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Abstract
This paper discusses the functional scattered data interpolation to interpolate the
general scattered data. Compared with the previous works, we construct a new cubic
Bézier-like triangular basis function controlled by three shape parameters. This is an
advantage compared with the existing schemes since it gives more flexibility for the
shape design in geometric modeling. By choosing some suitable value of the
parameters, this new triangular basis is reduced to the cubic Ball and cubic Bézier
triangular patches, respectively. In order to apply the proposed bases to general
scattered data, firstly the data is triangulated using Delaunay triangulation. Then the
sufficient condition for C1 continuity using cubic precision method on each adjacent
triangle is implemented. Finally, the interpolation scheme is constructed based on a
convex combination between three local schemes of the cubic Bézier-like triangular
patches. The detail comparison in terms of maximum error and coefficient of
determination r2 with some existing meshfree methods i.e. radial basis function (RBF)
such as linear, thin plate spline (TPS), Gaussian, and multiquadric are presented. From
graphical results, the proposed scheme gives more visually pleasing interpolating
surfaces compared with all RBF methods. Based on error analysis, for all four functions,
the proposed scheme is better than RBFs except for data from the third function.
Overall, the proposed scheme gives r2 value between 0.99920443 and 0.99999994.
This is very good for surface fitting for a large scattered data set.

Keywords: Cubic Bézier-like; Bézier triangular; Patches; Scattered data interpolation;
Continuity; Visualization; Surface reconstruction

1 Introduction
Scattered data interpolation arises in many scientific and engineering fields. This method
can be used to represent the observed or computed values of some physical quantities such
as global temperature, rainfall distribution at some country or station, digital elevation, or
the stress measurement in finite element methods. Furthermore, it can be used for spatial
data interpolation.

There are two methods that can be used in scattered data interpolation i.e. meshfree
and triangulation-based schemes. For instance, one of the simplest meshfree methods is
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Shepard’s global surface scheme [2]. Many authors have improved the work of Shepard
by proposing many new ideas on the extension of the original method. For instance, RBF,
thin plate spline, and compactly supported positive definite function [2, 10, 11]. Crivellaro
et al. [5] applied RBFs to reconstruct 3D scattered data. To achieve this, they proposed
new algorithms involving an adaptive multi-level interpolating approach based on implicit
surface representation and least square approximation to filter the noisy data. Liu [23]
proposed local multilevel scattered data interpolation by employing nested scattered data
sets and scaled the RBFs compactly. The method guarantees convergence. Majdisova and
Skala [25, 26] discussed the applications of RBFs for big geo data as well as finding the best
basis for function approximations. A good survey on scattered data interpolation using
meshfree methods and other methods can be found in Lodha and Franke [24], Franke and
Nielson [10, 11], and Franke [9]. MATLAB implementation for meshfree methods can be
found in Fasshauer [7].

In triangulation-based approach for scattered data interpolation, cubic Bézier triangu-
lar or quantic Bézier triangular patches are the common methods that have been used.
Quartic Bézier triangular has received less attention due to the need to apply an op-
timization problem in solving the scattered data interpolation problem. This increases
the computation time. There are four steps in constructing surface by using a triangula-
tion method: (a) start with triangulation of the domain by using Delaunay triangulation;
(b) specify the first partial derivative at the data points (sites) [16]; (c) assign the con-
trol points or ordinates for each triangular patch; and (d) finally, construct the surface via
convex combination scheme. Lawson in 1977 gave the idea on construction of the sur-
face via triangulation-based approach [13]. Goodman and Said [13] constructed the suit-
able C1 triangular interpolant for scattered data interpolation using a convex combination
scheme from three local schemes. Their work is different from that of Foley and Opitz [8],
even though both studies developed a C1 cubic triangular convex combination scheme.
Said and Rahmat [29] constructed a scattered data surface by using cubic Ball triangular
patches of Goodman and Said [13]. Considering numerical results, the results are almost
the same as by using cubic Bézier triangular patches except that the computation is less
by 7% by using cubic Ball triangular [14, 15]. Karim and Saaban [21] have proved that the
scheme of Said and Rahmat [29] is not producing C1 surface everywhere in the given tri-
angular domain. Karim et al. [20] discussed spatial interpolation for rainfall scattered data
by extending the results from Chan and Ong [3]. The cubic Bézier triangular patches with
three local schemes are blended to produce C1 surface everywhere. Sometimes in certain
applications, the partial derivatives are not given, hence, they must be estimated. Thus,
Goodman et al. [16] proposed a method to estimate the partial derivatives of the data
for the scattered data interpolation. Throughout our study, we implement [16] scheme to
estimate the partial derivatives at data sites.

