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In this paper, we study some nonlinear second order multi-point boundary value
problems. We first give a lemma about the characteristic values of the corresponding
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1 Introduction
In this paper, we study the following nonlinear multi-point boundary value problem:

⎧
⎨

⎩

–u′′(t) = g(t, u(t)), 0 ≤ t ≤ 1,

u′(0) = 0, u(1) =
∑m–2

i=1 αiu(βi),
(1.1)

where g : [0, 1] × (–∞, +∞) → (–∞, +∞) is continuous; 0 < β1 < β2 < · · · < βm–2 < 1; αi >
0 (i = 1, 2, . . . , m – 2) with

∑m–2
i=1 αi < 1.

The multi-point boundary value problem is an important part of boundary value prob-
lems for ordinary differential equations, which arise in physics and applied mathematics
(see [1]). In 1992, Gupta considered nonlinear three-point boundary value problems (see
[2]). Since then, many authors have considered the existence of nontrivial solutions for
nonlinear multi-point boundary value problems and obtained many great results. We can
refer to [3–18] and the references therein. For example, in [4], Xu has studied the following
multi-point boundary value problem:

⎧
⎨

⎩

–x′′(t) = f (x), t ∈ [0, 1],

x(0) = 0, x(1) =
∑m–2

i=1 αix(ηi),
(1.2)

where f : (–∞, +∞) → (–∞, +∞) is continuous; 0 < η1 < η2 < · · · < ηm–2 < 1; αi > 0 (i =
1, 2, . . . , m – 2). In [4], the author gave the result about the characteristic values of the
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relevant linear operator. In addition, the author obtained the existence of multiple positive
solutions and sign-changing solutions for BVP (1.2) by applying Leray–Schauder degree
methods.

In [5], Zhang and Sun studied the following nonlinear multi-point boundary value prob-
lem:

⎧
⎨

⎩

–(Ly)(t) = h(t)f (y(t)), t ∈ (0, 1),

y′(0) = 0, y(1) =
∑m–2

i=1 aiy(ξi),
(1.3)

where (Ly)(t) = (p(t)y′(t))′ + q(t)y(t), f : [0, +∞) → [0, +∞) is continuous; h : (0, 1) →
[0, +∞) is continuous, and h is singular at t = 0 and t = 1; 0 < ξ1 < ξ2 < · · · < ξm–2 < 1;
ai > 0 (i = 1, 2, . . . , m – 2). The authors proved the existence of the first eigenvalue of the
relevant linear operator, and they considered the existence of positive solutions for BVP
(1.3). The method they used is the fixed point index theory.

In [15], Li considered the following second order three-point boundary value problem:

⎧
⎨

⎩

–y′′(t) = f (t, u(t)), t ∈ [0, 1],

y′(0) = 0, y(1) = αy(η),
(1.4)

where η ∈ (0, 1),α ∈ (0, 1); f : [0, 1] × (–∞, +∞) → (–∞, +∞) is continuous. The author
also studied the characteristic values of the relevant linear operator about BVP (1.4). By
means of fixed point theorems with lattice structure, the author has obtained the existence
results of negative and sign-changing solution for BVP (1.4) for superlinear case.

Inspired by [3–18], we consider boundary value problem (1.1) in this paper. By the exist-
ing fixed point theorems due to Sang et al. [19], we obtain the existence results of multiple
nontrivial solutions for BVP (1.1) for asymptotically linear case, including two positive so-
lutions, one sign-changing, and two negative solutions. Characteristic value is an impor-
tant index of the linear operator. One of the features of this paper is that we give a lemma
about the characteristic values of the relevant linear operator about BVP (1.1). The other
feature of this paper is that the obtained main theorems are new results for BVP (1.1),
which improve and generalize BVP (1.4).

