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Abstract
The aim of present paper is to obtain Shannon type inequalities using the extended
version of Jensen’s inequality in time scales settings. The concept of differential
entropy of a continuous random variable on time scales is introduced, and its bounds
for some particular distributions are also estimated.
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1 Introduction and preliminaries
In recent times, Shannon entropy and Zipf–Mandelbrot law have been the topics of great
interest, see for example [1, 9, 11, 12]. The concept of Shannon entropy, the central source
of information theory, is sometimes referred to as measure of uncertainty. Shannon en-
tropy allows to estimate the average minimum number of bits needed to encode a string
of symbols based on the alphabet size and the frequency of the symbols.

The following definition of Shannon entropy is given in [8].

Definition 1 The Shannon entropy of positive probability distribution r = (r1, r2, . . . , rn)
is defined by

S(r) := –
n∑

i=1

ri log(ri).

A fundamental inequality related to the notion of Shannon entropy is the following in-
equality given in [16]:

n∑

i=1

ri log
1
ri

≤
n∑

i=1

ri log
1
fi

, (1)

which is valid for all ri, fi > 0 with

n∑

i=1

ri =
n∑

i=1

fi = 1.
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Equality holds in (1) if and only if ri = fi for all i. This result sometimes called the funda-
mental lemma of information theory has extensive applications (see [14]). In [13], Matić
et al. gave the refinement of Shannon’s inequality in its discrete and integral forms by
presenting upper estimates of the difference between its two sides. In [10], Sadia et al.
studied some interesting results related to the bounds of the Shannon entropy by using
nonincreasing (nondecreasing) sequences of real numbers.

One of the main approaches to unifying continuous and discrete mathematics is time
scale calculus which was founded by German mathematician Stefan Hilger in 1988. A time
scale is an arbitrary nonempty closed subset of the real numbers. For an introduction to
the theory of dynamic equations on time scales, see [6]. In [7], Guseinov studied the pro-
cess of Riemann and Lebesgue integration on time scales. Bohner and Guseinov [4, 5]
defined the multiple Riemann and multiple Lebesgue integration on time scales and com-
pared the Lebesgue �-integral with the Riemann �-integral. Various authors examined
certain integral inequalities on time scales. In [2], Agarwal et al. proved the time scales
version of Jensen’s inequality. In [18], Wong et al. proved the extended version of Jensen’s
inequality on time scales. In [3], Anwar et al. derived a series of known inequalities, their
extensions, and some new inequalities in the theory of dynamic equations on time scales
by applying the theory of isotonic linear functionals. In [15], Rozarija Mikić and Josip
Pečarić obtained lower and upper bounds for the difference in Jensen’s inequality and in
the Edmundson–Lah–Ribaric inequality in time scales calculus which holds for the class
of n-convex functions.

In the following considerations, T denotes a time scale.

Definition 2 ([6]) A function f : T →R is called rd-continuous provided it is continuous
at right-dense points of T and its left-sided limits exist (finite) at left-dense points of T.
The set of rd-continuous functions f : T→R is denoted here by Crd .

Definition 3 ([6]) A function F : T →R is called antiderivative of f : T →R if F�(t) = f (t)
for all t ∈ T

k and the delta integral

∫ t

t0

f (τ )�τ = F(t) – F(t0) for all t, t0 ∈ T. (2)

The following theorems are useful in the proof of the main results.

Theorem 1 ([6], Existence of antiderivatives) Every rd-continuous function has an an-
tiderivative.

Theorem 2 ([18]) Let I ⊂R and assume that r ∈ Crd([a, b]T,R) with

∫ b

a

∣∣r(s)
∣∣�s > 0,

where a, b ∈ T. If g ∈ C(I,R) is convex and ξ ∈ Crd([a, b]T, I), then

g
(∫ b

a |r(s)|ξ (s)�s
∫ b

a |r(s)|�s

)
≤

∫ b
a |r(s)|g(ξ (s))�s

∫ b
a |r(s)|�s

. (3)

The inequality in (3) is strict if g is strictly convex.



Ansari et al. Advances in Difference Equations        (2020) 2020:135 Page 3 of 14

2 Main results
Throughout the paper ‘log’ refers to logarithms to base b̄ for some fixed b̄ > 1. We initiate
with the following result.

