Zhou et al. Advances in Difference Equations (2020) 2020:143 ® Advances in Difference Eq uations
https://doi.org/10.1186/513662-020-02603-2 a SpringerOpen Journal

RESEARCH Open Access

Check for
updates

Uniform persistence and almost periodic
solutions of a nonautonomous patch
occupancy model

Hui Zhou', Jehad Alzabut?, Shahram Rezapour*® and Mohammad Esmael Samei*”

“Correspondence:
mesamei@gmail.com; Abstract

mesamei@basu.ac.ir . . . . . S
“Department of Mathematics, Bu-Ali In this paper, a nonlinear nonautonomous model in a rocky intertidal community is

Sina University, Hamedan, Iran studied. The model is composed of two species in a rocky intertidal community and
Full list of author information is describes a patch occupancy with global dispersal of propagules and occupy each
available at the end of the article T . . . .

other by individual organisms. Firstly, we study the uniform persistence of the model
via differential inequality techniques. Furthermore, a sharp threshold of global
asymptotic stability and the existence of a unique almost periodic solution are
derived. To prove the main results, we construct an appropriate Lyapunov function
whose conditions are easily verified. The assumptions of the model are reasonable,
and the results complement previously known ones. An example with specific values
of parameters is included for demonstration of theoretical outcomes.

MSC: Primary 34K13; 34C25; 92D25; secondary 34D40

Keywords: Nonautonomous dynamical species; Uniform persistence; Almost
periodic solution; Global asymptotic stability

1 Introduction

Nonlocal problems concerning the conditions of the behavior of different classes of so-
lutions play an important role in the qualitative theory of ordinary differential equations
[1-16]. For more precision, we refer the readers to some specific problems such as bound-
edness, periodicity, almost periodicity, stability in the sense of Poisson and Ulam and to
the problem of the existence of limit regimes of different types, convergence, dissipativity,
and so on [17-30]. On the one hand, as pointed out in [31] in the real world, the delays in
differential equations of populations, ecology, and dynamic problems are usually infinite
time delays; for example, Zhou et al. [32] studied positive almost periodic solutions for
a class of Lasota—Wazewska model with infinite time delays. On the other hand, assum-
ing that a harvesting function is a function of the delayed estimate of the true ecological
and dynamic models, Zhou et al. [33] presented an overview of the results on the classical
Nicholson’s blowflies model with a linear harvesting term.

During the last few decades the question of the existence of oscillatory solutions for dif-
ferential equations has been considered by many researchers. These systems arise while
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modeling several physical and natural phenomena in engineering, biology, chemistry, and
ecology. Here we focus on the last application, which is ecology. The study of almost peri-
odic models is relevant because they consider general seasonal oscillations of the weather
that extend periodical variations of weather or habitat. The concept of almost periodic-
ity was introduced by Danish mathematician Bohr around 1924-1926 [34—36] and later
generalized by many other authors [24, 33, 37-40].

The almost periodic functions may capture the phenomena which may not be possible
with periodic rates. For instance, the function x — cosx + cos 5x is periodic, and this re-
mains true when when 5 is replaced with any other rational number. However, the sum
of the periodic functions x > exp(ix) and x - exp(i+/2x) is not periodic. Hence, when
such functions, obtained by using a combination of periodic functions, are not periodic,
they are not without properties: they are almost periodic functions. More generally, we
know that when all the solutions of an autonomous linear finite dimensional system are
bounded, then all these solutions are almost periodic.

The notion of almost periodicity for certain functions was introduced by Fréchet [25]. In
view of the literature, one can claim that the analysis of boundedness and stability is one of
the central foci in the qualitative analysis. Classical ecological research of rocky intertidal
communities has already been reported by some ecologists [27, 28]. Recently the authors
studied a model of species interactions by a simple patch occupancy with global dispersal
of propagules [18, 20]. In [20], Benica et al. showed that natural ecosystems can sustain
continued fluctuations, the model exposes the rocky habitat as small patches, there are
three species which habit rocky intertidal community occupy by their individual organism.

