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Abstract
A finite-time adaptive neural network position tracking control method is considered
for the fractional-order chaotic permanent magnet synchronous motor (PMSM) via
command filtered backstepping in this paper. Firstly, a neural network with a
fractional-order parametric update law is utilized to cope with the nonlinear and
unknown functions. Then the command filtered technique is introduced to address
the repeated derivative problem in backstepping. In addition, a novel finite-time
control method is proposed by employing the fractional-order terminal sliding
manifolds, designing the error compensation mechanism and the new virtual control
laws. The finite-time convergence of the tracking error can be guaranteed by the
proposed controller. Finally, the designed control method is verified by simulation
results.
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1 Introduction
Fractional calculus is an evolving theory in many relevant sciences which is opening new
areas in mathematics. It is a generalization of conventional differentiation and integra-
tion to arbitrary order [1]. Due to its potential applications and interesting properties, the
fractional calculus has captured considerable attention from scholars in many fields [2–
5]. Currently, many interesting results associated with the fractional calculus have been
given [6–8]. The research shows that the fractional-order controllers are more advanta-
geous than that of traditional integer-order ones. And also, some meaningful results have
been reported on the stability problems in the scope of fractional calculus. For instance,
by utilizing the fractional-order Lyapunov stability criterion, the robust consensus track-
ing problem is investigated in [9] for fractional-order multiagent systems with external
disturbances and heterogeneous unknown nonlinearities. Based on the Chebyshev neu-
ral network (NN) technique, an adaptive synchronization approach is proposed in [10]
for a class of fractional-order micro-electro-mechanical systems with chaotic oscillation.
Therefore, the research of fractional-order system is a meaningful work.
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The permanent magnet synchronous motor (PMSM) has received wide acceptance for
industry applications, owing to the superiorities of reliable operation, simple structure
and high power density [11, 12]. The PMSM is a type of synchronous motor in which the
field excitation generated in the stator windings is created by the rare-earth permanent
magnet of the rotor. PMSM has been used in various areas such as robotics, wind gen-
erator, electric vehicles, pumps and ship electric propulsion systems. However, the mul-
tivariable and coupled mathematical model of PMSM can exhibit chaotic behavior while
systemic parameters exceeding a certain critical value [13]. The chaotic motion for PMSM
is not acceptable since it may lead to the controlled system collapse [14]. Recently, a large
number of control design schemes for chaotic systems have been investigated. The OGY
approach is considered to be an efficient tool for stabilizing chaotic systems [15]. The
main weakness with this method is that it depends on an uncertain systemic parameter
which is generally unmeasurable in real PMSM system. In order to avoid this problem,
time-delay feedback control is a better choice for controlling unsteady periodic orbits of
nonlinear systems with chaotic behavior [16]. One of the limitations with this approach
is that the time-delay parameter is difficult to determine. Sliding mode control (SMC) is
deemed to be a basic method for chaos control. In [17], an adaptive SMC approach com-
bined composite feedback control technique is investigated to synchronize two different
unknown dynamic nonlinear systems with disturbances and time-varying delay. However,
the chattering phenomenon is the drawback of SMC in electrical power circuits. NN con-
trol scheme displays a great merit for controlling chaotic systems with uncertain parts. An
NNs-based adaptive control strategy is presented in [18] to address the tracking control
issue for input-delayed systems with state constraint. However, this method depends on
precise mathematic model.

