the diverse and
interesting class of complex phenomena defined with nonlinear problems existing in sci-
ence and technology.
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