This paper is concerned with an occupancy model consisting of two species in a rocky
intertidal community, which describes a patch occupancy with global dispersal of propag-
ules, and occupy each other by individual organisms. The model can be formulated by the
following system:

x(t) = x(6)[-m1 (£) + a(t)z(2) - b()y(0)],

1
3(t) = (&) [-ma(t) + c()z(t) + b(2)x(2)], W

and

z(t) = 1 —x(2) — y(t), (2)

where x and y are the coverage (i.e., the fraction of patches occupied) by barnacles and
crustose algae, respectively, and z is the coverage by bare rock. Barnacles only can cover
bare rock, and crustose algae can inhabit bare rock and barnacle. The variables a, b, ¢, m;,
and m, are all positive, where 4 is the colonization rate of barnacles on bare rock, b and
¢ are colonization rates of crustose algae on barnacles and bare rock, and m; and m;, are
the mortality rates of barnacles and crustose algae, respectively.

Taking into account the practical significance of the species, it is always assumed that
the initial conditions associated with system (1) are

x(0) > 0, y(0) > 0. (3)

In view of system (1) and initial conditions (3), it is easy to conclude that any solution of
system (1) is positive.
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Our paper is organized in four sections. In Sect. 2, we study Lyapunov function and gen-
eral almost periodic functions. In Sect. 3, we provide the results on the uniform persistence
and the global asymptotic stability of system (4). Furthermore, we give an example for the
system. Finally, we compare main results in this work and the results in the literature in
Sect. 4.

2 Essential preliminaries

For further consideration, we rewrite system (1) in the following form:
x(t) = x(t)[-rm1(2) + a(t) — a(t)x(t) - (a(t) + b(©)y(2)], @)
3(8) = y(B)[=ma(2) + c(£) = (c(£) = b(£)x(2) — c(£)y(D)].

Let Gy, be the collection of continuous and bounded functions from R x R” to R”. Let
R, = (0, +00), and define

fr=swpf@, S =intf(O),
where f is a continuous and bounded function.

For the relation between colonization and mortality rates, the following assumptions are
assumed to hold true throughout the remaining part of the paper:

(Ay) my <a*,

(Ag) m; <c*.

Definition 1 ([24]) A Lyapunov function is a scalar function V(x) defined on a region
D that is continuous, positive definite, i.e., V(x) > 0 for all x # 0, and has continuous first-
order partial derivatives at every point of D. The derivative of V with respect to the system
x' = f(x), written as V*(x), is defined as a dot product V*(x) = VV(x).f (x).

The existence of a Lyapunov function, for which V*(y) < 0 on some region D containing
the origin, guarantees the stability of the zero solution of y' = f(y), while the existence of a
Lyapunov function, for which V*(y) is negative definite on some region D containing the
origin, guarantees the asymptotic stability of the zero solution of ¥’ = f(y). For example,
given the system

Y=z
Z =-y-2z

22

2
and the Lyapunov function V(y,z) = £, we obtain

V*(y,2) = yz + 2(-y — 22) = -22%,

which is nonincreasing on every region containing the origin, and thus the zero solution

is stable.

Definition 2 ([24]) Let f : R — R” be a continuous function. Given ¢ > 0, we call 7 > 0
and e-translation for f if and only if, for all £ € R, |f(t + T) — f(¢)| < &. The set consisting of
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all e-translations for f is denoted by

E(f,e) = {r 1S R|[f(t+ r)—f(t)‘ <8}.

The function f is an almost periodic function if and only if, for each ¢ > 0, the set E(f, ¢) is
relatively dense in R, which means that there exists a constant / > 0 such that any subin-
terval of R of length / meets E(f, ¢).

Definition 3 Let

_(*©
u®—<ﬁm>

be one bounded positive solution of (4). Then u is said to be globally asymptotically stable
if, for any positive bounded solution

We) = x(t)
y(t)
of (4), the following is satisfied:

lim Hx(t) —x*(t)’ + ’y(t) —y*(t)‘] =0. (5)

t—>+00

We state the following essential lemma.

Lemma 4 ([23]) The following hold:
(i) Ifa>0,b>0,and x(t) < x(t)(b — ax(t)), whenever t > 0 and x(0) > 0, then
limsup,_, , ., *(t) < g‘
(i) Ifa>0,b>0,and x(t) > x(t)(b — ax(t)), whenever t > 0 and x(0) > 0, then
liminf,_, 00 %(£) > 2.