Zhou and Li [31] also considered scattered noisy data by using bivariate splines on a
triangulation domain. Chen and Cao [4] discussed scattered data approximation by em-
ploying neural network operators via translations and dilation of logistic function. Bracco
et al. [1] discussed the scattered data fitting by utilizing hierarchical splines. They have
extended the main idea from local least squares approximation where the local solutions
are described in variable degree polynomial spline. Lai and Meile [22] discussed the scat-
tered data interpolation by using bivariate splines with nonnegative property. The spline
is constructed on a triangular domain i.e. the given data are triangulated first. Qian et
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al. [27] discussed scattered data interpolation based on the bivariate recursive polyno-
mials defined on triangulation. Zhu et al. [32] constructed another version of triangular
patch with three exponent parameters. Hussain and Hussain [17] constructed C1 scattered
data interpolation based triangulation by using side-vertex method where the rational cu-
bic function is used to construct rational interpolant for each side of the triangle. Then
the final scheme is a blend between three local schemes. Sarfraz et al. [30] extended the
idea in [17] but by using different rational cubic functions. Both papers are quite sim-
ilar to each other, and the results are also not much different. Hussain et al. [18] also
discussed positivity-preserving scattered data interpolation by using cubic trigonometric
spline functions. They have tested their scheme to two irregular scattered positive data
sets. Unfortunately, in the paper, they showed different surface interpolation for the given
data sets.

Even though the study on interpolation based on Bézier and Ball representation is al-
ready thirty years old, many researchers are still focusing on how to improve both repre-
sentations by adding more flexibility to the control point to control the shape of curves
or surfaces. For instance, [26] constructed an explicit parametric curve to be taken as
the limitation curve of progressive iteration approximation (PIA) which can interpolate
some scattered data points by using normalized totally positive (NTP) basis by specially
choosing two kinds of NTP bases, Said–Bézier type generalized Ball (SBGB) basis and
DP basis. Their results avoid the tedious calculation of the inverse matrix and hence will
gain extensive application in reverse engineering. In 2013, [12] solved the parameteriza-
tion problem for polynomial Bézier surfaces by applying the firefly algorithm, a powerful
nature-inspired metaheuristic algorithm introduced recently to address difficult optimiza-
tion problems. The method has been successfully applied to some illustrative examples
of open and closed surfaces, including shapes with singularities. Their method performs
very well, being able to yield the best approximating surface with a high degree of accu-
racy. But in order to obtain the final solution, we need to train the nodes; besidesit is time
consuming for certain data.

The outcome of our current study is motivated by the works of Said [28], Goodman
and Said [13], and Said and Rahmat [29]. We propose a new cubic Bézier-like triangular
basis function with three parameters by extending the univariate cubic Bézier-like of Said
[28]. Several properties of the new cubic Bézier-like triangular basis are derived. This new
cubic triangular basis reduces to the cubic Ball and Bézier triangular bases with suitable
choices of the three parameters. This new triangular basis is extended to the scattered data
interpolation. The sufficient condition for C1 continuity along the adjacent triangles with
cubic precision method is constructed. Each triangular patch of the interpolating surface
is constructed by using convex combination of three local schemes of cubic Bézier-like
triangular patches. Several numerical results are presented including comparison with
some existing schemes including meshfree methods such as radial basis functions (RBFs)
i.e. linear, thin plate spline, Gaussian, and multiquadric.

2 Construction of new cubic Bézier-like triangular patches with shape
parameters

In this section, a new Bézier-like triangular basis is constructed. Let the barycentric co-
ordinate u, v, w on triangle T with vertices V1, V2, and V3 be such that u + v + w = 1 and
u, v, w ≥ 0. Any point V (x, y) ∈ R2 inside the triangle (including at the vertices) (Fig. 1) can
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Figure 1 Barycentric coordinates

be expressed as

V = uV1 + vV2 + wV3. (1)

Now we can establish the construction of new Bézier-like triangular patches with three
parameters α, β , and γ as follows.

Definition 1 Let α,β ,γ ∈ (0,∞) and u ≥ 0, v ≥ 0, w ≥ 0. The following ten functions are
a new cubic Bézier-like triangle basis on a triangular domain D = {(u, v, w)|u + v + w = 1}:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B3
3,0,0(u, v, w;α,β ,γ ) = u2(1 + α(u – 1)),

B3
0,3,0(u, v, w;α,β ,γ ) = v2(1 + β(v – 1)),

B3
0,0,3(u, v, w;α,β ,γ ) = w2(1 + γ (w – 1)),

B3
2,1,0(u, v, w;α,β ,γ ) = (α + 2)u2v,

B3
2,0,1(u, v, w;α,β ,γ ) = (α + 2)u2w,

B3
1,2,0(u, v, w;α,β ,γ ) = (β + 2)uv2,

B3
0,2,1(u, v, w;α,β ,γ ) = (β + 2)v2w,

B3
1,0,2(u, v, w;α,β ,γ ) = (γ + 2)uw2,

B3
0,1,2(u, v, w;α,β ,γ ) = (γ + 2)vw2,

B3
1,1,1(u, v, w;α,β ,γ ) = 1 –

∑
i+j+k=3
i,j,k �=1

B3
i,j,k(u, v, w;α,β ,γ ).