The rest of the paper is organized as follows. We introduce the definition of e-continuous
operator and the used fixed point theorems due to Sang et al. [19] in Sect. 2. We give the
main lemma about the characteristic values of the relevant linear operator, prove some
auxiliary lemmas that we need, and obtain the main result of the existence of multiple
solutions for BVP (1.1) in Sect. 3. We provide an example to illustrate our main result in
Sect. 4.

2 Preliminaries
In the following, we mainly introduce the e-continuous operator and list the used fixed
point theorems due to Sang et al. [19]. For detailed concepts and properties about the
cone, we can refer to [21–23].

Let E be a Banach space, P be a cone of E. Let A be an operator. If Au = u with u /∈
P ∪ (–P), then u is said to be a sign-changing fixed point of A. The linear operator B is said
to be positive if B(P) ⊂ P.
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Definition 2.1 (see [20]) Let A : D → E be an operator, e ∈ P\{θ}, and u0 ∈ D. If, for any
given ε > 0, there exists δ > 0 such that

–εe ≤ Au – Au0 ≤ εe, for all u ∈ D with ‖u – u0‖ < δ,

then A is said to be e-continuous at u0. If A is e-continuous at every point u ∈ D, then A
is said to be e-continuous on D.

Lemma 2.1 (see [19]) Let E be a Banach space, P be a normal and total cone of E; B :
E → E be a positive linear completely continuous operator and be also e-continuous on E;
F : E → E be a continuous and bounded increasing operator and A = BF . Assume that

(i) there exist x1 ∈ P\{θ} and x2 ∈ (–P)\{θ} such that Ax1 ≤ x1, x2 ≤ Ax2; and there
exists α > 0 such that αe ≤ x1, x2 ≤ –αe;

(ii) F(θ ) = θ , F is Fréchet differentiable at θ ; and A′
θ has a characteristic value λ0 < 1

with a characteristic function ψ satisfying μ1e ≤ ψ ≤ μ2e, where μ1 > 0,μ2 > 0;
(iii) the Fréchet derivative A′∞ at ∞ exists; A′∞ is increasing; r(A′∞) > 1; 1 is not a a

characteristic value of A′∞.
Then A has at least two positive fixed points, one sign-changing solution, fixed point, and
two negative fixed points.

3 Main results
Let E = C[0, 1]. Define the norm ‖u‖ = maxt∈[0,1] |u(t)| on E, then E is a Banach space. Let
P = {u ∈ E|u(t) ≥ 0, t ∈ [0, 1]}. It is obvious that P is a normal and total cone of E (see
[21–23]).

For convenience, we first give the following assumptions to be used in the rest of this
paper.

(H1) The sequence of positive solutions of the equation

cos
√

x =
m–2∑

i=1

αi cos(βi
√

x)

is λ1 < λ2 < · · · < λn < · · · .
(H2) g(t, 0) = 0 and g(t, x) is increasing in x uniformly on t ∈ [0, 1].
(H3) limx→0

g(t,x)
x = η, ∀t ∈ [0, 1] and η > λ1, where λ1 is defined by (H1).

(H4) limx→∞ g(t,x)
x = γ , ∀t ∈ [0, 1] and γ > λ1, γ = λk , where λk is defined by (H1), k =

2, 3, . . . .
(H5) There exist τ > 0, w > 0, and C > 0 such that

g(t, τ )
τ

< C,
g(t, –w)

–w
< C for any t ∈ [0, 1],

where 0 < C < (1 –
∑m–2

i=1 αi).

Lemma 3.1 (see [5]) For y(t) ∈ E, the following boundary value problem

⎧
⎨

⎩

u′′(t) + y(t) = 0, t ∈ [0, 1],

u′(0) = 0, u(1) =
∑m–2

i=1 αiu(βi),
(3.1)
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has a unique solution

u(t) =
∫ 1

0
G(t, s)y(s) ds, 0 ≤ t ≤ 1,

where

G(t, s) = k(t, s) +
m–2∑

i=1

k̃i(t, s) + (1 – s)

