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Abstract
New nonlinear integral inequalities (NII) are presented in this paper. Based on
mathematical analysis technique, several estimation results are obtained, which not
only complement the aforementioned results, but also generalize the inequalities to
the more general nonlinearities. As an application, they can be employed to estimate
the bound on the solutions of power integro-differential equations (IDE).
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1 Introduction
As everyone knows, there exists a class of mathematical models described by differen-
tial equations, such as Malthus population model. However, a lot of differential equations
do not possess the exact solution. Under this case, integral inequalities are significant for
investigating the boundedness, stability, asymptotic behavior of solutions to differential
equations. Gronwall [1] put forward the well-known Gronwall inequality to estimate the
solution of linear differential equation. Bihari inequality [2] extended [1] to nonlinear one,
and many authors have been devoted to studying NII in recent years [3–25]. For example,
based on the generalized Gronwall inequality, Tian et al. [3] investigated the asymptotic
behavior of switched delay systems that represent a class of systems in practical engineer-
ing and have wide application in automated highways, power systems, and so on. Pachpatte
[4] considered a linear integral inequality (1.1).

Theorem 1.1 ([4]) Let c0 ≥ 0 and u, b, c, d ∈ C(R+, R+), R+ = [0, +∞). If

u(t) ≤ c0 +
∫ t

0

(
b(s)u(s) + d(s)

)
ds +

∫ t

0
b(s)

(∫ s

0
c(ξ )u(ξ ) dξ

)
ds, (1.1)
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then

u(t) ≤ c0 +
∫ t

0

[
d(s) + b(s)

(
c0 exp

(∫ s

0

(
b(σ ) + c(σ )

)
dσ

)

+
∫ s

0
d(σ ) exp

(∫ s

σ

(
b(τ ) + c(τ )

)
dτ

)
dσ

)]
ds, t ∈ R+.

After that, Abdeldaim and El-Deeb [12] generalized (1.1) and investigated the delay in-
tegral inequality (1.2).

Theorem 1.2 ([12, Theorem 2.1]) Assume that c0 ≥ 0, u, b, c, d ∈ C(R+, R+), and α ∈
C1(R+, R+) are nondecreasing functions with α(t) ≤ t, α(0) = 0. If

u(t) ≤ c0 +
∫ α(t)

0

(
b(s)u(s) + d(s)

)
ds +

∫ α(t)

0
b(s)

(∫ s

0
c(ξ )u(ξ ) dτ

)
ds, (1.2)

then

u(t) ≤ c0 +
∫ t

0

(
α′(s)d

(
α(s)

)
+ α′(s)b

(
α(s)

)
exp

(∫ α(s)

0

(
b(ξ ) + c(ξ )

)
dξ

)

×
(

c0 +
∫ α(s)

0
d(σ ) exp

(
–

∫ σ

0

(
b(ξ ) + c(ξ )

)
dξ

)
dσ

))
ds, ∀t ∈ R+.

Very recently, Li and Wang [21] studied the power integral inequality (1.3).

Theorem 1.3 ([21, Theorem 2.1]) Suppose that m, n, p ∈ (0, 1] are nonnegative constants,
u, a, b, c ∈ C(R+, R+), α ∈ C1(R+, R+), α(t) is nondecreasing with α(t) ≤ t, α(0) = 0. If

u(t) ≤ a(t) +
∫ α(t)

0
b(s)

(
um(s) +

∫ s

0
c(ξ )un(ξ ) dξ

)p

ds, (1.3)

then

u(t) ≤ a(t) + A(t) exp

(∫ α(t)

0
pmb(s) ds +

∫ α(t)

0
pb(s)

(∫ s

0
nc(ξ ) dξ

)
ds

)
, t ∈ R+,

where

A(t) =
∫ α(t)

0
b(s)

[
(1 – p) + p

(
ma(s) + (1 – m)

)]
ds

+
∫ α(t)

0
pb(s)

∫ s

0
c(ξ )

[
na(ξ ) + 1 – n

]
dξ ds.

Note that inequalities (1.2) and (1.3) have been proved in the cases p = 1 and p ∈ (0, 1],
respectively, how about p > 1? The aforementioned results are not covered, and it would
also be interesting to generalize the inequalities considered in [4, 12, 21] to the more gen-
eral nonlinearities, which is the motivation why we further study the above inequalities
and their general cases.