(2)

Definition 2 The basis function

B3
1,1,1(u, v, w;α,β ,γ ) = 1 –

∑

i+j+k=3
i,j,k �=1

B3
i,j,k(u, v, w;α,β ,γ )

can be simplified as

B3
1,1,1(u, v, w;α,β ,γ ) = 1 –

( ∑

i+j+k=3

B3
i,j,k(u, v, w) – 6uvw

)

= 1 – (1 – 6uvw) = 6uvw.

Thus a new cubic Bézier-like triangular patch can be written as follows.
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Figure 2 Cubic Bézier-like points (control points)

Figure 3 New cubic Bézier-like triangular bases

Definition 3 The cubic Bézier-like triangular patch with three parameters α, β , and γ

and control points bijk , i + j + k = 3 is defined as

P(u, v, w) =
∑

|i+j+k|=3

bijkB3
i,j,k(u, v, w), u + v + w = 1, (3)

which can be written as

P(u, v, w) = u2(1 + α(u – 1)
)
b300 + v2(1 + β(v – 1)

)
b030 + w2(1 + γ (w – 1)

)
b003

+ (α + 2)u2vb210 + (α + 2)u2wb201 + (β + 2)v2ub120 + (β + 2)v2wb021

+ (γ + 2)w2ub102 + (γ + 2)w2vb012 + 6uvwb111, (4)

where u + v + w = 1.

Figure 2 shows the Bézier-like ordinates for the cubic Bézier-like triangular on one patch
and Fig. 3 shows the distribution of the cubic Bézier-like triangular bases on a triangular
domain.

3 Some properties of the new cubic Bézier-like triangular patches
(a) When α = β = γ = 0, then the cubic Bézier-like triangular patches defined by (4) are

reduced to cubic Said–Ball triangular [15].
(b) When α = β = γ = 1, then the cubic Bézier-like triangular patches defined by (4) are

reduced to cubic Bézier triangular [6].
(c) End point interpolation

P(1, 0, 0) = b300,

P(0, 1, 0) = b030,

P(0, 0, 1) = b003.
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(d) Convex hull and affine invariance.
Since, for α,β ,γ ∈ [0, 1],

∑
|i+j+k|=3 B3

i,j,k(u, v, w) = 1 and B3
i,j,k(u, v, w) ≥ 0, then the

resulting cubic triangular patches will satisfy the convex hull as well as affine
invariance.

(e) Boundary property: When one of the barycentric coordinates is zero, for instance
w = 0, and v = 1 – u, then a new cubic Bézier-like triangular basis will degenerate to
a standard univariate Bézier-like basis function such that

B3
3,0,0(u, 1 – u, 0) = u2(1 + α(u – 1)

)
,

B3
2,1,0(u, 1 – u, , 0) = (α + 2)u2(1 – u),

B3
1,2,0(u, 1 – u, 0) = (β + 2)u(1 – u)2,

B3
0,3,0(u, 1 – u, 00) = v2(1 + β(v – 1)

)
= (1 – u)2(1 – βu),

which is equivalent to cubic basis Φ3
i (u), i = 0, 1, 2, 3 for u ∈ [0, 1] [28].

Figure 4 shows the examples of few basis functions B3
i,j,k(u, v, w), i + j + k = 3, where α, β ,

and γ vary.

4 Scattered data interpolation using new Bézier-like triangular bases
4.1 Local scheme and C1 continuity
The scheme comprising convex combination of three local schemes P1, P2, and P3 is de-
fined as follows:

P(u, v, w) =
vwP1 + uwP2 + uvP3

vw + uw + uv
, u + v + w = 1. (5)

There are two methods that can be used to construct three local schemes Pi, i = 1, 2, 3,
i.e. those by Goodman and Said [13] and Foley and Opitz [8], where in [13] the cross-
derivative is used, meanwhile Foley and Opitz [8] have implemented the cubic precision
method. The local scheme Pi, i = 1, 2, 3, is obtained by replacing b111 in (4) with bi

111 so
that C1 condition is satisfied only on the boundary ei of the triangle.

