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Abstract
In this paper, we introduce a new scheme based on the exponential spline function
for solving linear second-order Fredholm integro-differential equations. Our approach
consists of reducing the problem to a set of linear equations. We prove the
convergence analysis of the method applied to the solution of integro-differential
equations. The method is described and illustrated with numerical examples. The
results reveal that the method is accurate and easy to apply. Moreover, results are
compared with the method in (J. Comput. Appl. Math. 290:633–640, 2015).
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1 Introduction
Integro-differential equations have gained a lot of interest in multitude of uses, specifically
in sciences related to nature and engineering. Special usages of the integro-differential
equations are visible in the mathematical modeling on spatio-temporal development of
epidemics [44]. Generally, it is impossible to get an analytical answer for such equations.
Because of that, various numerical methods have been devoted to finding the approximate
solutions to such equations. The numerical solution of this type of integro-differential
equations is discussed by a large number of authors. A few of these solutions are as fol-
lows: approximate solution that is obtained by using spline functions [1], Jacobi-spectral
method for integro-delay differential equations with weakly singular kernels [25], polyno-
mial spline functions that have free boundary condition for solving the first-order integro-
differential equations whose order of derivative is one [34], quartic trigonometric B-spline
algorithm for numerical solution of the regularized long wave equation [15], an effective
application of differential quadrature method based on modified cubic B-splines to nu-
merical solutions of the KdV equation [3], and the exponential cubic b-spline collocation
method for the Kuramoto–Sivashinsky equation in [18].

Recently, many authors have investigated the numerical methods for integral equations.
These methods include a cubic spline approximation in C2 to the solution of the Volterra
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integral equation of the second kind [33], quintic B-spline method [30], Bernstein op-
erational matrix of derivative [4], hybrid of block pulse functions and normalized Bern-
stein polynomials [5], iterative method [49], sinc-collocation method [48], bivariate splines
on nonuniform partitions [36], Jacobi operational matrices for solving delay or advanced
integro-differential equations [40], the tau approximation for the Volterra–Hammerstein
integral equations [21], b-spline collocation and cubature formulas [12] and [37], wavelet
method [6], Walsh function method [35], Chebyshev finite difference method [13], dif-
ferential transform method [7], Legendre polynomial method [39], an approximating so-
lution, based on Lagrange interpolation and spline functions, to treat functional integral
equations of Fredholm type and Volterra type [20], CAS wavelets method [22], an effi-
cient matrix method based on Bell polynomials for solving nonlinear Fredholm-Volterra
integral equations [32], collocation methods [10], Taylor polynomial methods [46], and
Bernoulli matrix method [9]. Xuhao Li and Patricia J.Y. Wong in [26–29] have successfully
applied non-polynomial spline to fractional diffusion problems. Besides, non-polynomial
splines have also been applied to solve a system of second-order boundary value problems
in the mid-knots of the mesh [14]. In addition, Sezer ’s method is discussed by Sezer et al.
for approximating different types of integral and differential equations, especially Fred-
holm integro-differential equation [2]. Some papers have also developed numerical meth-
ods based on B-spline collocation method, for example, the extended B-spline collocation
method for numerical solutions of Fisher equation in [17], numerical solutions of the
Gardner equation by extended form of the cubic b-splines in [24], and in [23] generation
of the trigonometric cubic b-spline collocation solutions for the Kuramoto–Sivashinsky
(KS) equation.

For second-order impulsive integro-differential equations, periodic boundary value
problems are discussed in [47]. Moreover, for second-order impulsive integro-differential
equations, a class of three-point boundary value problems in Banach space have been de-
veloped in [19]. Yüzbaşi et al. in [50–56] used the non-polynomial functions to solve dif-
ferential equations that have been based on non-polynomial functions set {1, e–t , e–2t , . . .}.

In this paper, based on the non-polynomial spline basis and quasilinearization method
to solve the nonlinear Volterra integral equation [31], we want to use the non-polynomial
spline functions to develop a numerical method for the solution of the Fredholm integro-
differential equation

{
u′′(x) + p(x)u′(x) + q(x)u(x) = f (x) +

∫ b
a k(t, x)u(t) dt,

u(a) = α, u(b) = β , t ∈ I := [0, 1],
(1)

where p(x), q(x), k(t, x) are known functions and are considered sufficiently smooth, and
also u(x) is an unknown function to be determined. In [45] the existence of solutions has
been discussed. In this paper, the basic ideas are developed to establish an algorithm that
can be easily implemented and applied to second-order linear Volterra integro-differential
equations. The aim of present work is to explore exponential spline interpolation with
multiple parameters and devise a method to determine these parameters and also produce
the minimum error. The main advantage of our algorithm is that it can be used directly
without using assumption or transformation formulae.