Lemma 5 For any solution (x(t),y(t)) of system (&) with initial conditions (3), there exists
T1 > 0 such that

x(t) < My, y(t) <M, (6)

—my ct+bt My —m;
L and M, = —2

C

forallt > Ty, where M, = a

Proof 1t is clear that x(¢) > 0 and y(¢) > O for all £ € R. Since
x(t) = x(t)[-ma(2) + a(t) — a(©)x(t) — (at) + b(t))y(t)]
< x(t)(—my (¢) + a(t) - a(t)x(2))
< x(t)(—m[ +a" - a‘x(t)),
and from (i) of Lemma 4, one has

b
at —mj

lim supx(t) < =M,. (7)

t—>+00
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By (7), for any ¢ > 0 small enough, there exists T; > 0 such that x(¢) < M; + ¢ for all ¢ > T7.
For ¢t > T;, we have

3(8) = y(O)[-ma(0) + c(2) — (c(2) — b(2))x(2) — c(£)y(0)]
<y@)[-ma(t) + c(t) (1 - (1)) + b()x(2) ]
<y@)[-m5 +c" + b (M + &) - cy()].

From (i) of Lemma 4, one has

ct+b (M +e)-my

lim supy(¢) < (8)
t—+00 c
Setting ¢ — 0 with the right-hand side of (8), then
* + b* My — ms
lim sup y(¢) < M = M,. 9)
t—+00
O

Remark1 From Theorem 8.10in [29] and Lemma 5 above, it is clear that the boundedness
of solution of system (4) is independent of the initial conditions, which implies that any
solution of (4) is ultimately bounded.

3 Main results
This section is devoted to the main results of this paper. We provide results on the uniform
persistence and the global asymptotic stability of system (4).

In what follows, we set
a~c”

22 ‘

v =a’ +b", Yy = mz%Rxfb(t) —c(t)], and A=
te

Theorem 6 Assume that
(43) > M,
(A0) 7> My,
Then there exist T, > Ty and positive constants n; (i = 1,2) such that

liminfx(¢) > n; >0, liminfy(t) > ny >0, (10)

t—+00 t—+00

which implies that system (4) is uniformly persistent, where

a” —mj -y M,
n=———"
a+

and

— + +

C —my =y, M

ny=——————.
c

Proof From Eq. (6) and (A3), for any € > 0 small enough, there exist T > T; such that
y(¢) < My + € and

a >mj +y; (M +€)
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for all £ > T. Also, for ¢t > T5, we get

x(t) = x(6)[-m1(2) + a(t) — a(O)x(2) — (a(t) + b(2))y(t)]
> x(t)[-m(t) + a(t) — a(t)x(e) — (alt) + b()) (M + €)]
> x(t) [a‘ —mj -y (M +€)— a*x(t)].
From (ii) of Lemma 4, it follows that

a —mj -y (M +e€)

liminfx(z) > (11)
t—+00 at
Setting ¢ — 0 with the right-hand side of (11), then
- —mt—viM
liminfx() > LM "N (12)

t—+00 at

From equations (7), (12) and (A4), for any &, > 0 small enough, there exist T35 > T, such
that x(£) < M; + &, and

my —c” >ct (M +¢&,) + b (my — &)
for all ¢t > T5. By the same arguments,

3(8) = y(O)[-ma(0) + c(2) — (c(2) — b(2))x(2) — c(£)y(0)]
> y(6)[-ma(8) + c(t) - |e(t) — b()| (M, + &) — c(t)y(2) ]
> y(@)[-m3 + ¢~y (M +6,) - c'y(D)].
From (ii) of Lemma 4, one has

¢ —my —y; (M +&)

liminfy(¢) > (13)
t—+00 ct
Setting ¢ — 0 with the right-hand side of (13), then
-t — M
liminfy() > &2 "ML, (14)

t—+00 ct

Let T, = T3, from equations (13) and (14), system (4) is uniformly persistent. The proof is
completed. d

Lemma 7 ([19]) Letr be a real number and f be a nonnegative function defined on [r, +00)
such that f is integrable and is uniformly continuous on [r, +00). Then lim;_, o f(£) = 0.