Assume that the barycentric coordinates at the vertices are given as V1 = (1, 00), V2 =
(0, 1, 0), and V3 = (0, 0, 1) where u + v + w = 1. The direction vectors ei, i = 1, 2, 3, on the side
opposite to the vertex Vi are given as e1 = V3 – V2 = (0, –1, 1), e2 = V1 – V3 = (1, 0, –1), and
e3 = V2 – V1 = (–1, 1, 0) (e.g. refer to Fig. 5 [21]). The directional derivatives for P(u, v, w)
on the direction z = (z1, z2, z3), where z1 + z2 + z3 = 0, are given as

∂P
∂z

= DzP(u, v, w) = z1
∂P
∂u

+ z2
∂P
∂v

+ z3
∂P
∂w

. (6)

Now, we describe the method to determine the edge coordinates on the triangle.
From Fig. 5, the directional derivatives at V1 i.e. along the edges e2 and e3 are calculated

as follows:

De3 P(1, 0, 0) = ( ∂x
∂v – ∂x

∂u )Fx(V1) + ( ∂y
∂v – ∂y

∂u )Fy(V1)
= (x2 – x1)Fx(V1) + (y2 – y1)Fy(V1),

De2 P(1, 0, 0) = ( ∂x
∂u – ∂x

∂w )Fx(V1) + ( ∂y
∂u – ∂y

∂w )Fy(V1)
= (x1 – x3)Fx(V1) + (y1 – y3)Fy(V1)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(7)
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Figure 4 Some cubic Bézier-like triangular bases

Figure 5 Vertices and edges of the triangle from
[21]

where F(V1) = b300, Fx(V1) and Fy(V1) are given at the vertex V1. Similarly, we can obtain
that F(V2) = b030, Fx(V2) and Fy(V2) and F(V3) = b003, Fx(V3) and Fy(V3). The partial deriva-
tives are estimated by using Goodman et al. [16] method. Then, by simple derivation, the
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following are obtained:

De3 P(1, 0, 0) = (α + 2)(–b300 + b210),
De2 P(1, 0, 0) = (α + 2)(b300 – b201).

}

(8)

By substituting (7) to (8), we obtain

b210 = b300 +
1

α + 2
(
(x2 – x1)Fx(V1) + (y2 – y1)Fy(V1)

)

and

b201 = b300 –
1

α + 2
(
(x1 – x3)Fx(V1) + (y1 – y3)Fy(V1)

)
.

Similarly, by considering the other directional derivatives at V2 i.e. along the edges e1 and
e3 as well as at V3 i.e. along the edges e1 and e2, the cubic Bézier-like ordinates b021, b120,
b102, and b012 are given as follows:

b120 = b030 –
1

β + 2
(
(x2 – x1)Fx(V2) + (y2 – y1)Fy(V2)

)
,

b021 = b030 +
1

β + 2
(
(x3 – x2)Fx(V2) + (y3 – y2)Fy(V2)

)
,

b102 = b003 +
1

γ + 2
(
(x1 – x3)Fx(V3) + (y1 – y3)Fy(V3)

)
,

b012 = b003 –
1

γ + 2
(
(x3 – x2)Fx(V2) + (y3 – y2)Fy(V2)

)
.

Now, we just need to determine the inner Bézier-like ordinate bi
111 for each local scheme

Pi, i = 1, 2, 3. To achieve this, we have adopted the main idea from the scheme proposed by
Foley and Opitz [8]. Consider the two adjacent triangles (as shown in Fig. 6), let the first
triangle T1 be represented in terms of the cubic Bézier-like triangular defined in (3) and
T2 be represented by

Q(u, v, w) =
∑

|i+j+k|=3

cijkB3
i,j,k(u, v, w), u + v + w = 1. (9)

There are three cases that can be considered as follows.
Case I:
If e1 is a common edge of T1 and T2, then we have c030 = b003, c003 = b030, c021 = b012,

and c012 = b123. The inner coefficients across the edge e1, b1
111, and c1

111 of the respective
triangles are given by the following equations (see [8] for further details):

b1
111 =

1
2r(s + t)

(c201 + c210 – r2(b210 + b201) – s2(b030 + b021) – t2(b012 + b003)

– 2st(b021 + b012) – rsb120 – 2rtb102 (10)
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and

c1
111 =

1
2u(v + w)

(b201 + b210 – u2(c210 + c201) – v2(c030 + c021) – w2(c012 + c003)

– 2vw(c021 + c012) – uvc120 – 2uwc102. (11)

Case II:
If e2 is a common edge of T1 and T2, then c300 = b003, c003 = b300, c201 = b102, and c102 =

b201. The inner coefficients across the edge e2 are as follows:

b2
111 =

1
2r(s + t)

(c021 + c120 – r2(b120 + b021) – s2(b003 + b102) – t2(b201 + b300)

– 2st(b201 + b102) – rsb012 – 2rtb210 (12)

and

c2
111 =

1
2r(s + t)

(b021 + b120 – r2(c120 + c021) – s2(c003 + c102) – t2(c201 + c300)

– 2st(c201 + c102) – rsc012 – 2rtc210. (13)