The next sections of this paper are organized as follows. In Sect. 2, non-polynomial
spline method to solve second-order boundary value problems of Fredholm integro-
differential equation is described. In Sect. 3, the convergence of the method is explained.
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The efficiency of the method by solving some examples and comparison of the numerical
solutions with some other existing methods in [11] is shown in Sect. 4. Finally, a short
conclusion is given.

2 Exponential spline
Proof of the existence and uniqueness of the non-polynomial interpolation function is
presented in [42] and [43] (Sect. 2.3); in addition, the error analysis in non-polynomial
interpolation function is proved in [41]. In [41] interpolation function has been presented
as the form

Qn(x) =
n∑

i=0

ciyi(x), (2)

where {y0(x), y1(x), . . . , yn(x)} are continuous functions which are real-valued and linearly
independent on [a, b]; moreover c0, c1, . . . , cn are coefficients which are determined by the
interpolation conditions. The following form can be considered as a special item of (2):

Qn(x) ∈ span
{

e0λx, eλx, e2λx, . . . , , enλx}.

Let Ω be a partition of the interval [a, b], defined by the knots xi, such that Ω : a = x0 <
x1 < · · · < xn = b, with step size h = b–a

n . We denote the exponential spline function that
interpolates the values u0, u1, . . . , un of the function of u(x) by Si(x,λ) as follows:

SΩ (x,λ) = aieλ(x–xi) + bie2λ(x–xi) + cie3λ(x–xi) + die4λ(x–xi). (3)

The coefficients introduced in equations (3) are real and λ is an arbitrary parameter. To
derive expression for the coefficients in equations of (3) in terms of ui, ui+1, Mi and Mi+1,
we first denote

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a)

{
SΩ (xi,λ) = ui, SΩ (xi+1,λ) = ui+1,
S′′

Ω (xi,λ) = Mi, S′′
Ω (xi+1,λ) = Mi+1,

(b)

{
SΩ (xi,λ) = ui, SΩ (xi+1,λ) = ui+1,
S′

Ω (xi,λ) = mi, S′
Ω (xi+1,λ) = mi+1.

(4)

By using algebraic manipulation of (3) and (4)(a), we obtain the following relations:

āi = e–θ
(
–e3θ

(
–5 + 7eθ

)
Mi +

(
7 – 5eθ

)
Mi+1

+ 4λ2(e3θ
(
–20 + 7eθ

)
ui +

(
–7 + 20e2θ

)
ui+1

))
,

b̄i = e–2θ
(
e3θ

(
–8 + 7eθ + 7e2θ

)
Mi +

(
–7 – 7eθ + 8e2θ

)
Mi+1

– λ2(e3θ
(
–128 + 7eθ + 7e2θ

)
ui +

(
–7 – 7eθ + 128e2θ

)
ui+1

))
,

c̄i = e–2θ
((

e2θ + e3θ – 4e4θ
)
Mi –

(
–4 + eθ + e2θ

)
Mi+1

+ 4λ2(e2θ
(
–4 – 4eθ + e2θ

)
ui +

(
–1 + 4eθ + 4e2θ

)
ui+1

))
,

d̄i = e–2θ
(
e2θ

(
–3 + 5eθ

)
Mi +

(
–3 + 5eθ

)
Mi+1

– λ2(e2θ
(
–27 + 5eθ

)
ui +

(
–5 + 27eθ

)
ui+1

))
,
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ϑ = 3
(
–1 + eθ

)(
7 – 18eθ + 7e2θ

)
λ2,

ai =
āi

ϑ
, ai =

b̄i

ϑ
, ci =

3c̄i

ϑ
, di =

d̄i

ϑ
.

To develop the consistency relations between the values of spline and its derivatives at
knots, consider the following relation:

αMi–1 + 2βMi + αMi+1 =
1
h2 (ui+1 – 2ui + ui–1), (5)

where

α =
1

(hλ)2

(
λh

sinh(λh)
– 1

)
, β =

1
(hλ)2

(
1 –

coth(λh)
λ

)
,

and θ = hλ.
Pay attention that exponential spline functions relation (5) will be identical with ordinary

spline functions as θ → 0, which (α,β) → ( 1
6 , 1

3 ). Moreover, assuming α = 1
12 , β = 5

12 , we
get the following relation:

Mi–1 + 10Mi + Mi+1 =
12
h2 (ui+1 – 2ui + ui–1), i = 1, 2, . . . , n – 1. (6)