Adaptive backstepping technique has shown its advantages in controlling the nonlin-
ear systems which does not satisfy matching conditions [19]. For the PMSM drive sys-
tem with chaotic oscillation, the problem of position tracking control is addressed in [20]
by using backstepping-based nonlinear adaptive control scheme. An adaptive SMC ap-
proach by fusing NN and backstepping is presented in [21] to control chaos of the PMSM.
In [22], an adaptive fuzzy output feedback control method combined with the backstep-
ping technique is considered for the PMSM with external load disturbance and parametric
uncertainties. For a type of multi-input and multi-output (MIMO) uncertain nonlinear
input-saturated systems, a fuzzy control method via backstepping technique is investi-
gated in [23] to track a given trajectory. In [24], the tracking control issue for PMSM sys-
tem with unknown parameters is studied by employing adaptive fuzzy finite-time control
method. However, all the previously mentioned methods mainly focus on inter-order sys-
tems. Fractional differential equations can describe many natural behaviors briefly and ac-
curately from the standpoint of modeling. Many researchers have devoted their efforts to
the study of fractional-order PMSM systems [25–27]. In [25], the fractional-order model
of PMSM is proposed by Yu et al. in the frequency domain, the experiment results have
shown that the fractional differential equation presents more precise model for PMSM
than conventional integer differential equation. Moreover, the stabilization problem for
fractional-order PMSM is investigated by Guo and Mani et al. in [26, 27]. For fractional-
order chaotic system, the synchronization issue is considered by using backstepping strat-
egy in [28]. In [29], an adaptive fuzzy backstepping control method is investigated to con-
verge the tracking error for a class of lower triangular structured fractional-order nonlin-
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ear uncertain systems. However, this work does not involve the finite-time convergence
issue for nonlinear systems.

The finite-time control approach has several merits such as higher precision perfor-
mance, faster response and better disturbance rejection property [30]. In [31], a finite-time
hybrid adaptive intelligent backstepping SMC scheme is provided to suppress chaos for
fractional-order chaotic systems. An adaptive NN terminal sliding mode output control
approach for fractional-order nonlinear system with unknown actuator faults is proposed
in [32] to obtain finite-time stability. One of the limitations with these methods is that
the ‘explosion of complexity’ problem is unsolved in their works. Fortunately, dynamic
surface control (DSC) technology affords an effective way to solve this issue. In [33], the
NNs based adaptive DSC method is introduced to guarantee the convergence of the track-
ing error. However, this method ignores the effect of filtering errors induced by the DSC.
Recently, command filtering-based backstepping technique combined an error compen-
sation mechanism is an efficient method for solving the above problems [34]. For a class of
high-order nonlinear systems, a finite-time tracking control problem is addressed in [35]
by introducing the virtual control laws combined with finite-time filter. For the nonlinear
saturated systems, a Levant differentiator combined fuzzy control approach is presented
in [36] to ensure the finite-time convergence of the tracking error. However, the difference
between this kind of the PMSM system and pure mathematical models is significant. Be-
sides, the methods proposed in [33, 35, 36] are not applicable for fractional-order systems.
To what degree new schemes can achieve finite-time convergence of the tracking error in
the fractional-order PMSM system remains further study.

Motivated by the above discussions, a finite-time adaptive NN control approach is pre-
sented in this article. Compared with the existing achievements, the noteworthy contri-
butions of this paper are summarized as:

(1) The issue of the repeated derivative in backstepping is handled by utilizing
command filters. Meanwhile, the filtering errors are compensated in finite time by
introducing a fractional-order error compensating system.

(2) A novel finite-time virtual signals are designed by employing appropriate terminal
sliding surfaces such that the finite-time signal tracking is obtained.

(3) In the field of fractional calculus, we integrate adaptive NNs, command filtered
backstepping, fractional-order error compensating mechanism and terminal sliding
surface technique into finite-time controller, which can solve the tracking problem
for fractional-order PMSM with chaotic motion in finite time.

2 Fractional-order PMSM and preliminaries
Consider the equation of PMSM as follows [20]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dΘ
dt = w,

dw
dt = σ (iq – w) – TL,
diq
dt = –iq – idw + γ w + uq,
did
dt = –id + iqw + ud,

(1)

where Θ , w, iq and id denote system state variables, which mean the rotor position, the an-
gular speed, the q-axis and d-axis currents. σ and γ stand for the dimensionless operating
parameters. TL is load torque, uq and ud represent the d – q axis voltages.