Theorem 3 Let r ∈ Crd([a, b]T,R+) and assume that

∫ b

a
r(s)�s > 0,

where a, b ∈ T. If ξ , 1
ξ

∈ Crd([a, b]T,R+) such that
∫ b

a r(s)ξ (s)�s < ∞ and
∫ b

a
r(s)
ξ (s)�s < ∞,

then we have

0 ≤ log

[∫ b
a r(s)ξ (s)�s
∫ b

a r(s)�s

]
–

∫ b
a r(s) log ξ (s)�s

∫ b
a r(s)�s

(4)

≤ log

[∫ b
a r(s)ξ (s)�s

∫ b
a

r(s)
ξ (s)�s

(
∫ b

a r(s)�s)2

]
(5)

≤ 1
ln b̄

[∫ b
a r(s)ξ (s)�s

∫ b
a

r(s)
ξ (s)�s

(
∫ b

a r(s)�s)2
– 1

]
. (6)

Proof Use inequality (3) for the convex function g(x) = – log x, x > 0 to get inequality (4).
Replace ξ by 1

ξ
in inequality (4), which implies

–
∫ b

a r(s) log ξ (s)�s

(
∫ b

a r(s)�s)
=

∫ b
a r(s) log 1

ξ (s)�s

(
∫ b

a r(s)�s)
≤ log

( ∫ b
a

r(s)
ξ (s)�s

∫ b
a r(s)�s

)
. (7)

Now, by adding log(
∫ b

a r(s)ξ (s)�s
∫ b

a r(s)�s
) on both sides of (7), we get

log

(∫ b
a r(s)ξ (s)�s
∫ b

a r(s)�s

)
–

∫ b
a r(s) log ξ (s)�s

(
∫ b

a r(s)�s)
≤ log

(∫ b
a r(s)ξ (s)�s
∫ b

a r(s)�s

)
+ log

( ∫ b
a

r(s)
ξ (s)�s

∫ b
a r(s)�s

)
,

which is inequality (5). Inequality (6) is a straightforward outcome of the following in-
equality given in [13]:

log x ≤ 1
ln b̄

(x – 1) (x > 0), (8)

with

x =
1

(
∫ b

a r(s)�s)2

(∫ b

a
r(s)ξ (s)�s

∫ b

a

r(s)
ξ (s)

�s
)

. �

2.1 Shannon entropy
Consider X to be a continuous random variable with a nonnegative density function r(s)
onT such that

∫ b
a r(s)�s = 1, whenever the integral exists, we have the following definition.
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Definition 4 The nominal differential entropy of X on time scale is defined by

hb̄(X) :=
∫ b

a
r(s) log

1
r(s)

�s (b̄ > 1). (9)

The following result is the time scale extension of integral Shannon inequality [13, Theo-
rem 18]. Moreover, one can get results related to Shannon entropy by choosing time scale
to be the set of integers with positive probability distributions in the following result.

Theorem 4 Let a, b ∈ T, a < b and assume that r, f ∈ Crd([a, b]T,R) are positive functions
with

∫ b
a r(s)�s > 0 and λ :=

∫ b
a f (s)�s < ∞. Suppose that for b̄ > 1 at least one of the following

�-integrals is finite:

Qr :=
∫ b

a
r(s) log

1
r(s)

�s and Qf :=
∫ b

a
r(s) log

1
f (s)

�s.

If
∫ b

a
r2(s)
f (s) �s < ∞, then

0 ≤ log

(
λ

∫ b
a r(s)�s

)
+

1
(
∫ b

a r(s)�s)
(Qf – Qr)

≤ log

[
λ

(
∫ b

a r(s)�s)2

∫ b

a

r2(s)
f (s)

�s
]

≤ 1
ln b̄

[
λ

(
∫ b

a r(s)�s)2

∫ b

a

r2(s)
f (s)

�s – 1
]

. (10)

Proof Apply Theorem 3 with ξ (s) = f (s)
r(s) (s ∈ T) and λ =

∫ b
a f (s)�s =

∫ b
a r(s)ξ (s)�s < ∞ to

get

0 ≤ log

(
λ

∫ b
a r(s)�s

)
–

1
(
∫ b

a r(s)�s)

∫ b

a
r(s) log

f (s)
r(s)

�s

≤ log

[
λ

(
∫ b

a r(s)�s)2

∫ b

a

r2(s)
f (s)

�s
]

≤ 1
ln b̄

[
λ

(
∫ b

a r(s)�s)2

∫ b

a

r2(s)
f (s)

�s – 1
]

.