By expanding (5) in Taylor series about xi, we obtain the following local truncation error:

Ti = (2α + 2β – 1)h2u′′
i +

1
12

(12α – 1)h4u(4)
i +

1
360

(30α – 1)h6u(6)
i

+
(56α – 1)h8u(8)

20160
+ O

(
h10). (7)

Similarly, by using (3) and (4)(b), we get

αmi–1 + 2βmi + αmi+1 =
α + β

h
(ui+1 – ui–1), i = 1, 2, . . . , n – 1, (8)

and also by expanding (8) in Taylor series about xi, we obtain the following local truncation
error:

Ti =
(

2α – β

3(α + β)

)
h3u(3)

i +
(

4α – β

60(α + β)

)
h5u(5)

i +
(

6α – β

2520(α + β)

)
h7u(7)

i + O
(
h9).

In the matrix notation, equations (5) and (8) have the following forms:

WM = R̄U , Zm = SU ,

where W , R, Z, and S are coefficient matrices in (5) and (8). We approximate m0 =
–3u0+4u1–u2

2h and mn = 3un–2–4un–1–un
2h , and also Mi for i = 0, n, by using second-order approx-

imation. From (3) and (4) we have

Si(x) =
(
eλ(x–xi)

(
5e2θ Mi – 7e3θ Mi – 5Mi+1 + 7e–θ Mi+1 – 80e2θλ2ui + 28e3θλ2ui

+ 80λ2ui+1 – 28e–θλ2ui+1
))
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/
(
3
(
–1 + eθ

)(
7 – 18eθ + 7e2θ

)
λ2)

+
(
e4λ(x–xi)

(
–3Mi + 5eθ Mi – 5e–2θ Mi+1 + 3e–θ Mi+1 + 27λ2ui – 5eθλ2ui

+ 5e–2θλ2ui+1 – 27e–θλ2ui+1
))

/
(
3
(
–1 + eθ

)(
7 – 18eθ + 7e2θ

)
λ2)

+
(
e2λ(x–xi)

(
–8eθ Mi + 7e2θ Mi + 7e3θ Mi + 8Mi+1 – 7e–2θ Mi+1 – 7e–θ Mi+1

+ 128λ2eθ ui – 7e2θλ2ui
))

/
(
3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2)

+
e2λ(x–xi)(–7λ2e3θ ui – 128λ2ui+1 + 7e–2θλ2ui+1 + 7e–θλ2ui+1)

3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2

+
(
e3λ(x–xi)

(
Mi + eθ Mi – 4e2θ Mi – Mi+1 + 4e–2θ Mi+1 – e–θ Mi+1

– 16λ2ui – 16eθλ2ui
))

/
(
(–1 + eθ )(7 – 18eθ + 7e2θ )λ2)

+
e3λ(x–xi)(+4λ2e2θ ui + 16λ2ui+1 + 4e–2θλ2ui+1 + 16e–θλ2ui+1)

(–1 + eθ )(7 – 18eθ + 7e2θ )λ2 + O
(
h4). (9)

To discretize the integro-differential equation of (1) by using equation (4), we obtain

u′′
i + piu′

i + qiui

= fi +
∫ b

a
k(t, x)u(t) dt

= fi +
n–1∑
j=0

∫ tj+1

tj

k(t, xi)u(t) dt,

≈ fi +
n–1∑
j=0

∫ tj+1

tj

k(t, xi)Sj(t) dt,

= fi +
n–1∑
j=0

e2θ ((5 – 7eθ )Mj + λ2(–80 + 28eθ )uj)
3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2

∫ tj+1

tj

k(t, xi)eλ(t–tj) dt

+
n–1∑
j=0

(–5 + 7e–θ )Mj+1 + λ2(80 – 28e–θ )uj+1

3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2

∫ tj+1

tj

k(t, xi)eλ(t–tj) dt

+
n–1∑
j=0

eθ ((–8 + 7eθ + 7e2θ )Mj + λ2(128 – 7eθ – 7e2θ )uj)
3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2