Lu et al. Advances in Difference Equations        (2020) 2020:121 Page 4 of 21

Figure 1 Typical strange attractor in the case of α = 0.98, σ = 5.46 and γ = 26.5

Let x1 = Θ , x2 = w, x3 = iq and x4 = id . The PMSM can be extended to the fractional
domain as [26, 37]

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C
0 Dα

t x1 = x2,
C
0 Dα

t x2 = σ (x3 – x2) – TL,
C
0 Dα

t x3 = –x3 – x2x4 + γ x2 + uq,
C
0 Dα

t x4 = –x4 + x2x3 + ud,

(2)

where α stands for the fractional order.
It should be mentioned that the dynamics of the system (2) are usually highly nonlin-

ear on account of the coupling between the currents and the angular speed. Meanwhile,
the parameter uncertainties may also influence the dynamic performance of the PMSM.
Related research proves that the fractional-order PMSM exhibits chaos oscillation when
σ and γ over a certain critical value in the case of zero external inputs. For instance, the
fractional-order PMSM presents chaos with σ = 5.46 and γ = 26.5. Figure 1 shows the
chaotic attractor with α = 0.98. It is clear that the chaotic behavior can break the stable
performance of the fractional-order PMSM system.

To remove the chaos in fractional-order PMSM, we use uq and ud as the control signals.
The objective is to construct uq and ud such that the rotor position x1 follows the de-
sired value xd and the tracking error performs finite-time convergence. For convenience
of the controller design, we introduce some properties of fractional-order differential and
integral equations.

The Caputo definition of fractional-order derivative of the function f (t) ∈ Cn([0,∞], R)
is given as [9]

C
0 Dα

t f (t) =
1

Γ (m – α)

∫ t

0

f (m)(τ )
(t – τ )α+1–m dτ , (3)

where α ∈ (m – 1, m], m ∈ Z+, t ∈ [0,∞), and Γ (·) indicates the Gamma function.
The fractional-order integral is expressed by

0Iα
t f (t) =

1
Γ (α)

∫ t

0

f (τ )
(t – τ )1–α

dτ . (4)
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Lemma 1 ([7]) If x(t) is a derivable continuous function, then

1
2

C
0 Dα

t
(
xT (t)x(t)

) ≤ xT (t)C
0 Dα

t x(t). (5)

Lemma 2 ([38]) Let the origin x = 0 be an equilibrium point of a fractional-order non-
autonomous system

C
0 Dα

t x(t) = f
(
t, x(t)

)
, (6)

where α ∈ (0, 1) and f (t, x(t)) is a Lipschitz continuous function. Suppose that there exists
a Lyapunov function V (t, x(t)) and class-K functions gi (i = 1, 2, 3) satisfying

g1
(∥
∥x(t)

∥
∥
) ≤ V

(
t, x(t)

) ≤ g2
(∥
∥x(t)

∥
∥
)
,

C
0 Dα

t V
(
t, x(t)

) ≤ –g3
(∥
∥x(t)

∥
∥
)
,

(7)

then x(t) can converge to the equilibrium point x = 0 of the system (6) as t → +∞.

Lemma 3 ([39]) Suppose that V (x) is C-regular, and x(t) : [0, +∞) → Rn is an absolutely
continuous function on any compact interval of [0, +∞). Let ν(t) = V (x(t)) and 1

2 < η < 1. If
the inequality

C
0 Dα

t ν(t) ≤ –λν2η–1(t) (8)

holds for t ≥ 0 and α ∈ (0, 1), then

lim
t→T∗ ν(t) = 0, ν(t) = 0, t ≥ T∗, (9)

and

lim
t→T∗ x(t) = 0, x(t) = 0, t ≥ T∗, (10)

where

T∗ =
[

να(1+α)–2η(0)
Γ (1 – 2η

1+α
)Γ (1 + α)

λΓ (2 + α)Γ (1 + α – 2η

1+α
)

] 1
α

. (11)