(m–2∑

i=1

αi

)(

1 –
m–2∑

i=1

αi

)–1

, t, s ∈ [0, 1]. (3.2)

k(t, s) =

⎧
⎨

⎩

1 – s, 0 ≤ t ≤ s ≤ 1,

1 – t, 0 ≤ s ≤ t ≤ 1,
(3.3)

k̃i(t, s) =

⎧
⎨

⎩

–αi(1 –
∑m–2

i=1 αi)–1(βi – s), 0 ≤ s ≤ βi, t ∈ [0, 1],

0, βi ≤ s ≤ 1, t ∈ [0, 1],

i = 1, 2, . . . , m – 2. (3.4)

Define the following operators:

(Tu)(t) =
∫ 1

0
G(t, s)g

(
s, u(s)

)
ds, (3.5)

(Lu)(t) =
∫ 1

0
G(t, s)u(s) ds, (3.6)

(Gu)(t) = g
(
t, u(t)

)
, (3.7)

where T = LG, G(t, s) is defined by (3.2).

Obviously, T : E → E is completely continuous (see [5]).

Lemma 3.2 Assume that (H1) holds. Then the sequence of positive characteristic values of
the linear operator L defined by (3.6) is

λ1 < λ2 < · · · < λn < · · ·

and the positive characteristic values λn have algebraic multiplicity one.

Proof Let ξ be a positive characteristic value and u(t) be a characteristic function corre-
sponding to the characteristic value ξ . �

From Lemma 3.1, we obtain

u′′(t) + ξu(t) = 0, 0 ≤ t ≤ 1.

u′(0) = 0, u(1) =
m–2∑

i=1

αiu(βi).
(3.8)
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Then the form of the general solution for the differential equation (3.8) is

u(t) = C1 sin(t
√

ξ ) + C2 cos(t
√

ξ ), ∀t ∈ [0, 1]. (3.9)

Since u′(0) = 0, we know that C1 = 0. Then (3.9) can be reduced to

u(t) = C2 cos(t
√

ξ ), ∀t ∈ [0, 1].

From u(1) =
∑m–2

i=1 αiu(βi), we have

cos
√

ξ =
m–2∑

i=1

αi cos(βi
√

ξ ).

By (H1), we know that ξ is one of the values λ1 < λ2 < · · · < λn < · · · , and the correspond-
ing characteristic function is

un(t) = C cos(t
√

λn), t ∈ [0, 1],

where C is a nonzero constant.
By ordinary method, we can know that

dim Ker(I – λnL) = 1. (3.10)

We need to prove that

Ker(I – λnL) = Ker(I – λnL)2. (3.11)

It is obvious that we only need to prove that

Ker(I – λnL)2 ⊂ Ker(I – λnL). (3.12)

Take any u ∈ Ker(I – λnL)2. If (I – λnL)u = θ , then (I – λnL)u is a characteristic function
of the linear operator L corresponding to the characteristic value λn. So we have

(I – λnL)u = b cos(t
√

λn), t ∈ [0, 1],

where b is a nonzero constant.
Hence we easily obtain that

u′′(t) + λnu(t) = –λnb cos(t
√

λn), 0 ≤ t ≤ 1.

u′(0) = 0, u(1) =
m–2∑

i=1

αiu(βi).
(3.13)

Then the form of the general solution for the differential equation (3.13) is

u(t) = C1 sin(t
√

λn) + C2 cos(t
√

λn) –
b
4

cos(2t
√

λn) cos(t
√

λn)
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–
(

b sin(2t
√

λn)
4

+
bt

√
λn

2

)

sin(t
√

λn), t ∈ [0, 1]. (3.14)

Since u′(0) = 0, we know that C1 = 0. By (3.14) and cos
√

λn =
∑m–2

i=1 αi cos(βi
√

λn), we
have

u(1) = C2 cos
√

λn –
b
4

cos(2
√

λn) cos
√

λn –
(

b sin(2
√

λn)
4

+
b
√

λn

2

)

sin
√

λn

= C2

m–2∑

i=1

αi cos(βi
√

λn) –
b
4
(
1 – 2 sin2

√
λn

)
m–2∑

i=1

αi cos(βi
√

λn)