∫ tj+1

tj

k(t, xi)e2λ(t–tj) dt

+
n–1∑
j=0

(8 – 7e–θ – 7e–2θ )Mj+1 + λ2(–128 + 7e–θ + 7e–2θ )uj+1

3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2

∫ tj+1

tj

k(t, xi)e2λ(t–tj) dt

+
n–1∑
j=0

(1 + eθ – 4e2θ )Mj + λ2(–16 – 16eθ + 4e2θ )uj

(–1 + eθ )(7 – 18eθ + 7e2θ )λ2

∫ tj+1

tj

k(t, xi)e3λ(t–tj) dt

+
n–1∑
j=0

(–1 – e–θ + 4e–2θ )Mj+1 + λ2(+16 + 16e–θ – 4e–2θ )uj+1

(–1 + eθ )(7 – 18eθ + 7e2θ )λ2
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×
∫ tj+1

tj

k(t, xi)e3λ(t–tj) dt

+
n–1∑
j=0

(–3 + 5eθ )Mj + λ2(27 – 5eθ )uj

3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2

∫ tj+1

tj

k(t, xi)e4λ(t–tj) dt

+
n–1∑
j=0

e–θ ((3 – 5e–θ )Mj+1 + λ2(–27 + 5e–θ )uj+1)
3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2

∫ tj+1

tj

k(t, xi)e4λ(t–tj) dt.

We let

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a(i, j) =
∫ tj+1

tj
k(t, xi)eλ(t–tj) dt, b(i, j + 1) =

∫ tj+1
tj

k(t, xi)eλ(t–tj) dt,
c(i, j) =

∫ tj+1
tj

k(t, xi)e2λ(t–tj) dt, d(i, j + 1) =
∫ tj+1

tj
k(t, xi)e2λ(t–tj) dt,

e(i, j) =
∫ tj+1

tj
k(t, xi)e3λ(t–tj) dt, r(i, j + 1) =

∫ tj+1
tj

k(t, xi)e3λ(t–tj) dt,
g(i, j) =

∫ tj+1
tj

k(t, xi)e4λ(t–tj) dt, h(i, j + 1) =
∫ tj+1

tj
k(t, xi)e4λ(t–tj) dt,

and introduce the following relations:

{
a(i, n) = 0, b(i, 0) = 0, c(i, n) = 0, d(i, 0) = 0,
e(i, n) = 0, r(i, 0) = 0, g(i, n) = 0, h(i, 0) = 0.

We can write the defined notations in the form of the matrix as follows: A = (ai,j), B =
(bi,j), C = (ci,j), D = (di,j), Ē = (ei,j), R = (ri,j), G = (gi,j), H = (hi,j), Q = (qi,j), P = (pi,j) also
if suppose M ≈ M̂ = (M̂0, M̂1, . . . , M̂n–1, M̂n)T , U ≈ Û = (̂u0, û1, . . . , ûn–1, ûn)T , m ≈ m̂ =
(m̂0, m̂1, . . . , m̂n–1, m̂n)T , and F = (f0, f1, . . . , fn–1, fn)T . After substitution, we get

M̂ + Pm̂ + QÛ

= F +
e2θ (5 – 7eθ )

3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2 AM̂ +
e2θλ2(–80 + 28eθ )

3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2 AÛ

+
(–5 + 7e–θ )

3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2 BM̂ +
λ2(80 – 28e–θ )

3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2 BÛ

+
eθ (–8 + 7eθ + 7e2θ )

3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2 CM̂ +
eθλ2(128 – 7eθ – 7e2θ )

3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2 CÛ

+
eθ (–8 + 7eθ + 7e2θ )

3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2 DM̂ +
eθλ2(128 – 7eθ – 7e2θ )

3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2 DÛ

+
8 – 7e–θ – 7e–2θ

3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2 ĒM̂ +
λ2(–128 + 7e–θ + 7e–2θ )

3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2 ĒÛ

+
–1 – e–θ + 4e–2θ

(–1 + eθ )(7 – 18eθ + 7e2θ )λ2 RM̂ +
λ2(16 + 16e–θ – 4e–2θ )

(–1 + eθ )(7 – 18eθ + 7e2θ )λ2 RÛ

+
–3 + 5eθ

3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2 GM̂ +
λ2(27 – 5eθ )

3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2 GÛ

+
e–θ (3 – 5e–θ )

3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2 HM̂

+
e–θλ2(–27 + 5e–θ )

3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2 HÛ . (10)
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By solving the above system, an approximation solution of equation (1) will be gotten.
Now, the ui function can be approximated by using the exponential spline Ŝi, where

Ŝi(x) =
(
eλ(x–xi)

(
5e2θ M̂i – 7e3θ M̂i – 5M̂i+1 + 7e–θ M̂i+1 – 80e2θλ2ûi + 28e3θλ2ûi

+ 80λ2ûi+1 – 28e–θλ2ûi+1
))

/
(
3
(
–1 + eθ

)(
7 – 18eθ + 7e2θ

)
λ2)

+
(
e4λ(x–xi)