Case III:
If e3 is a common edge of T1 and T2, then c300 = b030, c030 = b300, c210 = b120, and c120 =

b210. The inner coefficients across the edge e3 are as follows:

b3
111 =

1
2r(s + t)

(c012 + c012 – r2(b012 + b102) – s2(b300 + b210) – t2(b120 + b030)

– 2st(b120 + b210) – rsb201 – 2rtb021 (14)

and

c3
111 =

1
2r(s + t)

(b012 + b012 – r2(c012 + c102) – s2(c300 + c210) – t2(c120 + c030)

– 2st(c120 + c210) – rsc201 – 2rtc021. (15)

Note that the coefficients (s + t)r and u(v + w) in Eqs. (10)–(15) are not equal to zero
because r, u < 0 and s + t, v + w > 0 [8]. Thus, if ei, i = 1, 2, 3, is a common edge to two tri-

Figure 6 Two adjacent cubic triangular patches
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Figure 7 Triangulation domain of 36 node sets on square grid [0, 1]× [0, 1]

angles, we assign values to both bi
111 and ci

111 according to Eqs. (10)–(15) in order to have
a cubic precision when the data and the derivatives come from cubic. A minor modifi-
cation of the cubic precision method is required for boundary triangles because adjacent
triangles are considered. For example, if e1 is on the boundary of the triangulated domain
and edges e2 and e3 are interior, we first compute b2

111 and b3
111 with the cubic precision

method and define b1
111 as 1

2 (b2
111 + b3

111). If both e1 and e2 are boundary edges and e3 is an
interior edge, we first compute b3

111 and then set b1
111 = b2

111 = b3
111. In this case, the hybrid

patch will be a standard cubic patch. By using all calculated Bézier ordinates of the three
local schemes, the final interpolating surface P on each triangle can now be constructed.
It is well described in the following paragraphs.

5 Graphical examples
The construction of scattered data interpolation using new Bézier-like triangular patches
is described as follows:

(a) Triangulate the domain by using Delaunay triangulation [13].
(b) Specify the derivatives at the data points, then assign Bézier-like ordinate (control

point) values for each triangular patch by using [16].
(c) Generate the triangular patches for each of the triangle domains to form composite

C1 surface by using the local scheme defined by (16) with three parameters α, β ,
and γ .

(d) Calculate the error measurement such as maximum error (Max. Error) and
coefficient of determination (COD) i.e. r2.

The final C1 scheme can be written as

P(u, v, w) =
∑

i+j+k=3
i,j,k �=1

bijkB3
i,j,k(u, v, w) + 6uvw

(
c1b1

111 + c2b2
111 + c3b3

111
)

(16)

with

c1 =
vw

vw + uw + uv
, c2 =

uw
vw + uw + uv

, c1 =
uv

vw + uw + uv
. (17)
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Figure 8 Surface interpolation for 36 data points for the test function F1: (a) The proposed method; (b) RBF
(linear); (c) RBF (thin plate spline); (d) RBF (Gaussian); (e) RBF (multiquadric)

In Goodman and Said [13], the other version of convex combination is used such that

c1 =
v2w2

v2w2 + u2w2 + u2v2 , c2 =
u2w2

v2w2 + u2w2 + u2v2 ,
u2v2

v2w2 + u2w2 + u2v2 . (18)

The main difference between (18) and (17) is that the final degree of the rational patches
obtained from (17) is rational quintic with quadratic denominator (5/4), while form (18)
will give a rational heptic with quartic denominator (7/4). But both schemes require only
10 control points.

Remark 1 Although the local scheme given in (16) has singularities at the triangle vertices,
the scheme in (16) still satisfies C1 with removable singularities at the vertices. This is
consequent from the work of Goodman and Said [13].
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Figure 9 Surface interpolation for 36 data points for the test function F2: (a) The proposed method; (b) RBF
(linear); (c) RBF (thin plate spline); (d) RBF (Gaussian); (e) RBF (multiquadric)

As an example of the surface interpolation, by using the proposed scheme, we use the
following two well-known test functions:

F1(x, y) = 0.75e(–(9x–2)2+(9y–2)2/4) + 0.75e(–(9x+1)2/49–(9y+1)2/10) + 0.5e(–(9x–7)2+(9y–3)2/4)

– 0.2e(–(9x–4)2–(9y–7)2),

F2(x, y) =
(1.25 + cos(5.4y))

6 + 6(3x – 1)2 .