–
b
2

sin2
√

λn

m–2∑

i=1

αi cos(βi
√

λn) –
b
√

λn

2
sin

√
λn

= C2

m–2∑

i=1

αi cos(βi
√

λn) –
b
4

m–2∑

i=1

αi cos(βi
√

λn) –
b
√

λn

2
sin

√
λn (3.15)

and

m–2∑

i=1

αiu(βi) = C2

m–2∑

i=1

αi cos(βi
√

λn) –
b
4

m–2∑

i=1

αi cos(2βi
√

λn) cos(βi
√

λn)

–
b
4

m–2∑

i=1

αi sin(2βi
√

λn) sin(βi
√

λn) –
b
√

λn

2

m–2∑

i=1

αiβi sin(βi
√

λn)

= C2

m–2∑

i=1

αi cos(βi
√

λn) –
b
4

m–2∑

i=1

αi cos(βi
√

λn)

–
b
√

λn

2

m–2∑

i=1

αiβi sin(βi
√

λn) (3.16)

From (3.15), (3.16) and u(1) =
∑m–2

i=1 αiu(βi), we have

sin
√

λn =
m–2∑

i=1

αiβi sin(βi
√

λn). (3.17)

Applying the Schwarz inequality and (3.17), we have

1 – cos2
√

λn = sin2
√

λn =

(m–2∑

i=1

αiβi sin(βi
√

λn)

)2

≤
(m–2∑

i=1

β2
i

)(m–2∑

i=1

α2
i sin2(βi

√
λn)

)

=

(m–2∑

i=1

β2
i

)[m–2∑

i=1

α2
i (1 – cos2(βi

√
λn)

]

=

(m–2∑

i=1

β2
i

)(m–2∑

i=1

α2
i

)

–

(m–2∑

i=1

β2
i

)(m–2∑

i=1

α2
i cos2(βi

√
λn)

)

.
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Combining cos
√

λn =
∑m–2

i=1 αi cos(βi
√

λn), we have

1 ≤ cos2
√

λn +

(m–2∑

i=1

β2
i

)(m–2∑

i=1

α2
i

)

–

(m–2∑

i=1

β2
i

)(m–2∑

i=1

α2
i cos2(βi

√
λn)

)

=

(m–2∑

i=1

αi cos(βi
√

λn)

)2

+

(m–2∑

i=1

β2
i

)(m–2∑

i=1

α2
i

)

–

(m–2∑

i=1

β2
i

)(m–2∑

i=1

α2
i cos2(βi

√
λn)

)

=

(m–2∑

i=1

β2
i

)(m–2∑

i=1

α2
i

)

+

[

1 –

(m–2∑

i=1

β2
i

)](m–2∑

i=1

α2
i cos2(βi

√
λn)

)

+
∑

i=j

αiαj cos(βi
√

λn) cos(βj
√

λn)

≤
(m–2∑

i=1

β2
i

)(m–2∑

i=1

α2
i

)

+

[

1 –

(m–2∑

i=1

β2
i

)] m–2∑

i=1

α2
i +

∑

i=j

αiαj

=
m–2∑

i=1

α2
i +

∑

i=j

αiαj =

(m–2∑

i=1

αi

)2

. (3.18)

Since
∑m–2

i=1 αi < 1, we know that (3.18) is a contradiction. So (3.12) holds. By (3.10) and
(3.11), we know that the algebraic multiplicity of characteristic value λn is 1.

Lemma 3.3 The linear operator L is e(t)-continuous on E.