We study some new power NII and establish several estimation results under the con-
dition of p > 1, which not only complement the ones established in [4, 12, 21] but also
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generalize inequalities (1.1)–(1.3) to the more general nonlinearities. The obtained re-
sults can be employed to study the boundedness of the delay IDE. As an application, two
illustrative examples are also presented.

2 Main results
Throughout the paper, R = (–∞, +∞), R+ = [0, +∞), C(D, E) and C1(D, E) defined on D
with range in E are continuous functions and continuously differentiable function sets,
respectively. The three lemmas are essential to proving the main results.

Lemma 2.1 ([21]) Let a ≥ 0 and m ≥ n > 0. Then

an/m ≤ n
m

a +
m – n

m
.

Lemma 2.2 ([25]) Assume that u, v ≥ 0 and p ≥ 0. Then

(u + v)p ≤ Kp
(
up + vp),

where Kp = 1, 0 ≤ p ≤ 1, and Kp = 2p–1, p > 1.

Lemma 2.3 Suppose that p > 0 is a constant and α(t) is a nondecreasing function with
α(t) ≤ t, α(0) = 0, α ∈ C1(R+, R+), u, a, b, c, d ∈ C(R+, R+), and

u(t) ≤ a(t) +
∫ α(t)

0
b(s)

(
c(s)u(s) + d(s)

)p ds. (2.1)

Then

u(t) ≤
⎧⎨
⎩

a(t) + g(t) + exp(
∫ α(t)

0 h(s) ds)
∫ α(t)

0 g(s)h(s) exp(–
∫ s

0 h(ξ ) dξ ) ds, 0 < p ≤ 1,

a(t) + (k1–p(t) + (1 – p)
∫ α(t)

0 2p–1b(s)cp(s) ds)
1

1–p , p > 1,

(2.2)

with

k1–p(t) > (p – 1)
∫ α(t)

0
2p–1b(s)cp(s) ds,

where

h(t) = pb(t)c(t),

g(t) =
∫ α(t)

0

[
pb(s)

(
a(s)c(s) + d(s)

)
+ (1 – p)b(s)

]
ds,

k(t) =
∫ α(t)

0
2p–1b(s)

(
a(s)c(s) + d(s)

)p ds.

(2.3)

Proof Define

v(t) =
∫ α(t)

0
b(s)

(
c(s)u(s) + d(s)

)p ds.
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Then v(t) is a nondecreasing function, and

u(t) ≤ a(t) + v(t). (2.4)

Therefore,

v(t) ≤
∫ α(t)

0
b(s)

(
c(s)v(s) + a(s)c(s) + d(s)

)p ds. (2.5)

Next we will prove the following two cases 0 < p ≤ 1 and p > 1, respectively.
Case 1: 0 < p ≤ 1.
By Lemma 2.1, we have

(
c(s)v(s) + a(s)c(s) + d(s)

)p ≤ p
(
c(s)v(s) + a(s)c(s) + d(s)

)
+ 1 – p.

This combined with (2.5) yields

v(t) ≤
∫ α(t)

0
b(s)

(
c(s)v(s) + a(s)c(s) + d(s)

)p ds

≤
∫ α(t)

0

[
pb(s)

(
c(s)v(s) + a(s)c(s) + d(s)

)
+ (1 – p)b(s)

]
ds

= g(t) +
∫ α(t)

0
h(s)v(s) ds,

where h(t) and g(t) are defined by (2.3). Define J(t) =
∫ α(t)

0 h(s)v(s) ds, then J(0) = 0, J(t) is
nondecreasing, v(t) ≤ g(t) + J(t), and

J ′(t) = h
(
α(t)

)
α′(t)v

(
α(t)

)

≤ h
(
α(t)

)
α′(t)

(
g
(
α(t)

)
+ J

(
α(t)

))

≤ h
(
α(t)

)
g
(
α(t)

)
α′(t) + h

(
α(t)

)
α′(t)J(t),

i.e.,

J ′(t) – h
(
α(t)

)
α′(t)J(t) ≤ h

(
α(t)

)
g
(
α(t)

)
α′(t). (2.6)

Multiplying (2.6) by exp(–
∫ α(t)

0 h(s) ds) produces

exp

(
–

∫ α(t)

0
h(s) ds

)[
J ′(t) – h

(
α(t)

)
α′(t)J(t)

]

≤ exp

(
–

∫ α(t)

0
h(s) ds

)
h
(
α(t)

)
α′(t)g

(
α(t)

)
.