(
–3M̂i + 5eθ M̂i – 5e–2θ M̂i+1 + 3e–θ M̂i+1 + 27λ2ûi

– 5eθλ2ûi + 5e–2θλ2ûi+1 – 27e–θλ2ûi+1
))

/
(
3
(
–1 + eθ

)(
7 – 18eθ + 7e2θ

)
λ2)

+
(
e2λ(x–xi)

(
–8eθ M̂i + 7e2θ M̂i + 7e3θ M̂i + 8M̂i+1 – 7e–2θ M̂i+1 – 7e–θ M̂i+1

+ 128λ2eθ ûi – 7e2θλ2ûi
))

/
(
3
(
–1 + eθ

)(
7 – 18eθ + 7e2θ

)
λ2)

+
e2λ(x–xi)(–7λ2e3θ ûi – 128λ2ûi+1 + 7e–2θλ2ûi+1 + 7e–θλ2ûi+1)

3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2

+
(
e3λ(x–xi)

(
M̂i + eθ M̂i – 4e2θ M̂i – M̂i+1 + 4e–2θ M̂i+1 – e–θ M̂i+1

– 16λ2ûi – 16eθλ2ûi
))

/
((

–1 + eθ
)(

7 – 18eθ + 7e2θ
)
λ2)

+
e3λ(x–xi)(+4λ2e2θ ûi + 16λ2ûi+1 + 4e–2θλ2ûi+1 + 16e–θλ2ûi+1)

(–1 + eθ )(7 – 18eθ + 7e2θ )λ2 + O
(
h4). (11)

In consequence, for all i = 0(1)n – 1 and x ∈ (xi, xi+1), we get

∣∣Si(x) – Ŝi(x)
∣∣ ≡ κ0h4, (12)

and similarly we get

∣∣S′′
i (x) – Ŝ′′

i (x)
∣∣ ≡ κ1h2. (13)

See [38].

3 Convergence of the method
In this section the convergence of the method is proved. To do this, we consider equation
(10) in a matrix form as follows:

M̂ + Pm̂ + QÛ

= F + ηe2θ
(
5 – 7eθ

)
AM̂ + ηe2θλ2(–80 + 28eθ

)
AÛ

+ η
(
–5 + 7e–θ

)
BM̂ + ηλ2(80 – 28e–θ

)
BÛ

+ ηeθ
(
–8 + 7eθ + 7e2θ

)
CM̂ + ηeθλ2(128 – 7eθ – 7e2θ

)
CÛ

+ ηeθ
(
–8 + 7eθ + 7e2θ

)
DM̂ + ηeθλ2(128 – 7eθ – 7e2θ

)
DÛ
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+ η
(
8 – 7e–θ – 7e–2θ

)
ĒM̂ + ηλ2(–128 + 7e–θ + 7e–2θ

)
ĒÛ

+ η
(
–1 – e–θ + 4e–2θ

)
RM̂ + ηλ2(16 + 16e–θ – 4e–2θ

)
RÛ

+ η
(
–3 + 5eθ

)
GM̂ + ηλ2(27 – 5eθ

)
GÛ

+ ηe–θ
(
3 – 5e–θ

)
HM̂ + ηe–θλ2(–27 + 5e–θ

)
HÛ , (14)

where

η =
1

3(–1 + eθ )(7 – 18eθ + 7e2θ )λ2 .

Using (14), we get the following expression:

M̂ + Pm̂ + QÛ

= F + η
(
e2θ

(
5 – 7eθ

)
A +

(
–5 + 7e–θ

)
B + eθ

(
–8 + 7eθ + 7e2θ

)
C

+ ηeθ
(
–8 + 7eθ + 7e2θ

)
D

)
M̂

+ η
((

8 – 7e–θ – 7e–2θ
)
Ē +

(
–1 – e–θ + 4e–2θ

)
R +

(
–3 + 5eθ

)
G

+ e–θ
(
3 – 5e–θ

)
H

)
M̂

+ ηλ2(e2θ
(
–80 + 28eθ

)
A +

(
80 – 28e–θ

)
B + eθ

(
128 – 7eθ – 7e2θ

)
C

+ eθ
(
128 – 7eθ – 7e2θ

)
D

)
Û

+ ηλ2((–128 + 7e–θ + 7e–2θ
)
Ē +

(
16 + 16e–θ – 4e–2θ

)
R +

(
27 – 5eθ

)
G

+ e–θ
(
–27 + 5e–θ

)
H

)
Û

⇒ W –1R̄Û + PZ–1SÛ + QÛ = F + H1W –1R̄Û + H2Û , (15)