Remark 1 So far, a great number of control methods for dynamical systems with chaotic
motion have been developed such as OGY technique, time-delay feedback control, fuzzy
control and feedback linearization methods (see [15, 16, 22, 26] and the references
therein). Nevertheless, the above control approaches have some limitations. The OGY
approach needs a variable parameter for dynamical system which is generally unmeasur-
able. The employed method of time-delay feedback control suffers from the fact that it is
hard to choose the time delay. The fuzzy control method presents the inference rules in
an unsystematic form. For the feedback linearization approach, the accurate mathematical
model is required. In [12, 18, 20, 32–34], the adaptive NN scheme shows a distinct advan-
tage in dealing with nonlinear systems with uncertain function. Therefore, the adaptive
NN technique is adopted to address the unknown nonlinear functions in this paper.
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Lemma 4 ([33]) Suppose that ϕ(x) is a continuous smooth function which is defined on
a compact set Ω . Then there exists an ideal radial basis function (RBF) NN φT P(x) for a
given ε > 0 such that

sup
x∈Ω

∣
∣ϕ(x) – φT P(x)

∣
∣ ≤ ε, (12)

where φ = [φ1,φ2, . . . ,φn]T is the weight vector with n > 1 and P(x) = [p1(x), p2(x), . . . , pn(x)]T

stands for the basis function vector and pi(x) is Gaussian function with

pi(x) = exp

[
–(x – μi)T (x – μi)

q2
i

]

, i = 1, 2, . . . , n, (13)

where qi represents the width of Gaussian function and μi means the center vector.

3 Finite-time controller design
The finite-time adaptive NN control scheme via backstepping is shown in this section.

The tracking error variables are defined as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

z1 = x1 – x,d

z2 = x2 – a1,c,

z3 = x3 – a2,c,

z4 = x4,

(14)

where xd means the reference signal, ai,c denotes the output of the finite-time command
filter with virtual signal ai as the input for i = 1, 2.

The compensated tracking errors are constructed as follows:

vi = zi – ξi, i = 1, . . . , 4, (15)

where ξi is the error compensating signal.

Remark 2 It should be noted that the errors caused by the command filters will degrade
the control performance. Compared with adaptive NN output tracking control method
designed in [32], our approach considers the repeated derivatives in backstepping. Mean-
while, we also employ an error compensation system to lessen the errors generated by the
filters.

The error compensating signals are designed as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C
0 Dα

t ξ1 = –k1ξ1 + ξ2 + a1,c – a1 – g1 sign(ξ1),
C
0 Dα

t ξ2 = –k2ξ2 – ξ1 + ξ3 + a2,c – a2 – g2 sign(ξ2),
C
0 Dα

t ξ3 = –k3ξ3 – ξ2 – g3 sign(ξ3),
C
0 Dα

t ξ4 = –k4ξ4 – g4 sign(ξ4),

(16)

with ki and gi being positive constants for i = 1, . . . , 4.
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Remark 3 It should be mentioned that error compensating signals are finite-time stability
by determining the properly parameters ki and gi. A finite-time compensation approach
for the filtering error is introduced in [24, 35, 36], however, this research focuses on the
integer domain. We expand the compensation mechanism to fractional-order framework.

3.1 Terminal sliding manifolds
The sliding surfaces for system (2) can be chosen as

si = vi + ciχi,
C
0 Dα

t χi = vpi/qi
i – diχi,

(17)

where i = 1, . . . , 4, ci > 0, di > 0, pi and qi are positive odd constants with qi > pi, χi is a
continuous function.

From sliding mode method, one has si = 0 when the system operates in the sliding sur-
face. Then, utilizing (17), we have

C
0 Dα

t χi = liχ
pi/qi
i – diχi, (18)

where li = –cpi/qi
i . Integrating both sides of (18), one has

χi(t) = χi(0) + 0Iα
t
(
liχ

pi/qi
i – diχi

)

= χi(0) +
1

Γ (α)

∫ t

0
(t – τ )α–1(liχ

pi/qi
i – diχi

)
dτ . (19)

Therefore, it can be concluded that the solution of the equation (18) is existent.

Theorem 1 Consider the dynamics system (18). Its states will go to zero in finite time.