Proof Take u0 ∈ E. For any given ε > 0, we choose δ = (1 –
∑m–2

i=1 αi)ε, when ‖u – u0‖ ≤ δ,
we have

∣
∣(Lu)(t) – (Lu0)(t)

∣
∣ ≤

∫ 1

0
G(t, s)

∣
∣u(t) – u0(t)

∣
∣ds

≤ ‖u – u0‖
(

1 +
∑m–2

i=1 αi

1 –
∑m–2

i=1 αi

)

< ε,

where e(t) = 1. Hence L is e(t)-continuous on u0 ∈ E. By the arbitrariness of u0, L is e(t)-
continuous on E. �

Lemma 3.4 Suppose that (H2) and (H3) hold. Then T is Fréchet differentiable at θ and
T ′

θ = ηL.

Proof By (H3), for any given ε > 0, there exists δ > 0, when 0 < |x| < δ, we obtain

∣
∣
∣
∣
g(t, x)

x
– η

∣
∣
∣
∣ < ε, ∀t ∈ [0, 1].

Namely,

∣
∣g(t, x) – ηx

∣
∣ < ε|x|, ∀t ∈ [0, 1], 0 < |x| < δ.
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So we have

∣
∣g

(
t, u(t)

)
– ηu(t)

∣
∣ < ‖Gu – ηu‖ ≤ ε‖u‖, ∀t ∈ [0, 1], |u| ≤ δ. (3.19)

By (H2), we have Tθ = θ . By (3.19), we have

‖Tu – Tθ – ηLu‖ =
∥
∥(LG)u – (ηL)u

∥
∥ =

∥
∥L(Gu – ηu)

∥
∥

≤ ‖L‖ · ‖Gu – ηu‖ ≤ ε‖L‖ · ‖u‖, ∀‖u‖ ≤ δ.

So we have

lim‖u‖→0

‖Tu – Tθ – ηLu‖
‖u‖ = 0.

Namely, T ′
θ = ηL. �

Lemma 3.5 Suppose that (H4) holds. Then the Fréchet derivative T ′∞ = γ L.

Proof By (H4), for any given ε > 0, there exists M > 0, when |x| ≥ M, we have

∣
∣
∣
∣
g(t, x)

x
– γ

∣
∣
∣
∣ < ε, ∀t ∈ [0, 1].

Namely,

∣
∣g(t, x) – γ x

∣
∣ < ε|x|, ∀t ∈ [0, 1], |x| ≥ M.

Let M̃ = maxt∈[0,1],|x|≤M |g(t, x) – γ x|. Then

∣
∣g(t, x) – γ x

∣
∣ ≤ M̃ + ε|x|, ∀t ∈ [0, 1], x ∈ (–∞, +∞).

So

‖Tu – γ Lu‖ =
∥
∥(LG)u – (γ L)u

∥
∥ =

∥
∥L(Gu – γ u)

∥
∥ ≤ ‖L‖ · ‖Gu – γ u‖

≤ (
M̃ + ε‖u‖)‖L‖, ∀u ∈ E.

Therefore

lim‖u‖→∞
‖Tu – γ Lu‖

‖u‖ = 0.

Namely, T ′∞ = γ L. �

Theorem 3.1 Suppose that (H1)–(H5) hold. Then BVP (1.1) has at least five nontrivial
solutions: two positive solutions, one sign-changing solution, and two negative solutions.

Proof (i) By (H5), we have

g(t, τ ) ≤ Cτ for t ∈ [0, 1].
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So

T(τ ) =
∫ 1

0
G(t, s)g(s, τ ) ds ≤ C

∫ 1

0
G(t, s)τds ≤ Cτ

(

1 +
∑m–2

i=1 αi

1 –
∑m–2

i=1 αi

)

≤ τ . (3.20)

Similarly, by (H5), we have

T(–w) =
∫ 1

0
G(t, s)g(s, –w) ds ≥ –Cw

∫ 1

0
G(t, s) ds

≥ –Cw
(

1 +
∑m–2

i=1 αi

1 –
∑m–2

i=1 αi

)

≥ –w. (3.21)