Since

log x < x (x > 0), (11)

therefore replacing x by f (s)
r(s) and multiplying both sides by r(s) in (11), we get

r(s) log
f (s)
r(s)

< r(s)
f (s)
r(s)

,

thus

J :=
∫ b

a
r(s) log

f (s)
r(s)

�s < ∞ as
∫ b

a
f (s)�s < ∞.
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Whenever Qr is finite, then Qr – J = Qf is also finite, further if Qf is finite, then Qf + J = Qr

is finite as well. Therefore we may write J = Qr – Qf , and consequently the desired result
is proved. �

Corollary 1 Let a, b ∈ T, a < b, and r, f ∈ Crd([a, b]T,R+) with λ :=
∫ b

a f (s)�s < ∞. Suppose
that for b̄ > 1 at least one of the following �-integrals is finite:

Qr :=
∫ b

a
r(s) log

1
r(s)

�s and Qf :=
∫ b

a
r(s) log

1
f (s)

�s.

If
∫ b

a
r2(s)
f (s) �s < ∞, then

0 ≤ logλ + (Qf – Qr)

≤ log

[
λ

∫ b

a

r2(s)
f (s)

�s
]

≤ 1
ln b̄

[
λ

∫ b

a

r2(s)
f (s)

�s – 1
]

.

Proof Use
∫ b

a r(s)�s = 1 in Theorem 4 to get the required result. �

Remark 1 Choose T = R in Theorem 4 with
∫ b

a r(s)�s = 1 to get [13, Theorem 18].

In the proof of our next result, we need the following weighted Grüss type inequality on
time scales established by Sarikaya et al. in [17].

Theorem 5 Let ξ , g ∈ Crd and ξ , g : [a, b]T → R be two �-integrable functions on [a, b]T
and r ∈ Crd be a positive function with

∫ b
a r(s)�s > 0. Then, for

α ≤ ξ (s) ≤ A, β ≤ g(s) ≤ B ∀s ∈ [a, b]T,

we have

∣∣∣∣

∫ b
a r(s)ξ (s)g(s)�s

∫ b
a r(s)�s

–
∫ b

a r(s)ξ (s)�s
∫ b

a r(s)g(s)�s

(
∫ b

a r(s)�s)2

∣∣∣∣ ≤ 1
4

(A – α)(B – β). (12)

Lemma 1 Suppose that the assumptions of Theorem 3 are satisfied. If

0 < m ≤ ξ (s) ≤ M ∀s ∈ [a, b]T, (13)

then

0 ≤ log

[∫ b
a r(s)ξ (s)�s
∫ b

a r(s)�s

]
–

∫ b
a r(s) log ξ (s)�s

(
∫ b

a r(s)�s)
(14)

≤ log

[
1
4

(√
� +

1√
�

)2]
(15)

≤ 1
ln b̄

[
1
4

(√
� –

1√
�

)2]
, (16)
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where m, M ∈ R+ and � := M
m . Further, if

� ≤ Φ(ε) := 2b̄ε – 1 + 2
√

b̄ε
(
b̄ε – 1

)
(17)

for ε > 0, then

0 ≤ log

[∫ b
a r(s)ξ (s)�s
∫ b

a r(s)�s

]
–

∫ b
a r(s) log ξ (s)�s

(
∫ b

a r(s)�s)
≤ ε. (18)

Proof Inequality (14) is the same as (4). From (13) one gets

0 <
1
M

≤ 1
ξ (s)

≤ 1
m

for all s ∈ [a, b]T.

Set g = 1
ξ

in inequality (12) to get

∫ b
a r(s)ξ (s)�s

∫ b
a r(s) 1

ξ (s)�s

(
∫ b

a r(s)�s)2
– 1 ≤ 1

4
(M – m)

(
1
m

–
1
M

)

or

∫ b
a r(s)ξ (s)�s

∫ b
a r(s) 1

ξ (s)�s

(
∫ b

a r(s)�s)2
≤ 1

4

[(
M – m

m
–

M – m
M

)
+ 4

]

=
1
4

[(
M
m

+
m
M

– 2
)

+ 4
]

=
1
4

[(
� +

1
�

– 2
)

+ 4
]

=
1
4

[(√
� –

1√
�

)2

+ 4
]

=
1
4

(√
� +

1√
�

)2

.