Proof Construct the Lyapunov functional candidate Vχi as

Vχi =
1
2
χ2

i . (20)

From Lemma 1, the fractional-order derivative of Vχi can be written as

C
0 Dα

t Vχi ≤ χi
C
0 Dα

t χi = χi
(
–cpi/qi

i χ
pi/qi
i – diχi

)

= –cpi/qi
i χ

1+pi/qi
i – diχ

2
i

≤ 0. (21)

According to Lemma 2, we see that the dynamics system (18) is asymptotically stable.
In what follows, the finite-time convergence of states in the system (18) will be proved.

From inequality (21), we have

C
0 Dα

t Vχi ≤ –cpi/qi
i χ

1+pi/qi
i = –cpi/qi

i
√

2
pi+qi

qi V
(pi+qi)

2qi
χi . (22)

According to Lemma 3, we can see that the dynamics system (18) is stable. Moreover,
the finite-time convergence of states is obtained. This completes the proof. �
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3.2 Control law design
Step 1: Select the Lyapunov functional candidate as

V1 =
1
2

s2
1. (23)

Taking the derivative V1, one has

C
0 Dα

t V1 ≤ s1
(
x2 – C

0 Dα
t xd – C

0 Dα
t ξ1 + c1

(
vp1/q1

1 – d1χ1
))

. (24)

Substituting the derivative of ξ1 into (24) yields

C
0 Dα

t V1 ≤ s1
(
x2 – C

0 Dα
t xd + c1

(
vp1/q1

1 – d1χ1
)

+ k1ξ1 – ξ2 – (a1,c – a1) + g1 sign(ξ1)
)
. (25)

Then the virtual control signal a1 is constructed as

a1 = –k1z1 – k1c1χ1 + c2χ2 + C
0 Dα

t xd – ε̂1 sign(s1)

– c1
(
vp1/q1

1 – d1χ1
)

– g1 sign(ξ1) – b1sp1/q1
1 , (26)

where b1 > 0, ε̂1 represents the estimation of ε1 and ε1 = 0.
The following command filter is used to obtain a1,c:

⎧
⎪⎪⎨

⎪⎪⎩

C
0 Dα

t ζ1 = ι,

ι = –R1|ζ1 – a1| 1
2 sign(ζ1 – a1) + ζ2,

C
0 Dα

t ζ2 = –R2 sign(ζ2 – ι),

(27)

where a1,c = ζ1 denotes the output of filter.
Thus, substituting (26) into (25) yields

C
0 Dα

t V1 ≤ –k1s2
1 + s1s2 – ε̂1|s1| – b1s1+p1/q1

1 . (28)

Step 2: Select the Lyapunov function V2 as

V2 = V1 +
1
2

s2
2. (29)

Taking its derivative, one has

C
0 Dα

t V2 ≤ C
0 Dα

t V1 + s2
C
0 Dα

t s2

= C
0 Dα

t V1 + s2
(
σ (x3 – x2) – TL – C

0 Dα
t a1,c

– C
0 Dα

t ξ2 + c2
(
vp2/q2

2 – d2χ2
))

. (30)

Substituting (28) into (30), we can show the following form:

C
0 Dα

t V2 ≤ –k1s2
1 + s2

(
x3 + s1 + f2 – C

0 Dα
t ξ2

+ c2
(
vp2/q2

2 – d2χ2
))

– ε̂1|s1| – b1s1+p1/q1
1 , (31)

where f2(Z2) = σ (x3 – x2) – TL – C
0 Dα

t a1,c – x3 and Z2 = [x1, x2, x3, x4, xd]T .
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Remark 4 It should be mentioned that the external load torque TL and the parameter σ

are unknown. We cannot achieve the control signal directly. To avoid this problem, the
RBF NN is introduced to adaptively approximate the unknown part f2.