The triangular domain defined on 36 data points in the domain of [0, 1] × [0, 1] is illus-
trated in Fig. 7, while the surface interpolation with different values of three parameters
α, β , and γ defined on triangulation mesh shown in Fig. 7 is given in Fig. 8(a) for the test
function F1(x, y) and in Fig. 9(a) for the test function F2(x, y) respectively. We compare the
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Figure 10 Triangulation domain of (a) 65 data points; (b) 100 data points on square grid [0, 1]× [0, 1]

proposed method with meshfree method of radial basis function (RBF) consisting of four
different basis functions which are linear, thin plate spline, Gaussian, and multiquadric.
The interpolating surfaces are given in Fig. 8(b)–8(d) for the test function F1(x, y) and in
Fig. 9(b)–9(d) for the test function F2(x, y). Based on the observation from the interpolat-
ing surfaces, the proposed scheme gives a very visually pleasing surface compared to all
RBF techniques. This is significant in scattered data interpolation.

6 Error analysis
To test the capability of the new cubic Bézier-like triangular scheme for scattered data
interpolation, we calculate the value of maximum error (Max. Error) and coefficient of
determination (COD) i.e. r2 based on the test functions F1 and F2, together with the fol-
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Table 1 Error measurement for 36 data points

Test function Method α β γ Max. Error COD, r2

F1 Proposed scheme 0 0 0 0.039572002 0.999132192
0.5 0.5 0.5 0.039356921 0.999204443
1 1 1 0.039213533 0.999138736
1.5 1.5 1.5 0.039111114 0.999036026
2 2 2 0.041233549 0.998928491

RBF Linear 0.100592819 0.990108009
Thin plate 0.061040889 0.995850492
Gaussian 0.084318638 0.99640404
Multiquadric 0.084426575 0.99662431

F2 Proposed scheme 0 0 0 0.005224831 0.9996762
0.5 0.5 0.5 0.00383375 0.999868479
1 1 1 0.003640571 0.999877156
1.5 1.5 1.5 0.004622681 0.999824818
2 2 2 0.005359263 0.999753554

RBF Linear 0.030205436 0.9882400797
Thin plate 0.0194237841 0.9971092186
Gaussian 0.0152887078 0.9959802861
Multiquadric 0.0140906173 0.9986480384

F3 Proposed scheme 0 0 0 0.010297668 0.999276574
0.5 0.5 0.5 0.00987087 0.99944839
1 1 1 0.009586338 0.999406891
1.5 1.5 1.5 0.010848494 0.999300821
2 2 2 0.012001733 0.99917947

RBF Linear 0.0424166949 0.9849374405
Thin plate 0.0150483752 0.9973779354
Gaussian 0.0066207785 0.9996125352
Multiquadric 0.0118318689 0.9983230304

F4 Proposed scheme 0 0 0 0.011508552 0.999061755
0.5 0.5 0.5 0.005094778 0.999815278
1 1 1 0.001505409 0.999988162
1.5 1.5 1.5 0.002235251 0.999950281
2 2 2 0.004525884 0.999833621

RBF Linear 0.0229660224 0.9923793242
Thin plate 0.0192271638 0.9968560279
Gaussian 0.0568475999 0.9728441577
Multiquadric 0.0235599265 0.9958461131

lowing two test functions:

F3(x, y) =
1
3

e(–20.25(x–0.5)2+(y–0.5)2),

F4(x, y) =
1
9

√

64 – 81
(
(x – 0.5)2 + (y – 0.5)2

)
– 0.5.

The analysis of error is performed on the domain with 36, 65, and 100 data nodes set
in grid square [0, 1] × [0, 1]. The triangulation domain of 36 data points is given in
Fig. 7, while for the 65 and 100 data points, sets are given in Fig. 10(a) and (b), respec-
tively.

Tables 1, 2, 3 show the error analysis for all four functions with respective nodes i.e.
36, 65, and 100 points. We compare the performance between the proposed scheme and
RBFs methods such as linear, thin plate spline, Gaussian, and multiquadric. The statistical
goodness-fit used are (a) maximum error and (b) coefficient of determination r2. For 36
data points, the proposed scheme is better than RBFs functions except for the data from
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Table 2 Error measurement for 65 data points

Test function Method α β γ Max. Error COD, r2

F1 Proposed scheme 0 0 0 0.02687835 0.99970822
0.5 0.5 0.5 0.024962602 0.999784795
1 1 1 0.023685436 0.999784545
1.5 1.5 1.5 0.022773175 0.99975924
2 2 2 0.022088979 0.999726521

RBF Linear 0.066757877 0.996406813
Thin plate 0.045039467 0.998917027
Gaussian 0.051615474 0.998943393
Multiquadric 0.045394416 0.999293455

F2 Proposed scheme 0 0 0 0.00495738 0.9997997
0.5 0.5 0.5 0.002339451 0.999959285
1 1 1 0.00132277 0.999983602
1.5 1.5 1.5 0.00249288 0.999960772
2 2 2 0.003486274 0.999921666