Take α = min{Cτ , Cw}. Then, by (3.20) and (3.21), we have

αe(t) < τ , –w < –αe(t), (3.22)

where e(t) = 1. �

From (3.20)–(3.22), condition (i) of Lemma 2.1 is satisfied.
(ii) By (H2), we have G(θ ) = θ . Similar to the proof of Lemma 3.4, G is Fréchet differen-

tiable at θ . By Lemma 3.4, we know that λn
η

is the characteristic value of T ′
θ . Since η > λ1,

T ′
θ has a characteristic value λ1

η
< 1. Let ψ(t) be a characteristic function corresponding to

the characteristic value λ1
η

< 1. Namely,

(
λ1

η
T ′

θψ

)

(t) = ψ(t), ∀t ∈ [0, 1].

By (3.2)–(3.4), we have

(1 – s)
∑m–2

i=1 αi

1 –
∑m–2

i=1 αi
≤ G(t, s) ≤ 1 +

∑m–2
i=1 αi(1 – s)

1 –
∑m–2

i=1 αi
.

So

λ1

∑m–2
i=1 αi

∫ 1
0 (1 – s)ψ(s) ds

1 –
∑m–2

i=1 αi
· 1 ≤ ψ(t) ≤ λ1

[

1 +
∑m–2

i=1 αi

2(1 –
∑m–2

i=1 αi)

]

‖ψ‖ · 1.

i.e.,

μ1e(t) ≤ ψ(t) ≤ μ2e(t),

where

μ1 = λ1

∑m–2
i=1 αi

∫ 1
0 (1 – s)ψ(s) ds

1 –
∑m–2

i=1 αi
, μ2 = λ1

[

1 +
∑m–2

i=1 αi

2(1 –
∑m–2

i=1 αi)

]

‖ψ‖, e(t) = 1.

Then condition (ii) of Lemma 2.1 is satisfied.
(iii) From Lemma 3.5, T ′∞ = γ L. So T ′∞ is increasing and λn

γ
is the characteristic value

of T ′∞, where λn is defined by (H1). By (H4), since r(T ′∞) = γ

λ1
, γ > λ1, and γ = λn, we have
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that r(T ′∞) > 1 and 1 is not a characteristic value of T ′∞. Hence condition (iii) of Lemma 2.1
holds.

From the above proof, Theorem 3.1 holds by Lemma 2.1.

4 Application
The following nonlinear four-point boundary value problem is studied:

⎧
⎨

⎩

–u′′(t) = g(t, u(t)), 0 ≤ t ≤ 1,

u′(0) = 0, u(1) = 1
4 u( 1

5 ) + 1
2 u( 1

3 ).
(4.1)

From simple calculations, λ1 ≈ 0.5626, λ2 ≈ 23.3709, λ3 ≈ 70.0951 are solutions of the
following equation:

cos
√

x =
1
4

cos

√
x

5
+

1
2

cos

√
x

3
.

Let

g(t, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x +
√

x – t
64 – 439

64 , t ∈ [0, 1], x ∈ (4, +∞),

(x – 1) + 9
64 – t

64 , t ∈ [0, 1], x ∈ (1, 4),
9

64 – t
64 , t ∈ [0, 1], x ∈ ( 1

8 , 1]

x + (1 – t)x2, t ∈ [0, 1], x ∈ [–1, 1
8 ],

1
72 (x + 1) – t, t ∈ [0, 1], x ∈ (–27, –1),

2x + 3√x + 2039
36 – t, t ∈ [0, 1], x ∈ (–∞, –27].

(4.2)

From (4.2), we know that g is continuous and increasing on x; g(t, 0) = 0.

lim inf
x→0

g(t, x)
x

= 1 > λ1,

lim sup
x→∞

g(t, x)
x

= 2 > λ1.

Let C = 1
5 , τ = 1, w = –27, then

g(t, τ )
τ

=
9

64
–

t
64

<
1
5

;

g(t, w)
w

=
13

972
+

t
27

<
1
5

.

So, by Theorem 3.1, BVP (4.1) has at least two positive solutions, one sign-changing solu-
tion, and two negative solutions.
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