From Lemma 4, for a given ε2 > 0, the existence of a RBF NN is ensured and it satisfies
f2 = φT

2 P2(Z2) + δ2(Z2), where δ2(Z2) stands for the approximation error with |δ2(Z2)| ≤
ε2.

The virtual control signal a2 is designed as

a2 = –k2z2 – k2c2χ2 – z1 – c1χ1 + c3χ3

– c2
(
vp2/q2

2 – d2χ2
)

– g2 sign(ξ2) – φ̂T
2 P2(Z2)

– ε̂2 sign(s2) – b2sp2/q2
2 , (32)

where b2 > 0, φ̂2 means the estimation of φ2, ε̂2 denotes the estimation of ε2.
Similarly, one can obtain the output a2,c of the filter with a2 being its input. Thus, from

(16), (30) and (32), the derivative of V2 is given in the following form:

C
0 Dα

t V2 ≤ –
2∑

i=1

kis2
i + s2s3 –

2∑

i=1

bis
1+pi/qi
i

+ s2φ̃
T
2 P2(Z2) + δ2s2 –

2∑

i=1

ε̂i|si|, (33)

where φ̃2 = φ2 – φ̂2.
Step 3: Construct the Lyapunov function candidate V3 as

V3 = V2 +
1
2

s2
3. (34)

By differentiating V3, it follows that

C
0 Dα

t V3 ≤ C
0 Dα

t V2 + s3
C
0 Dα

t s3

= C
0 Dα

t V2 + s3
(
–x3 – x2x4 + γ x2 + uq

– C
0 Dα

t a2,c – C
0 Dα

t ξ3 + c3
(
vp3/q3

3 – d3χ3
))

. (35)

Substituting (33) into (35), we get

C
0 Dα

t V3 ≤ –
2∑

i=1

kis2
i + s3

(
s2 + uq + f3 – C

0 Dα
t ξ3

+ c3
(
vp3/q3

3 – d3χ3
))

–
2∑

i=1

bis
1+pi/qi
i

+ s2φ̃
T
2 P2(Z2) + δ2s2 –

2∑

i=1

ε̂i|si|, (36)

where f3(Z3) = –x3 – x2x4 + γ x2 – C
0 Dα

t a2,c and Z3 = Z2.



Lu et al. Advances in Difference Equations        (2020) 2020:121 Page 10 of 21

Remark 5 It is clear that the function f3 involves the nonlinear term –x2x4 and the differ-
ential part –C

0 Dα
t a2,c, these will increase the complexity of the control law uq. In order to

avoid this problem, the RBF NN is adopted to estimate the nonlinear function f3.

Similarly, for a given ε3, there exists a RBF NN satisfying f3 = φT
3 P3(Z3) + δ3(Z3), where

|δ3(Z3)| ≤ ε3.
Furthermore, the control signal uq can be given by

uq = –k3z3 – k3c3χ3 – c2χ2 – z2 – c3
(
vp3/q3

3 – d3χ3
)

– g3 sign(ξ3) – φ̂T
3 P3(Z3) – ε̂3 sign(s3) – b3sp3/q3

3 , (37)

where b3 > 0, φ̂3 means the estimation of φ3, ε̂3 denotes the estimation of ε3.
By taking (16), (36) and (37) into account, it can be verified that

C
0 Dα

t V3 ≤ –
3∑

i=1

kis2
i –

3∑

i=1

bis
1+pi/qi
i

+
3∑

i=2

(
siφ̃

T
i Pi(Zi) + δisi

)
–

3∑

i=1

ε̂i|si|, (38)

where φ̃3 = φ3 – φ̂3.
Step 4: Consider the Lyapunov function candidate V4 as

V4 = V3 +
1
2

s2
4. (39)

Differentiating V4 yields

C
0 Dα

t V4 ≤ C
0 Dα

t V3 + s4
(
–x4 + x2x3 + ud

– C
0 Dα

t ξ4 + c4
(
vp4/q4

4 – d4χ4
))

. (40)

Then substituting (38) into (40) results in

C
0 Dα

t V4 ≤ –
3∑

i=1

kis2
i + s4

(
f4 + ud – C

0 Dα
t ξ4

+ c4
(
vp4/q4

4 – d4χ4
))

–
3∑

i=1

bis
1+pi/qi
i

+
3∑

i=2

(
siφ̃

T
i Pi(Zi) + δisi

)
–

3∑

i=1

ε̂i|si|, (41)

where f4(Z4) = –x4 + x2x3 and Z4 = Z3.
Similarly, there exists a RBF NN φT

4 P4(Z4) for a given ε4 > 0 such that f4 = φT
4 P4(Z4) +

δ4(Z4), where |δ4(Z4)| ≤ ε4.
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Then the control law ud can be constructed as

ud = –k4z4 – k4c4χ4 – c4
(
vp4/q4

4 – d4χ4
)