Integrating the above inequality from 0 to t, we have

J(t) ≤ exp

(∫ α(t)

0
h(s) ds

)∫ α(t)

0
g(s)h(s) exp

(
–

∫ s

0
h(ξ ) dξ

)
ds.
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Since v(t) ≤ g(t) + J(t), we have

v(t) ≤ g(t) + exp

(∫ α(t)

0
h(s) ds

)∫ α(t)

0
g(s)h(s) exp

(
–

∫ s

0
h(ξ ) dξ

)
ds.

This together with (2.4) produces

u(t) ≤ a(t) + g(t) + exp

(∫ α(t)

0
h(s) ds

)∫ α(t)

0
g(s)h(s) exp

(
–

∫ s

0
h(ξ ) dξ

)
ds.

Case 2: p > 1.
Applying Lemma 2.2 to (2.5), we get

v(t) ≤
∫ α(t)

0
2p–1b(s)

(
cp(s)vp(s) +

(
a(s)c(s) + d(s)

)p)ds

= k(t) +
∫ α(t)

0
2p–1b(s)cp(s)vp(s) ds,

where k(t) is defined by (2.3). Since k(t) is a nondecreasing function, for fixed T ,

v(t) ≤ k(T) +
∫ α(t)

0
2p–1b(s)cp(s)vp(s) ds, t ∈ [0, T].

Define

w(t) = k(T) +
∫ α(t)

0
2p–1b(s)cp(s)vp(s) ds.

Then w(0) = k(T), w is a nondecreasing function, and

v(t) ≤ w(t), v
(
α(t)

) ≤ w
(
α(t)

) ≤ w(t). (2.7)

Differentiating w and using (2.7), we get

w′(t) = 2p–1α′(t)b
(
α(t)

)
cp(α(t)

)
vp(α(t)

)

≤ 2p–1α′(t)b
(
α(t)

)
cp(α(t)

)
wp(t)

and

w′(t)
wp(t)

≤ 2p–1α′(t)b
(
α(t)

)
cp(α(t)

)
.

The above inequality multiplied by 1 – p gives

(1 – p)
w′(t)
wp(t)

≥ (1 – p)2p–1α′(t)b
(
α(t)

)
cp(α(t)

)
. (2.8)

By simple calculation of (2.8),

w(t) ≤
(

k1–p(T) + (1 – p)
∫ α(t)

0
2p–1b(s)cp(s) ds

) 1
1–p

, t ∈ [0, T].
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Letting t = T in the above inequality, we have

w(T) ≤
(

k1–p(T) + (1 – p)
∫ α(T)

0
2p–1b(s)cp(s) ds

) 1
1–p

, t ∈ [0, T].

Because T is arbitrary,

w(t) ≤
(

k1–p(t) + (1 – p)
∫ α(t)

0
2p–1b(s)cp(s) ds

) 1
1–p

.

This together with (2.4), (2.7) implies

u(t) ≤ a(t) +
(

k1–p(t) + (1 – p)
∫ α(t)

0
2p–1b(s)cp(s) ds

) 1
1–p

.

Based on Cases 1 and 2, we can draw a conclusion that u(t) satisfies (2.2). �

Theorem 2.1 Assume that m, n, p are nonnegative constants satisfying 0 < m, n ≤ 1, p > 1,
α(t) is nondecreasing with α ∈ C1(R+, R+), α(t) ≤ t, α(0) = 0, u, a, b, c ∈ C(R+, R+), and

u(t) ≤ a(t) +
∫ α(t)

0
b(s)

(
um(s) +

∫ s

0
c(ξ )un(ξ ) dξ

)p

ds. (2.9)

Then

u(t) ≤ a(t) +
(

k̃1–p(t) + (1 – p)
∫ α(t)

0
2p–1b(s)

(
m + n

∫ s

0
c(ξ ) dξ

)p

ds
) 1

1–p

with

k̃1–p(t) > (p – 1)
∫ α(t)

0
2p–1b(s)

(
m + n

∫ s

0
c(ξ ) dξ

)p

ds,

where

k̃(t) =
∫ α(t)

0
2p–1b(s)

(
ma(s) + 1 – m +

∫ s

0
c(ξ )

(
na(ξ ) + 1 – n

)
dξ

)p

ds. (2.10)

Proof Construct

y(t) =
∫ α(t)

0
b(s)

(
um(s) +

∫ s

0
c(ξ )un(ξ ) dξ

)p

ds.