Since log is strictly increasing, we have

log

[∫ b
a r(s)ξ (s)�s

∫ b
a r(s) 1

ξ (s)�s

(
∫ b

a r(s)�s)2

]
≤ log

[
1
4

(√
� +

1√
�

)2]
. (19)

Using inequality (19) together with (5) gives (15). However, (16) can be easily derived from
the elementary inequality (8). Further, set

log

[
1
4

(√
� +

1√
�

)2]
≤ ε,

or

[
1
4

(√
� +

1√
�

)2]
≤ b̄ε ,
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therefore

�2 – 2�
(
2b̄ε – 1

)
+ 1 ≤ 0,

which holds if and only if

2b̄ε – 1 – 2
√

b̄ε
(
b̄ε – 1

) ≤ � ≤ 2b̄ε – 1 + 2
√

b̄ε
(
b̄ε – 1

)
.

Since

[
2b̄ε – 1 + 2

√
b̄ε

(
b̄ε – 1

)]–1 =
1

2b̄ε – 1 + 2
√

b̄ε(b̄ε – 1)

=
(2b̄ε – 1) – 2

√
b̄ε(b̄ε – 1)

(2b̄ε – 1)2 – 4(b̄ε(b̄ε – 1))

=
(2b̄ε – 1) – 2

√
b̄ε(b̄ε – 1)

4b̄2ε + 1 – 4b̄ε – 4b̄2ε + 4b̄ε

= 2b̄ε – 1 – 2
√

b̄ε
(
b̄ε – 1

)
,

inequality (18) follows from (14) and it holds whenever � satisfies (17). �

Remark 2 Let T = R with
∫ b

a r(s)�s = 1 in Lemma 1 to get [13, Lemma 2].

Theorem 6 Assume the conditions of Theorem 4, and let

0 < m ≤ r(s)
f (s)

≤ M ∀s ∈ [a, b]T. (20)

Then

0 ≤
(∫ b

a r(s) log 1
f (s)�s

∫ b
a r(s)�s

)
–

(∫ b
a r(s) log 1

r(s)�s
∫ b

a r(s)�s

)
+ log

(
λ

∫ b
a r(s)�s

)

≤ log
(M + m)2

4Mm

≤ 1
4 ln b̄

(M – m)2

Mm
.

Also, if M
m ≤ Φ(ε) := 2b̄ε – 1 + 2

√
b̄ε(b̄ε – 1) for some ε > 0, then

0 ≤
(∫ b

a r(s) log 1
f (s)�s

∫ b
a r(s)�s

)
–

(∫ b
a r(s) log 1

r(s)�s
∫ b

a r(s)�s

)
+ log

(
λ

∫ b
a r(s)�s

)
≤ ε.

Proof Apply Lemma 1 with ξ (s) = f (s)
r(s) (s ∈ [a, b]T) and

0 <
1
M

≤ ξ (s) ≤ 1
m

∀s ∈ [a, b]T

to obtain the desired results. �
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Corollary 2 Consider the assumptions of Theorem 6 with
∫ b

a r(s)�s = 1, then we obtain

0 ≤
∫ b

a
r(s) log

1
f (s)

�s –
∫ b

a
r(s) log

1
r(s)

�s + logλ

≤ log
(M + m)2

4Mm

≤ 1
4 ln b̄

(M – m)2

Mm
.

Remark 3 Let T = R with
∫ b

a r(s)�s = 1 in Theorem 6 to get [13, Theorem 19].

2.2 Entropy of continuous random variable
In the sequel, we denote mean and variance of a continuous random variable X by μm =∫ b

a sr(s)�s and v2 =
∫ b

a (s – μm)2r(s)�s respectively.

Theorem 7 Consider a continuous random variable X and density function r(s) (s ∈ T).
(a) If X has a finite mean μm and variance v2 with

∫ b

a
r2(s) exp

[
1

2v2 (s – μm)2
]
�s < ∞,

then hb̄(X) is finite and

0 ≤ log(v
√

2πe) – hb̄(X) + log(λ)

≤ log

{
λv

√
2π

∫ b

a
r2(s) exp

[
1

2v2 (s – μm)2
]
�s

}

≤ 1
ln b̄

{
λv

√
2π

∫ b

a
r2(s) exp

[
1

2v2 (s – μm)2
]
�s – 1

}
,

where λ =
∫ b

a (1/v
√

2π ) exp[–(s – μm)2/2v2]�s > 0.
(b) Suppose that X has finite mean and r(s) = 0 for all s < 0. If