RBF Linear 0.024103813 0.996780746
Thin plate 0.008553969 0.999517773
Gaussian 0.00777573 0.999676093
Multiquadric 0.003075157 0.999930748

F3 Proposed scheme 0 0 0 0.005796483 0.999751766
0.5 0.5 0.5 0.005918016 0.999871966
1 1 1 0.006761969 0.999854954
1.5 1.5 1.5 0.007657692 0.999795222
2 2 2 0.008385618 0.999724403

RBF Linear 0.042058919 0.992260381
Thin plate 0.017086633 0.999009874
Gaussian 0.003776303 0.999890903
Multiquadric 0.005425971 0.999869049

F4 Proposed scheme 0 0 0 0.007096203 0.999570807
0.5 0.5 0.5 0.003041664 0.999923419
1 1 1 0.001107079 0.999995758
1.5 1.5 1.5 0.001847266 0.99996772
2 2 2 0.003107032 0.999903101

RBF Linear 0.018024405 0.997033693
Thin plate 0.016229475 0.998856534
Gaussian 0.044481378 0.992096123
Multiquadric 0.018317684 0.998719319

function F3. Similarly, for 65 and 100 nodes, the proposed scheme is better except for F3.
This is understandable, since function F3 looks like a Gaussian-type function. Therefore,
maybe this is the main reason why RBFs are better for the data from that function. But if we
refer to Table 1, the maximum error for function F3 is 0.00662 (Gaussian) and 0.009586
(the proposed scheme), and the value of r2 is not too much different. For more details
on numerical results including graphical images for the proposed method including the
comparison between the implementation using Goodman and Said [13] and Foley and
Opitz [8] schemes, the reader can refer to Karim and Saaban [19].

Table 4 summarizes the main results for error analysis shown in Tables 1, 2, 3.
Our final example considers the irregular scattered data from Ibraheem et al. [18]. The

total number of the data is 72 as shown in Table 5.
Figure 11 shows the interpolating surfaces for irregular data obtained by using the pro-

posed scheme with various values of α, β , and γ . Figure 11(a) shows the Delaunay trian-
gulation for data in Table 5. Figure 1(b) shows the linear interpolant for the irregular data.
Figure 11(c) to 11(e) show the surface interpolation with different values of the parameters.



Karim et al. Advances in Difference Equations        (2020) 2020:151 Page 16 of 22

Table 3 Error measurement for 100 data points

Test function Method α β γ Max. Error COD, r2

F1 Proposed scheme 0 0 0 0.01327875 0.999912128
0.5 0.5 0.5 0.012703223 0.999965192
1 1 1 0.012527293 0.999969234
1.5 1.5 1.5 0.012972964 0.999956775
2 2 2 0.013307217 0.999939037

RBF Linear 0.045764175 0.999020404
Thin plate 0.02673708 0.999781811
Gaussian 0.016490476 0.999901308
Multiquadric 0.018715584 0.999944503

F2 Proposed scheme 0 0 0 0.004299433 0.999888327
0.5 0.5 1 0.001704035 0.999981796
1 1 1 0.000423733 0.999998995
1.5 1.5 2 0.001262135 0.999989182
2 2 2 0.002189063 0.999969739

RBF Linear 0.007574866 0.99956425
Thin plate 0.002558841 0.999952891
Gaussian 0.001716047 0.999979641
Multiquadric 0.001518386 0.99998958

F3 Proposed scheme 0 0 0 0.006227877 0.999833076
0.5 0.5 0.5 0.002603843 0.999957872
1 1 1 0.00242092 0.999974602
1.5 1.5 1.5 0.002923569 0.999953996
2 2 2 0.003911407 0.999920738

RBF Linear 0.019392135 0.998325827
Thin plate 0.004887544 0.999887104
Gaussian 0.001008888 0.999995475
Multiquadric 0.000371279 0.99999926

F4 Proposed scheme 0 0 0 0.006370899 0.999779457
0.5 0.5 0.5 0.002586925 0.999963996
1 1 1 0.000130732 0.99999994
1.5 1.5 1.5 0.001748691 0.99998296
2 2 2 0.00310011 0.9999469

RBF Linear 0.011647112 0.999181379
Thin plate 0.007628386 0.999786938
Gaussian 0.014452639 0.999286921
Multiquadric 0.006187163 0.999869078

Table 4 The best scheme according to error analysis

Function Points
36 65 100

F1 The proposed scheme The proposed scheme The proposed scheme
F2 The proposed scheme The proposed scheme The proposed scheme
F3 Gaussian Gaussian Multiquadric
F4 The proposed scheme The proposed scheme The proposed scheme