Then y(0) = 0, y is a nondecreasing function, and

u(t) ≤ a(t) + y(t). (2.11)

By Lemma 2.1,

(
a(t) + y(t)

)m ≤ m
(
a(t) + y(t)

)
+ 1 – m,

(
a(t) + y(t)

)n ≤ n
(
a(t) + y(t)

)
+ 1 – n.

(2.12)
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From (2.11) and (2.12), we have

y(t) ≤
∫ α(t)

0
b(s)

((
a(s) + y(s)

)m +
∫ s

0
c(ξ )

(
a(ξ ) + y(ξ )

)n dξ

)p

ds

≤
∫ α(t)

0
b(s)

(
m

(
a(s) + y(s)

)
+ 1 – m +

∫ s

0
c(ξ )

(
n
(
a(ξ ) + y(ξ )

)
+ 1 – n

)
dξ

)p

ds

=
∫ α(t)

0
b(s)

[(
m + n

∫ s

0
c(ξ ) dξ

)
y(s)

+ ma(s) + 1 – m +
∫ s

0
c(ξ )

(
na(ξ ) + 1 – n

)
dξ

]p

ds.

Using Lemma 2.3,

y(t) ≤
(

k̃1–p(t) + (1 – p)
∫ α(t)

0
2p–1b(s)

(
m + n

∫ s

0
c(ξ ) dξ

)p

ds
) 1

1–p
, t ≥ 0,

where k̃(t) is defined as in (2.10). This associated with (2.11) yields

u(t) ≤ a(t) +
(

k̃1–p(t) + (1 – p)
∫ α(t)

0
2p–1b(s)

(
m + n

∫ s

0
c(ξ ) dξ

)p

ds
) 1

1–p
. �

Remark 2.1 When 0 < p ≤ 1, inequality (2.9) has been studied in [12, Theorem 2.1] and
[21, Theorem 2.1]. However, the above results cannot be applied to the case p > 1. In The-
orem 2.1, we further investigate (2.9) under the condition of p > 1. To some extent, our
result extends the results in [12, Theorem 2.1] and [21, Theorem 2.1].

Theorem 2.2 Suppose that p, q, m, n are nonnegative constants with q ≥ m > 0, q ≥ n > 0,
p > 0, α(t) is nondecreasing with α ∈ C1(R+, R+), α(t) ≤ t, α(0) = 0, u, a, b, c ∈ C(R+, R+),
and

uq(t) ≤ a(t) +
∫ α(t)

0
b(s)

(
um(s) +

∫ s

0
c(ξ )un(ξ ) dξ

)p

ds. (2.13)

Then

u(t) ≤
{

[a(t) + ĝ(t) + exp(
∫ α(t)

0 ĥ(s) ds)
∫ α(t)

0 ĝ(s)ĥ(s) exp(–
∫ s

0 ĥ(ξ ) dξ ) ds]1/q, 0 < p ≤ 1,
[a(t) + (k̂1–p(t) + (1 – p)

∫ α(t)
0 2p–1b(s)( m

q + n
q

∫ s
0 c(ξ ) dξ )p ds)

1
1–p ]1/q, p > 1,

(2.14)

with

k̂1–p(t) > (p – 1)
∫ α(t)

0
2p–1b(s)

(
m
q

+
n
q

∫ s

0
c(ξ ) dξ

)p

ds,
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where

ĥ(t) = pb(t)
(

m
q

+
n
q

∫ t

0
c(ξ ) dξ

)
,

ĝ(t) =
∫ α(t)

0

[
pb(s)

(
m
q

a(s) +
q – m

q

+
∫ s

0
c(ξ )

(
n
q

a(ξ ) +
q – n

q

)
dξ

)
+ (1 – p)b(s)

]
ds,

k̂(t) =
∫ α(t)

0
2p–1b(s)

(
m
q

a(s) +
q – m

q
+

∫ s

0
c(ξ )

(
n
q

a(ξ ) +
q – n

q

)
dξ

)p

ds.