The following theorem shows that relation (5) holds. That is, system (4) with initial con-
dition (3) is globally asymptotically stable. First, we shall propose the following assump-

tion:
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Theorem 8 Assume that (A1)—(As) hold and A > 1, then system (&) with initial condition
(3) is globally asymptotically stable.

Proof Suppose that

*(t t
ao=(59), = (O
¥ (2) »(t)

are two positive solutions of system (4). Since A > 1, one has % > Z—Zj, then there exist

positive constants « and 8 such that

- +
c o Y
s 2

— > ) (15)
vw B a

Define a Lyapunov function by
V)=« |lnx(t) - lnx*(t)| +B |1ny(t) - 1ny*(t)| (16)

for ¢t > T. Calculating directly the upper right derivative of V along the solutions of model
(4), we obtain that

— V(t+h)-VI(t
byt g VPV

<a[-a(@®)|x(t) - x* ()| + (a(®) + b)) |y(®) - y*(©)|]
+ B[—c@)|y(@) - y* (0] + |c(t) - b(8)|[x(2) - x*(2)]]
< af-a"|x(t) - x* @) + ¥, |y(®) - y*(0)|]
+ Bl [y -y (@)] + y5 |x(0) - 2" ()]

= (—aa™ + Bys ) |x(@) = x*(@)| + (=Bc™ +ay])|y(®) — y* ()|
From (15), it follows that there exist constant p > 0 and large enough 7 > 0 such that
D'V() < —p(|x() - x*(0)] + |y(0) = y*(®)|) (17)

for ¢ > T. Integrating both sides of (17) from T to ¢, and by the integral comparison theo-
rem, one has

V(t) + p‘/T (|x(t) —x*(t)| + |y(t) —y*(t)|) ds <V(T) < +00
for each ¢ > T, which yields
[ (50 -5 0]+ [y -5 O] ds = 0 V(D) - V)] < 4o

for t > T. Then |x(¢) — x*(t)| + |y(¢) — ¥*(¢)| is integrable on [T, +00). On the other hand,
from Remark 1, x, x*, y, and y* are ultimately bounded. It is clear that they have bounded
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derivatives. It follows that |x(f) — x*(¢)| + |y(¢) — y*(¢)| is uniformly continuous on [T, +00).

The conditions of Lemma 7 are satisfied, thus

lim [|x(t) —x*| + \y(t) —y*” =0.

t—>+00

The proof is complete. d

Before discussing the almost periodic system, we need to recall the following Lemma 9,

which can be referred to in the monographs [24, 26]. Consider the following system:
x=f(t, %), (18)
where f(t,x) € Cpy.

Lemma 9 (Theorem 6.6 in [26]) Assume that f(t,x) € Cpy is almost periodic in t uniformly
for x € R" and the solution of (18) is ultimately bounded. And suppose that there exists a
Lyapunov function V(t,x,y) defined on R, x R" x R” which has the following conditions:

(1) For continuous nondecreasing functions u and v,
u(lx—yl) < V(txy) <v(lx-yl).

(2) There exists a positive constant L such that
|V (£,21,1) = V(t,%2,y2)| < L[|%1 = %2] + [y1 — 32 ].

(3) If A is a continuous and positive definite function, then V < —i(|x — ).
Then system (4) has a unique almost periodic solution, which is globally uniformly asymp-
totically stable.

Assume (A;)—(A4) hold and A > 1, from Lemma 5 and Theorem 6, for any bounded
solution (x(£), y(t)) of system (4) with initial conditions (3). Then there exist positive con-
stants n7, 5, M7, and M3 such that 0 < n} <x(£) < M7 and 0 < n5 < y(t) < M;. For almost

periodic system (4), we consider the associated product system of (4) as follows:

x(t) = x(t) [-m1(£) + a(t) — a(®)x(t) — (a(t) + b(£))y(2)],
3(£) = y() [=ma () + c(t) — (c(2) — b(£))x(¢) — c(t)y(2)],

i(t) = 1(t) = (8) + a(t) - alO)u(t) - (a(t) + bOWO), (19)
E) = V) (t) + c(6) — (e(6) — BO)(E) — cOv(D)]
Define a Lyapunov function
V(£) = a|Inx(t) — Inu(®)| + B|Iny() - Inv(t)| (20)

for t > 0, where o and g satisfy (15). We still assume that almost periodic system (4)
satisfies (A;)—(A4) and A > 1. From Remark 1, almost periodic solution (x(z), y(¢)) and
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(u(t), v(t)) of system (19) is ultimately bounded. It is not difficult to verify that conditions
(1) and (2) of Lemma 9 are satisfied. Moreover, |y(¢) —u(t)| < K and |x(¢) — v(¢)| < K, where