∫ ∞

0
r2(s) exp(s/μm)�s < ∞,

then hb̄(X) is finite and

0 ≤ log(μme) – hb̄(X) + log(λ)

≤ log

[
λμm

∫ ∞

0
r2(s) exp(s/μm)�s

]

≤ 1
ln b̄

[
λμm

∫ ∞

0
r2(s) exp(s/μm)�s – 1

]
,

where λ =
∫ ∞

0 (1/μm) exp(–s/μm)�s > 0.
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Proof
(a) As the variance v2 of X is finite, which implies that μm =

∫ b
a sr(s)�s and

v2 =
∫ b

a (s – μm)2r(s)�s > 0 are well defined real numbers, we can define
f (s) = (1/v

√
2π ) exp[–(s – μm)2/2v2] > 0 (s ∈ T) to get λ =

∫ b
a f (s)�s > 0 and

∫ b

a
r(s) log

1
f (s)

�s =
1

ln b̄

∫ b

a
r(s) ln

(
1

f (s)

)
�s

=
1

ln b̄

∫ b

a
r(s) ln

[
(v

√
2π ) exp

[
(s – μm)2/2v2]]�s

=
1

ln b̄

∫ b

a
r(s)

[
ln(v

√
2π ) + ln

(
exp

[
(s – μm)2/2v2])]�s

=
1

ln b̄

∫ b

a
r(s)

[
ln(v

√
2π ) +

(s – μm)2

2v2

]
�s

=
1

ln b̄

[
ln(v

√
2π )

∫ b

a
r(s)�s +

1
2v2

∫ b

a
r(s)(s – μm)2�s

]

=
1

ln b̄

[
ln(v

√
2π ) +

1
2v2 · v2

]

=
1

ln b̄

[
ln(v

√
2π ) +

1
2

]

=
1

ln b̄
[
ln(v

√
2π ) + ln

√
e
]

=
1

ln b̄
ln(v

√
2πe)

= log(v
√

2πe).

Now apply Corollary 1 to get the stated result.
(b) Under the given conditions, we have mean μm =

∫ ∞
0 sr(s)�s > 0, and we may define

f (s) = (1/μm) exp(–s/μm) (s ∈ [0,∞)T) such that λ =
∫ ∞

0 f (s)�s > 0 and

∫ ∞

0
r(s) log

1
f (s)

�s =
1

ln b̄

∫ b

a
r(s) ln

1
f (s)

�s

=
1

ln b̄

∫ b

a
r(s) ln

[
μm exp(s/μm)

]
�s

=
1

ln b̄

∫ b

a
r(s)

[
lnμm + ln

(
exp(s/μm)

)]
�s

=
1

ln b̄

∫ ∞

0
r(s)

(
lnμm +

s
μm

)
�s

=
1

ln b̄

[
lnμm

∫ ∞

0
r(s)�s +

1
μm

∫ ∞

0
sr(s)�s

]

=
1

ln b̄

[
lnμm +

1
μm

· μm

]

=
1

ln b̄
(lnμm + ln e)
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=
1

ln b̄
ln(μme)

= log(μme).

Again apply Corollary 1 to obtain the required result. �

Corollary 3 Assume T = R in Theorem 7 to get [13, Theorem 21 a, b].

Remark 4 Theorem 7 shows that hb̄(X) ≈ log(λv
√

2πe) whenever the distribution of X is
nearly equal to the Gaussian distribution with variance v2. If the distribution of X is close
to the exponential distribution with mean μm, then we have hb̄(X) ≈ log(λμme).

Theorem 8
(a) Under the assumptions of Theorem 7(a), if

0 < δ ≤ r(s) exp

[
1

2v2 (s – μm)2
]

≤ θ ∀s ∈ T,

then

0 ≤ log(v
√

2πe) – hb̄(X) + log(λ)

≤ log
(θ + δ)2

4δθ

≤ 1
4 ln b̄

(θ – δ)2

δθ
,

where δ, θ ∈R+ and λ =
∫ b

a (1/v
√

2π ) exp[–(s – μm)2/2v2]�s > 0.
(b) Consider the assumptions of Theorem 7(b), if

0 < δ ≤ r(s) exp(s/μm) ≤ θ ∀s ∈ [0,∞)T,

then

0 ≤ log(μme) – hb̄(X) + log(λ)

≤ log
(θ + δ)2

4δθ

≤ 1
4 ln b̄

(θ – δ)2

δθ
,

where λ =
∫ ∞

0 (1/μm) exp(–s/μm)�s > 0.