Meanwhile Fig. 11(f ) shows the solid version for Fig. 11(c). Clearly, the produced surface
is smooth and visually pleasing. Interestingly, the given data is positive, and the proposed
scheme has the capability to preserve the positivity of the data without the need to apply
any positivity-preserving as discussed in Ibraheem et al. [18], Hussain and Hussain [17],
and Sarfraz et al. [30]. It should be noted that we cannot compare the results with the work
of Ibraheem et al. [18], since in [18] their results are shown for different data sets, not for
the data given in their paper.
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Table 5 Irregular data from Ibraheem et al. [18]

x y z

0 0 0.4486
0 0.125 0.3616
0 0.250 0.4692
0 0.375 0.6827
0 0.500 0.7860
0 0.625 0.8360
0 0.750 0.8765
0 0.875 0.9125
0 1 0.9447

0.125 0 0.3369
0.125 0.125 0.0001
0.125 0.375 0.6256
0.125 0.625 0.8621
0.125 0.875 0.9334
0.125 1 0.9634

0.250 0 0.4529
0.250 0.125 0.1767
0.250 0.250 0.3217
0.250 0.375 0.7005
0.250 0.500 0.8555
0.250 0.625 0.9327
0.250 0.750 0.9775
0.250 0.875 0.9686
0.250 1 0.9926

0.375 0 0.6960
0.375 0.375 0.8363
0.375 0.625 1.2176
0.375 0.875 1.028
0.375 1 1.0284

0.500 0 0.8329
0.500 0.125 0.8315
0.500 0.250 0.821
0.500 0.375 0.8498
0.500 0.500 0.925
0.500 0.625 1.0925
0.500 0.750 1.1688
0.500 0.875 1.0568
0.500 1 1.0662

0.625 0 0.9049
0.625 0.125 0.8376
0.625 0.375 0.7163
0.625 0.500 0.8608
0.625 0.750 1.0671
0.625 0.875 1.0883
0.625 1 1.1023

0.750 0 0.9639
0.750 0.125 0.8326
0.750 0.250 0.6283
0.750 0.375 0.5976
0.750 0.500 0.8075
0.750 0.625 1.0136
0.750 0.750 1.0989
0.750 0.875 1.1231
0.750 1 1.134
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Table 5 (Continued)

x y z

0.875 0 1.0355
0.875 0.125 0.922
0.875 0.250 0.7477
0.875 0.375 0.7193
0.875 0.500 0.893
0.875 0.625 1.0638
0.875 0.750 1.1335
0.875 0.875 1.152
0.875 1 1.1597

1 0 1.1074
1 0.125 1.0598
1 0.250 0.9848
1 0.375 0.9745
1 0.500 1.054
1 0.625 1.1319
1 0.750 1.1646
1 0.875 1.1744
1 1 1.1791

7 Conclusion and recommendation
In this study, a new cubic triangular patch with three parameters is constructed. This new
basis function is called cubic Bézier-like triangular patches. Some properties of the pro-
posed basis are studied in detail. An application in scattered data interpolation is inves-
tigated in detail. We have adopted Goodman and Said [13] method in order to find all
Bézier-like ordinates that will ensure that the sufficient condition for C1 is satisfied. The
ordinates bi

111, i = 1, 2, 3, respectively for local scheme Pi are obtained by using Foley and
Opitz [8] method as discussed in Sect. 4. Throughout this study, we test the proposed
scheme with regular and irregular scattered data. For regular data sets, we compare the
performance with meshfree based methods i.e. RBFs in terms of maximum error, coeffi-
cient of determination r2, and visually pleasing for graphical displays. Based on the vali-
dation, the proposed scheme is better than RBFs methods since, for all data sets, the pro-
posed scheme has smaller maximum error and higher r2 value i.e. between 0.999204443
and 0.99999994. Furthermore, based on graphical images, the proposed scheme is more vi-
sually pleasing compared with all RBFs. For irregular scattered data, the proposed scheme
can reconstruct the surface that is visually pleasing. We would like to stress that the main
reason we have adopted the Foley and Opitz [8] method to calculate the inner ordinates
bi

111, i = 1, 2, 3, is that, it will give different surface for different values of the shape param-
eters (of the same scattered data). Meanwhile if we apply Goodman and Said [13] scheme
to calculate the inner ordinates, we will obtain same interpolating surface for different
values of the parameters. This results as well as comprehensive numerical comparison
can be obtained in Karim and Saaban [19]. The proposed scheme can be used for surface
reconstruction for cloud data i.e. thousands of data or more. Furthermore, by using the
proposed scheme, we can preserve the positivity of the scattered data by manipulating
the three parametric values. Work on shape-preserving interpolation is underway. Fur-
thermore, we also can extend the main results in this study to construct more general
triangulation surface based on Clough–Tocher splitting method. This will avoid the use
of rational corrected as shown in formulas (16) and (17). Such results will be explored in
the future.
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Figure 11 Interpolating scattered data surface for irregular data
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Figure 11 Continued
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