where

H1 = ηe2θ
(
5 – 7eθ

)
A + η

(
–5 + 7e–θ

)
B + ηeθ

(
–8 + 7eθ + 7e2θ

)
C

+ ηeθ
(
–8 + 7eθ + 7e2θ

)
D + η

(
8 – 7e–θ – 7e–2θ

)
Ē

+ η
(
–1 – e–θ + η4e–2θ

)
R + η

(
–3 + 5eθ

)
G + ηe–θ

(
3 – 5e–θ

)
H ,

H2 = ηλ2(e2θ
(
–80 + 28eθ

)
A + η

(
80 – 28e–θ

)
B

+ ηeθ
(
128 – 7eθ – 7e2θ

)
C + ηeθ

(
128 – 7eθ – 7e2θ

)
D

)
+ ηλ2((–128 + 7e–θ + 7e–2θ

)
Ē + η

(
16 + 16e–θ – 4e–2θ

)
R

+ η
(
27 – 5eθ

)
G + ηe–θ

(
–27 + 5e–θ

)
H

)
.

So the exact solution can be written as follows:

Q
[
I –

(
–Q–1W –1R̄ – Q–1PZ–1S + Q–1H1W –1R̄ + Q–1H2

)]
U = F + T , (16)

where U = [u(x0), u(x1), . . . , u(xn)]T is the (n+1)-dimensional column vector of the exact
solution, the vector of local truncation error is displayed as T = [t0, t2, . . . , tn]T . According
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to (15) and (16), we have

Q
[
I –

(
–Q–1W –1R̄ – Q–1PZ–1S + Q–1H1W –1R̄ + Q–1H2

)]
E = T , (17)

where E = (ej) indicates the column vector of ei, i = 0, 1, 2, . . . , n, which is (n + 1)-
dimensional. Since An×n is a diagonally-dominant matrix, then |An×n| �= 0. We need the
following lemma for analysis of convergence.

Lemma 1 Let N be an n × n matrix with ‖N‖∞ < 1. So, the matrix (I – N) is invertible.
Moreover, ‖(I – N)–1‖∞ ≤ 1

1–‖N‖∞ .

Lemma 2 The matrices W and Z are invertible.

Proof For α = 1
6 , β = 1

3 and α = 1
12 , β = 5

12 , the matrices W and Z are diagonally-dominant
matrices, then are invertible. By using the inversion of general tridiagonal matrices [16]
and [8], it is easy to prove that ‖W –1‖∞ ≤ 1 for α = 1

12 , β = 5
12 and ‖Z–1‖∞ ≤ 1 for α = 1

6 ,
β = 1

3 . We need to show that the inverse of Q[I – (–Q–1W –1R̄ – Q–1PZ–1S + Q–1H1W –1R̄ +
Q–1H2)] exists. Now, if Q is a diagonal matrix with the inverse Q–1, we can derive the
following lemma. We obtain ‖Q–1‖∞ ≤ 1

max |qii| = ξ . �

Lemma 3 The matrix [I – (–Q–1W –1R̄ – Q–1PZ–1S + Q–1H1W –1R̄ + Q–1H2)] is nonsingu-
lar, provided

ξ
(
η2h2 + η1η3h2 + η2η5‖k‖∞(b – a)h4 + ‖k‖∞(b – a)η6

)
< 1.

Proof Obviously, for i = 0, 1, . . . , n, it can be verified as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖A‖∞ = ‖B‖∞ ≤ ‖k‖∞(b – a)( eθ –1
θ

),
‖C‖∞ = ‖D‖∞ ≤ ‖k‖∞(b – a)( e2θ –1

2θ
),

‖E‖∞ = ‖R‖∞ ≤ ‖k‖∞(b – a)( e3θ –1
3θ

),
‖G‖∞ = ‖H‖∞ ≤ ‖k‖∞(b – a)( e4θ –1

4θ
),

‖P‖∞ = Max |p(xi)| ≤ η3,
‖Q‖∞ = Max |q(xi)| ≤ η4,
‖S‖∞ ≤ η1h2,‖R̄‖∞ ≤ η2h2,
‖H1‖∞ ≤ ‖k‖∞(b – a)h2η5,
‖H2‖∞ ≤ ‖k‖∞(b – a)η6,

(18)

where

η5 =
∣∣∣∣ 1
3(eθ – 1)(–18eθ + 7e2θ + 7)θ2

∣∣∣∣
(∣∣∣∣e2θ (5 – 7eθ )(eθ – 1)

θ

∣∣∣∣ +
∣∣∣∣ (7e–θ – 5)(eθ – 1)