(2.15)

Proof Construct

z(t) =
∫ α(t)

0
b(s)

(
um(s) +

∫ s

0
c(ξ )un(ξ ) dξ

)p

ds. (2.16)

Then z(0) = 0, z is a nondecreasing function, and

u(t) ≤ (
a(t) + z(t)

)1/q. (2.17)

By Lemma 2.1,

um(t) ≤ (
a(t) + z(t)

)m/q ≤ m
q

(
a(t) + z(t)

)
+

q – m
q

,

un(t) ≤ (
a(t) + z(t)

)n/q ≤ n
q
(
a(t) + z(t)

)
+

q – n
q

.
(2.18)

From (2.16)–(2.18),

z(t) ≤
∫ α(t)

0
b(s)

((
a(s) + z(s)

)m/q +
∫ s

0
c(ξ )

(
a(ξ ) + z(ξ )

)n/q dξ

)p

ds

≤
∫ α(t)

0
b(s)

(
m
q

(
a(s) + z(s)

)
+

q – m
q

+
∫ s

0
c(ξ )

(
n
q
(
a(ξ ) + z(ξ )

)
+

q – n
q

)
dξ

)p

ds

=
∫ α(t)

0
b(s)

[(
m
q

+
n
q

∫ s

0
c(ξ ) dξ

)
z(s)

+
m
q

a(s) +
q – m

q
+

∫ s

0
c(ξ )

(
n
q

a(ξ ) +
q – n

q

)
dξ

]p

ds. (2.19)

Applying Lemma 2.3 to (2.19), we can obtain

z(t) ≤
⎧⎨
⎩

ĝ(t) + exp(
∫ α(t)

0 ĥ(s) ds)
∫ α(t)

0 ĝ(s)ĥ(s) exp(–
∫ s

0 ĥ(ξ ) dξ ) ds, 0 < p ≤ 1,

(k̂1–p(t) + (1 – p)
∫ α(t)

0 2p–1b(s)( m
q + n

q
∫ s

0 c(ξ ) dξ )p ds)
1

1–p , p > 1,

where ĥ(t), ĝ(t), and k̂(t) are defined by (2.15). This associated with (2.17) yields (2.14). �

Remark 2.2 Inequality (2.13) generalizes the ones in [4, 12, 21] to the more general non-
linear case.
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3 Examples
Now, we study the boundedness of the integral equation and IDE with delay.

Example 3.1 Consider the Volterra type integral equation with delay

x(t) = a(t) +
∫ α(t)

0
b(s)

(
x(s) +

∫ s

0
c(ξ )x(ξ ) dξ

)3

ds, t ∈ R+, (3.1)

where a, b, c ∈ C(R, R), α ∈ C1(R+, R+), α(t) ≤ t, α(0) = 0, α(t) is a nondecreasing function.
Then (3.1) satisfies

∣∣x(t)
∣∣ ≤ ∣∣a(t)

∣∣ +
∫ α(t)

0

∣∣b(s)
∣∣
(∣∣x(s)

∣∣ +
∫ s

0

∣∣c(ξ )
∣∣∣∣x(ξ )

∣∣dξ

)3

ds. (3.2)

Let u(t) = |x(t)| and rewrite (3.2):

u(t) ≤ ∣∣a(t)
∣∣ +

∫ α(t)

0

∣∣b(s)
∣∣
(

u(s) +
∫ s

0

∣∣c(ξ )
∣∣u(ξ ) dξ

)3

ds.

By Theorem 2.1,

u(t) ≤ ∣∣a(t)
∣∣ +

(
k̃–2(t) – 8

∫ α(t)

0

∣∣b(s)
∣∣
(

1 +
∫ s

0

∣∣c(ξ )
∣∣dξ

)3

ds
)– 1

2

with

k̃(t) <
√

2
4

(∫ α(t)

0

∣∣b(s)
∣∣
(

1 +
∫ s

0

∣∣c(ξ )
∣∣dξ

)3

ds
)– 1

2
,

where

k̃(t) = 4
∫ α(t)

0

∣∣b(s)
∣∣
(∣∣a(s)

∣∣ +
∫ s

0

∣∣c(ξ )
∣∣∣∣a(ξ )

∣∣dξ

)3

ds,

which illustrates that the solution of (3.1) is bounded.