K = max{|M; — n}

l—n’2‘|}>0

By the same arguments followed in the proof of Theorem 8, one can have that

DV (1) < —p(|x(t) — u(t)| + [y(t) - v(t)|)
= —p[[(t) = y(&) + y(&) — u(®)| + |y(®) — x(8) + x(t) — v(2)|]
< =p[[x(0) = y(@)] + [y(©) = u(@)] + [y(0) = 2(0)] + [x(2) = v(2)]]
< —p[2|x(t) - y(®)| + 2K]
= -2p[|x(t) - y(®)| + K],
where p is defined as in (17). Taking A(r) = 2pr + K, r > 0, condition (3) of Lemma 9 is

satisfied.

By virtue of Lemma 9, the following theorem is an immediate consequence.

Theorem 10 Let (A1)—(A4) and A > 1 be satisfied and system (4) is an almost periodic.
Then there exists a unique almost periodic solution of system (4). Moreover, the unique
solution is globally asymptotically stable.

Remark 2 Theorem 10 demonstrates that A > 1 is the sharp threshold of existence and
global asymptotic stability of almost periodic solution of system (4). Based on the ultimate
boundedness of almost periodic solution of system (4), the Lyapunov function in Theorem
8 can be applied to prove Theorem 10. Condition (3) of Lemma 9 is easier to be checked
than the usual condition V(t, x%,9) < —pV(t,x,9). If system (4) is a periodic system, then
the following corollary can be concluded.

Corollary 1 If (A1)—(A4) and A > 1 hold, then periodic system (4) has a unique positive
periodic solution, which is globally asymptotically stable.

Here, we provide an example to illustrate our main results.

Example 1 Consider system (4) with specific values for its parameters of the form

. _|sing] 1 1 1 |sing] 1 1 t
x(t) = |sin¢]+1 [_\7 te -~ 12 sing[+1 (t_2 + ﬁ)ﬁﬂ] ’
(21)
: _ W/t 3 1 | sin¢| 1 Wt
y(t)_«ﬂﬂ[ f+3+7_(_t__2)m_7J+1:|

with initial conditions (3). Clearly,

__Lsint] 1 1
x(t)—lsint|+1, ml(t)—ﬁ, alt) =
y(t)—\/hl, z(t)—ﬁ+3, )= —

Page 9 of 12
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and b(t) = ﬁ By direct computations, one can conclude that all the assumptions of Theo-
rem 8 hold and A > 1. Therefore, system (21) with initial conditions (3) is globally asymp-
totically stable.

4 Conclusion

Dynamic properties of nonlinear nonautonomous models are rarely considered in the lit-
erature. In this paper, we try to fill in this gap by studying a nonautonomous model in a
rocky intertidal community. The uniform persistence of the model is examined prior to
proceeding to the main results. We establish the threshold condition A > 1 to guaran-
tee the global asymptotic stability and the existence of a unique positive almost periodic
solution of the addressed system. Furthermore, an appropriate Lyapunov function is con-
structed to prove the main results. A particular example with specific parameters that are
consistent with the theoretical assumptions is constructed for the sake of demonstrating
the validity of outcomes. The authors claim that the results of this paper are new and
present different approach, the main theorem of the paper improved the known results
of some models [6, 13, 27]. Indeed, it is a challenging problem to search for a suitable
Lyapunov function to discuss a three-dimensional model in a rocky intertidal community.
Precisely saying, we described the essence of the species interactions by a simple patch
occupancy model with global dispersal of propagules. The model can be used in the rocky
habitat as a large set of very small patches, each of which can be empty (bare rock) or

occupied by an individual organism.
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