Proof
(a) In Corollary 2 replace m and M by v

√
2πδ and v

√
2πθ respectively and f (s) as in

the proof of Theorem 7(a).
(b) In Corollary 2 replace m and M with μmδ and μmθ respectively and f (s) as in the

proof of Theorem 7(b). �

Corollary 4 Consider T = R in Theorem 8 to get [13, Theorem 22 a, b].
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The following generalization of Jensen’s inequality on time scales established by Anwar
[3] et al. is needed in the proof of our next result.

Theorem 9 Let J ⊂ R be an interval and assume that Ψ ∈ C(J ,R) is convex. Consider
f to be �-integrable on D such that f (D) ⊂ J , where D ⊂ ([a1, b1) ∩ T1 × · · · × [an, bn) ∩
Tn) and T1,T2, . . . ,Tn are time scales. Moreover, let p : D → R be �-integrable such that∫

D |p(s)|�s > 0. Then

Ψ

(∫
D |p(s)|f (s)�s∫

D |p(s)|�s

)
≤

∫
D |p(s)|Ψ (f (s))�s∫

D |p(s)|�s
. (21)

The following result is a generalization of Theorem 3.

Proposition 1 Let T1,T2, . . . ,Tn be time scales. For ai, bi ∈ Ti with ai < bi, 1 ≤ i ≤ n, let
D ⊂ ([a1, b1) ∩T1 ×· · ·× [an, bn) ∩Tn) be Lebesgue �-measurable, and let ψ : D → (0,∞)
be a positive �-integrable function such that

∫
D |ψ(w)|�w > 0. If ξ , 1

ξ
: D → (0,∞) are two

positive �-integrable functions such that

∫

D

∣∣ψ(w)ξ (w)
∣∣�w < ∞ and

∫

D

∣∣∣∣
ψ(w)
ξ (w)

∣∣∣∣�w < ∞,

then we get

0 ≤ log

[∫
D ψ(w)ξ (w)�w∫

D ψ(w)�w

]
–

∫
D ψ(w) log ξ (w)�w

(
∫

D ψ(w)�w)

≤ log

[∫
D ψ(w)ξ (w)�w

∫
D

ψ(w)
ξ (w) �w

(
∫

D ψ(w)�s)2

]

≤ 1
ln b̄

[∫
D ψ(w)ξ (w)�w

∫
D

ψ(w)
ξ (w) �w

(
∫

D ψ(w)�w)2 – 1
]

. (22)

Proof Use inequality (21) and follow similar steps as in the proof of Theorem 3 to get the
stated result. �

Corollary 5 Assume the conditions of Proposition 1 with
∫

D ψ(w)�w = 1, then we have

0 ≤ log

[∫

D
ψ(w)ξ (w)�w

]
–

∫

D
ψ(w) log ξ (w)�w

≤ log

[∫

D
ψ(w)ξ (w)�w

∫

D

ψ(w)
ξ (w)

�w
]

≤ 1
ln b̄

[∫

D
ψ(w)ξ (w)�w

∫

D

ψ(w)
ξ (w)

�w – 1
]

.

Remark 5 Choose T = R with
∫

D ψ(w)�w = 1 in Proposition 1 to get [13, Proposition 1].

Suppose that X and Z are random variables whose distributions have density functions
r(s) and r(z) respectively, and let r(s, z) be the joint density function for (X, Z). Denote

DX :=
{

s ∈ X : r(s) > 0
}

, DZ :=
{

z ∈ Z : r(z) > 0
}

(23)
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and

D :=
{

(s, z) ∈ X × Z : r(s, z) > 0
}

. (24)

Definition 5 The differential b̄-entropy of X on time scales is defined by

hb̄(X) :=
∫

DX

r(s) log
1

r(s)
�s. (25)

By analogy, we may state the following definition.

Definition 6 The differential conditional b̄-entropy of X given Z on time scales is defined
by

hb̄(X|Z) :=
∫ ∫

D
r(s, z) log

1
r(s|z)

�s�z. (26)

Theorem 10 Suppose that X and Z are random variables whose distributions have density
functions r(s) and r(z) respectively, and let r(s, z) be the joint density function for (X, Z). Let

R′ :=
∫ ∫

D
r(z)�s�z < ∞ and

∫ ∫

D
r(z)r2(s|z)�s�z < ∞.