θ

∣∣∣∣
+

∣∣∣∣eθ (7eθ + 7e2θ – 8)(e2θ – 1)
2θ

∣∣∣∣ +
∣∣∣∣eθ (7eθ + 7e2θ – 8)(e2θ – 1)

2θ

∣∣∣∣
+

∣∣∣∣ (–7e–θ – 7e–2θ + 8)(e3θ – 1)
3θ

∣∣∣∣ +
∣∣∣∣ (–e–θ + 4e–2θ – 1)(e3θ – 1)

3θ

∣∣∣∣
+

∣∣∣∣ (5eθ – 3)(e4θ – 1)
4θ

∣∣∣∣ +
∣∣∣∣e–θ (3 – 5e–θ )(e4θ – 1)

4θ

∣∣∣∣
)

,
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η6 =
∣∣∣∣ 1
3(eθ – 1)(–18eθ + 7e2θ + 7)

∣∣∣∣
(∣∣∣∣e2θ (28eθ – 80)(eθ – 1)

θ

∣∣∣∣ +
∣∣∣∣ (80 – 28e–θ )(eθ – 1)

θ

∣∣∣∣
+

∣∣∣∣eθ (–7eθ – 7e2θ + 128)(e2θ – 1)
2θ

∣∣∣∣ +
∣∣∣∣eθ (–7eθ – 7e2θ + 128)(e2θ – 1)

2θ

∣∣∣∣
+

∣∣∣∣ (7e–θ + 7e–2θ – 128)(e3θ – 1)
3θ

∣∣∣∣ +
∣∣∣∣ (16e–θ – 4e–2θ + 16)(e3θ – 1)

3θ

∣∣∣∣
+

∣∣∣∣ (27 – 5eθ )(e4θ – 1)
4θ

∣∣∣∣ +
∣∣∣∣e–θ (5e–θ – 27)(e4θ – 1)

4θ

∣∣∣∣
)

.

By using Lemma 1, we get

∥∥Q–1∥∥(∥∥W –1∥∥‖R̄‖ + ‖P‖∥∥Z–1∥∥‖S‖ + ‖H1‖
∥∥W –1∥∥‖R̄‖ + ‖H2‖

)
< 1,

ξ
(
η2h2 + η1η3h2 + η2η5‖k‖∞(b – a)h4 + ‖k‖∞(b – a)η6

)
< 1. �

Theorem 1 Assume f (x) ∈ C4(I), k(t, x) ∈ C4(I × I) in a way that

ξ
(
η2h2 + η1η3h2 + η2η5‖k‖∞(b – a)h4 + ‖k‖∞(b – a)η6

)
< 1.

Therefore consider a unique approximating solution and the obtained error E := U – Ŝ
satisfies

‖E‖ ≡ O
(
h2),

where Ω := [a, b]; moreover, α, ηl for l = 1, 2, 3, 4, 5, 6 are constants.

Proof By using equation (17) and Lemma 1, we get

‖E‖ ≤ ‖Q–1‖‖T‖
1 – ‖Q–1‖(‖W –1‖‖R̄‖ + ‖P‖‖Z–1‖‖S‖ + ‖H1‖‖W –1‖‖R̄‖ + ‖H2‖)

. (19)

By substituting ‖T‖ ≤ h6

240φ4 and (18) in (19), we get

‖E‖ ≡ O
(
h2).

Therefore, we have

‖U – Ŝ‖∞ ≤ ζ2h2. (20)

Therefore, applying (12) and (20) leads to

‖U – Ŝ‖∞ ≤ ‖U – S‖∞ + ‖S – Ŝ‖∞ ≤ ζ2h2 + ζ0h4 ≡ O
(
h2).

Then it may follow ‖E‖ → 0 if h → 0. So, for (α = 1
12 ,β = 5

12 ) and (α = 1
6 ,β = 1

3 ), we estab-
lished the convergence of second-order method because we approximated m0, mn, M0,
and Mn by second-order methods. Therefore, α and β do not affect the second order of
convergence. �
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4 Numerical results
Here, we apply our method for α = 1

12 , β = 5
12 on some examples of the second-order

boundary value problems of Fredholm integro-differential equation. First, the absolute
error is calculated and then compared with the well-known methods in [11]. Note that
numerical results are derived by MAPLE 14.