– g4 sign(ξ4)

– φ̂T
4 P4(Z4) – ε̂4 sign(s4) – b4sp4/q4

4 , (42)

where b4 > 0, φ̂4 means the estimation of φ4, ε̂4 denotes the estimation of ε4.
By taking (16), (41) and (42) into account, it follows that

C
0 Dα

t V4 ≤ –
4∑

i=1

kis2
i –

4∑

i=1

bis
1+pi/qi
i

+
4∑

i=2

(
siφ̃

T
i Pi(Zi) + δisi

)
–

4∑

i=1

ε̂i|si|, (43)

where φ̃4 = φ4 – φ̂4.

4 Stability analysis
In this section, the stability of the designed controller is analyzed.

Theorem 2 For the fractional-order PMSM with chaotic motion, load torque disturbance
and parameters uncertainties, the controllers with virtual signals a1 (26), a2 (32), control
signals uq (37), ud (42), compensating signals (16), command filter (27) and adaptive laws
(48) can ensure the tracking errors converge to zero in finite time.

Proof Construct the Lyapunov function in the following form:

V = V4 +
1

2mi

4∑

i=2

φ̃T
i φ̃i +

1
2ri

4∑

i=1

ε̃2
i , (44)

where ε̃i = εi – ε̂i, mi and ri are positive constants.
The derivative of V can be written as

C
0 Dα

t V ≤ –
4∑

i=1

kis2
i –

4∑

i=1

bis
1+pi/qi
i

+
4∑

i=2

(
siφ̃

T
i Pi(Zi) + δisi

)
–

4∑

i=1

ε̂i|si|

–
1

mi

4∑

i=2

φ̃T
i

C
0 Dα

t φ̂i –
1
ri

4∑

i=1

ε̃i
C
0 Dα

t ε̂i. (45)

By utilizing the inequality |δi| ≤ εi, one has

δisi ≤ |δisi| ≤ |δi||si| ≤ εi|si|. (46)
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Thus, substituting (46) into (45), it can be verified that

C
0 Dα

t V ≤ –
4∑

i=1

kis2
i –

4∑

i=1

bis
1+pi/qi
i

+
1

mi

4∑

i=2

φ̃T
i
(
misiPi(Zi) – C

0 Dα
t φ̂i

)

+
1
ri

4∑

i=1

ε̃i
(
ri|si| – C

0 Dα
t ε̂i

)
. (47)

According to (47), the adaptive laws are constructed in the following form:

C
0 Dα

t φ̂i = misiPi(Zi),
C
0 Dα

t ε̂i = ri|si|.
(48)

From (47) and (48), it can be derived that

C
0 Dα

t V ≤ –
4∑

i=1

kis2
i –

4∑

i=1

bis
1+pi/qi
i . (49)

Then we define

� = [s1, . . . , s4, φ̂2, φ̂3, φ̂4, ε̃1, ε̃2, ε̃3, ε̃4]T , (50)

βmax = max

{

1,
1

m2
,

1
m3

,
1

m4
,

1
r1

,
1
r2

,
1
r3

,
1
r4

}

, (51)

βmin = min

{

1,
1

m2
,

1
m3

,
1

m4
,

1
r1

,
1
r2

,
1
r3

,
1
r4

}

. (52)

Obviously, we have the following inequality:

1
2βmax

‖�‖2 ≤ V ≤ 1
2βmin

‖�‖2. (53)

Thus, there exists a κ-function ρ such that

C
0 Dα

t V ≤ –ρ
(‖�‖). (54)

Then, referring to Lemma 2, we see that the compensated tracking errors go to zero
asymptotically.