Then hb̄(X|Z) exists and

0 ≤ log R′ – hb̄(X|Z)

≤ log

[
R′

∫ ∫

D
r(z)r2(s|z)�s�z

]

≤ 1
ln b̄

[
R′

∫ ∫

D
r(z)r2(s|z)�s�z – 1

]
.

Proof Apply Corollary 5 with n = 2 and

ψ(w) = r(s, z), ξ (w) =
1

r(s|z)
=

r(z)
r(s, z)

for w = (s, z) ∈ D,

to get

0 ≤ log

[∫ ∫

D
r(s, z)

r(z)
r(s, z)

�s�z
]

–
∫ ∫

D
r(s, z) log

1
r(s|z)

�s�z

= log R′ – hb̄(X|Z)

≤ log

[
R′

∫ ∫

D
r(s, z)r(s|z)�s�z

]

= log

[
R′

∫ ∫

D
r(z)r2(s|z)�s�z

]

≤ 1
ln b̄

[
R′

∫ ∫

D
r(z)r2(s|z)�s�z – 1

]
. �
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With the help of (23) and (24), we can define the differential mutual information between
X and Z on time scales by

ib̄(X, Z) := hb̄(X) – hb̄(X|Z),

where hb̄(X) and hb̄(X|Z) are given by (25) and (26), respectively. It is straightforward to
see that

ib̄(X, Z) =
∫ ∫

D
r(s, z) log

r(s, z)
r(s)r(z)

�s�z.

Theorem 11 Suppose that X and Z are random variables whose distributions have density
functions r(s) and r(z) respectively, and let r(s, z) be the joint density function for (X, Z).
Define

S :=
∫ ∫

D
r(s)r(z)�s�z.

If

∫ ∫

D

r2(s, z)
r(s)r(z)

�s�z < ∞,

then ib̄(X, Z) exists and

0 ≤ log S + ib̄(X, Z)

≤ log

[
S
∫ ∫

D

r2(s, z)
r(s)r(z)

�s�z
]

≤ 1
ln b̄

[
S
∫ ∫

D

r2(s, z)
r(s)r(z)

�s�z – 1
]

.

Proof Use Corollary 5 with n = 2 and

ψ(w) = r(s, z), ξ (w) =
r(s)r(z)
r(s, z)

for w = (s, z) ∈ D,

to get

0 ≤ log

[∫ ∫

D
r(s, z)

r(s)r(z)
r(s, z)

�s�z
]

–
∫ ∫

D
r(s, z) log

r(s)r(z)
r(s, z)

�s�z

= log

[∫ ∫

D
r(s, z)

r(s)r(z)
r(s, z)

�s�z
]

+
∫ ∫

D
r(s, z) log

r(s, z)
r(s)r(z)

�s�z

= log S + ib̄(X, Z)

≤ log

[
S
∫ ∫

D
r(s, z)

r(s, z)
r(s)r(z)

�s�z
]

= log

[
S
∫ ∫

D

r2(s, z)
r(s)r(z)

�s�z
]

≤ 1
ln b̄

[
S
∫ ∫

D

r2(s, z)
r(s)r(z)

�s�z – 1
]

. �
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3 Conclusion
In the paper, Shannon type inequalities on time scales have been established by using the
time scales version of Jensen’s inequality. Bounds are obtained for some Shannon type
inequalities which have direct association to information theory. Differential entropy on
time scales has been introduced and its bounds for some particular distributions have been
obtained. The given results are the generalization of corresponding results established
by Matić, Pearce, and Pečarić in [13], and the idea may stimulate further research in the
theory of Shannon entropy, delta integrals, and generalized convex functions.
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3. Anwar, M., Bibi, R., Bohner, M., Pečarić, J.: Integral inequalities on time scales via the theory of isotonic linear

functionals. Abstr. Appl. Anal. 2011, Article ID 483595 (2011)
4. Bohner, M., Guseinov, G.S.: Multiple integration on time scales. Dyn. Syst. Appl. 14, 579–606 (2005)
5. Bohner, M., Guseinov, G.S.: Multiple Lebesgue integration on time scales. Adv. Differ. Equ. 2006, 026391 (2006)
6. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. Birkhäuser, Boston (2001)
7. Guseinov, G.S.: Integration on time scales. J. Math. Anal. Appl. 285(1), 107–127 (2003)
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