Example 3.2 Consider the delay IDE

(
xq(t)

)′ = F
(

t, x
(
τ (t)

)
,
∫ t

0
G

(
ξ , x

(
τ (ξ )

))
dξ

)
, (3.3)

and x(t) = ϕ(t), t ∈ [d, 0] with –∞ < d = inf{τ (t), t ∈ I} ≤ 0, τ (t) ≤ t, where x(t) and x(τ (t))
are the state and state delay, respectively. F ∈ C(R+ ×R×R, R) and G ∈ C(R+ ×R, R) satisfy

∣∣F(t, U , V )
∣∣ ≤ b(t)

(|U|m + |V |)p,
∣∣G(t, W )

∣∣ ≤ c(t)|W |n, t ∈ R+,

where b, c ∈ C(R+, R+), q ≥ m > 0, q ≥ n > 0, p > 0. Integrating (3.3) produces

xq(t) = xq(0) +
∫ t

0
F
(

s, x
(
τ (s)

)
,
∫ s

0
G

(
ξ , x

(
τ (ξ )

))
dξ

)
ds.



Tian and Fan Advances in Difference Equations        (2020) 2020:142 Page 10 of 11

Letting u(t) = |x(t)|, then

uq(t) ≤ uq(0) +
∫ t

0
b(s)

(
um(

τ (s)
)

+
∫ s

0
c(ξ )un(τ (ξ )

)
dξ

)p

ds

≤ ∣∣ϕ(t)
∣∣q +

∫ τ (t)

0

b(τ–1(s))
τ ′(τ–1(s))

(
um(s) +

∫ s

0

c(τ–1(ξ ))
τ ′(τ–1(ξ ))

un(ξ )dξ

)p

ds. (3.4)

Employing Theorem 2.2 to (3.4) produces the following: when 0 < p ≤ 1,

u(t) ≤
[∣∣ϕ(t)

∣∣q + ĝ(t) + exp

(∫ α(t)

0
ĥ(s) ds

)∫ α(t)

0
ĝ(s)ĥ(s) exp

(
–

∫ s

0
ĥ(ξ ) dξ

)
ds

]1/q

,

where

ĥ(t) = p
b(τ–1(t))
τ ′(τ–1(t))

(
m
q

+
n
q

∫ t

0

c(τ–1(ξ ))
τ ′(τ–1(ξ ))

dξ

)
,

ĝ(t) =
∫ τ (t)

0

[
p

b(τ–1(s))
τ ′(τ–1(s))

(
m
q

∣∣ϕ(s)
∣∣q +

q – m
q

+
∫ s

0

c(τ–1(ξ ))
τ ′(τ–1(ξ ))

(
n
q
∣∣ϕ(ξ )

∣∣q +
q – n

q

)
dξ

)
+ (1 – p)

b(τ–1(s))
τ ′(τ–1(s))

]
ds,

when p > 1,

u(t) ≤
{∣∣ϕ(t)

∣∣q +
[

k̂1–p(t)

+ (1 – p)
∫ τ (t)

0
2p–1 b(τ–1(s))

τ ′(τ–1(s))

(
m
q

+
n
q

∫ s

0

c(τ–1(ξ ))
τ ′(τ–1(ξ ))

dξ

)p

ds
] 1

1–p
}1/q

with

k̂1–p(t) > (p – 1)
∫ τ (t)

0
2p–1 b(τ–1(s))

τ ′(τ–1(s))

(
m
q

+
n
q

∫ s

0

c(τ–1(ξ ))
τ ′(τ–1(ξ ))

dξ

)p

ds,

where

k̂(t) =
∫ τ (t)

0
2p–1 b(τ–1(s))

τ ′(τ–1(s))

(
m
q

∣∣ϕ(s)
∣∣p +

q – m
q

+
∫ s

0

c(τ–1(ξ ))
τ ′(τ–1(ξ ))

(
n
q
∣∣ϕ(ξ )

∣∣p +
q – n

q

)
dξ

)p

ds.
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