Example 1 As the first example, consider the following boundary value problem:

u′′(x) + xu′(x) + π2u(x) = f (x) +
∫ 1

0
k(t, x)u(t) dx, x ∈ [0, 1],

subject to boundary conditions

u(0) = u(1) = 0,

where k(t, x) = x + t, f (x) = πx cos(πx) – 2x+1
π

, and u(x) = sin(πx) is exact solution. The
absolute errors are presented in Tables 1 and 2. The convergence ratio (C.R.) is gotten as
follows:

C.R. = log2
E(h)
E( h

2 )
, (21)

where the maximum absolute error is shown by E(h).

Example 2 Consider the following boundary value problem [11]:

u′′(x) = f (x) +
∫ 1

0
k(t, x)u(t) dx, x ∈ [0, 1],

with boundary conditions

u(0) = u(1) = 0,

Table 1 E(h) of Example 1

n Our method C.R. Method in [11] C.R

16 1.2194e-3 1.6002e-2
32 3.7902e-4 1.6858 4.0613e-3 1.98
64 1.0683e-4 1.8271 1.0192e-3 1.99
128 2.8367e-5 1.9131 2.5504e-4 1.99

Table 2 Comparison of solutions obtained by the presented method with the exact solution of
Example 1 while n = 128

x Exact solution Approximating solution Obtained errors

0.125 0.382683 0.382694 1.11e-5
0.250 0.707107 0.707027 2.07e-5
0.375 0.923879 0.923906 2.67e-5
0.500 1.000000 1.000028 2.83e-5
0.625 0.923880 0.923904 2.54e-5
0.750 0.707107 0.707125 1.88e-5
0.875 0.382683 0.382693 0.98e-5
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where k(t, x) = ext , f (x) = 2 + x+2+ex(x–2)
x3 , and u(x) = x(x – 1) is the exact solution. The abso-

lute errors are presented in Tables 3 and 4.

Example 3 Consider the following boundary value problem:

u′′(x) – u′(x) = f (x) +
∫ 1

0
k(t, x)u(t) dx, x ∈ [0, 1],

subject to boundary conditions

u(0) = u(1) = 0,

where k(t, x) = xt, f (x) = 1+41x3+31x5–46x4+8x–25x2–13x6+2x7

(x2–x+1)2 + 121
120 x – 1

6

√
3πx, and u(x) =

ln (x2 – x + 1) – (x2–x)2

2 is the exact solution. The absolute errors are presented in Tables 5
and 6.

Table 3 E(h) of Example 2

n Our method C.R. Best in [11] C.R

16 6.1104e-4 6.5606e-4
32 1.5751e-4 1.9558 1.6398e-4 2.0003
64 4.0018e-5 1.9767 4.0991e-5 2.0001
128 1.0087e-5 1.9882 1.0248e-5 2.0000

Table 4 Comparison of solutions obtained by the presented method with the exact solution of
Example 2 while n = 128

x Exact solution Approximating solution Obtained errors

0.125 –1.09367e-1 –1.09375e-1 8.00000e-6
0.250 –1.87492e-1 –1.87500e-1 8.00000e-6
0.375 –2.34367e-1 –2.34375e-1 8.00000e-6
0.500 –2.49993e-1 –2.50000e-1 7.00000e-6
0.625 –2.34368e-1 –2.34375e-1 7.00000e-6
0.750 –1.87492e-1 –1.87500e-1 8.00000e-6
0.875 –1.09366e-1 –1.09375e-1 9.00000e-6

Table 5 E(h) of Example 3

n Our method C.R.

16 2.0224e-3
32 5.3502e-4 1.9184
64 1.3644e-4 1.9713
128 3.4381e-5 1.9886

Table 6 Comparison of solutions obtained by the presented method with the exact solution of
Example 3 while n = 128

x Exact solution Approximating solution Obtained errors

0.125 –1.2181e-1 –1.2184e-1 3.000e-5
0.250 –2.2522e-1 –2.2524e-1 2.000e-5
0.375 –2.9453e-1 –2.9456e-1 3.000e-5
0.500 –3.1893e-1 –3.1895e-1 2.000e-5
0.625 –2.9454e-1 –2.9455e-1 1.000e-5
0.750 –2.2522e-1 –2.2523e-1 1.000e-5
0.875 –1.2181e-1 –1.2182e-1 1.000e-5
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5 Conclusion
In our knowledge, so far the exponential spline functions have not been yet applied for
approximating the second-order integro-differential equations. In this study, according to
the exponential method in [31], a suitable method is presented to approximate second-
order integro-differential equations. The proposed algorithm is novel for second-order
integro-differential equations. The second-order convergence of the proposed method
has been derived and the computational outcomes have been found to be conformable
with theoretical expectations. Our method shows better accuracy compared to the exist-
ing method in [11].
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