Now it is time to prove that the sliding motion happens in finite time. Construct the
Lyapunov function candidate as

Vs =
1
2

s2
4 ≤ V . (55)
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The inequality (49) can be rewritten as

C
0 Dα

t V ≤ –
4∑

i=1

kis2
i –

4∑

i=1

bis
1+pi/qi
i

≤ –b4s1+p4/q4
4 = –

√
2

p4+q4
q4 b4V

p4+q4
2q4

s . (56)

Furthermore, there exists a positive constant n such that [3]

nV
p4+q4

2q4 ≤ V
p4+q4

2q4
4 . (57)

Substituting (57) into (56), it can be derived that

C
0 Dα

t V ≤ –
√

2
p4+q4

q4 b4V
p4+q4

2q4
s

≤ –
√

2
p4+q4

q4 nb4V
p4+q4

2q4 . (58)

According to Lemma 3, we can conclude that the sliding motion occurs in finite time.
Since vi = zi – ξi, then if we can show that ξi goes to zero in finite time, this also means that
the tracking errors zi will go to zero within finite time.

In what follows, select the Lyapunov function candidate Vξ to prove that ξi (i = 1, . . . , 4)
go to zero within finite time:

Vξ =
1
2

4∑

i=1

ξ 2
i . (59)

Then the time derivative of Vξ can be written as

C
0 Dα

t Vξ ≤
4∑

i=1

ξi
C
0 Dα

t ξi

= –
4∑

i=1

kiξ
2
i +

2∑

i=1

ξi(ai,c – ai)

–
4∑

i=1

giξi sign(ξ1). (60)

According to [40], we know that the command filters can guarantee |ai,c – ai| ≤ ψi in
finite time. Then we have

C
0 Dα

t Vξ ≤ –
4∑

i=1

kiξ
2
i +

2∑

i=1

ξi(ai,c – ai)

–
4∑

i=1

giξi sign(ξ1)



Lu et al. Advances in Difference Equations        (2020) 2020:121 Page 14 of 21

≤ –
4∑

i=1

kiξ
2
i +

2∑

i=1

|ξi|
∣
∣(ai,c – ai)

∣
∣

–
4∑

i=1

gi|ξi|

≤ –(
√

2g0 – 2
√

2ψ̄)|ξi|
= –(

√
2g0 – 2

√
2ψ̄)V 1/2

ξ , (61)

where g0 = min(gi), ψ̄ = max(ψi). Then, if we select appropriate parameter g0 such that√
2g0 – 2

√
2ψ̄ > 0, then ξi will go to zero in finite time. The proof is completed. �

Remark 6 Compared with the backstepping based adaptive control strategy considered in
[2, 12, 20, 22–24, 28, 29, 33, 34], the following superiorities are obtained. First, the designed
error compensating mechanism in [22, 23, 34] can only achieve asymptotic stability. In this
paper, we employ the sign functions as in (16) such that the finite-time convergent of the
error compensation system can be guaranteed. Second, the conventional control laws con-
structed in [2, 12, 20, 22, 29] can only guarantee the tracking errors are bounded. However,
the controllers (26), (32), (37) and (42) provided in this paper can guarantee that the track-
ing errors are finite-time stable, which can ensure the fractional-order PMSM system with
fast convergence performance. Third, the finite-time tracking control method proposed
in [24] for PMSMs does not cover the generalized fractional-order system. However, our
method can solve the finite-time control issue for fractional-order PMSM. Fourth, the
adaptive NN technique via backstepping developed in [12, 33, 34] does not take into ac-
count the approximation errors. In this paper, the adaptive law C

0 Dα
t ε̂i = ri|si| in (48) is

constructed to compensate the approximation errors, which can ensure the closed-loop
system with high quality tracking performance.

5 Simulation results
5.1 Performance analysis
Simulation results are given to show the effectiveness of the constructed finite-time adap-
tive NN control for the fractional-order PMSM in this section. Let the reference signal be
xd = sin(t). The simulation is conducted under the condition of x1(0) = 0.2, x2(0) = x3(0) =
0, x4(0) = 10 and the external disturbance

TL =

⎧
⎨

⎩

1.5 Nm 0 ≤ t ≤ 10,

3 Nm t > 10.
(62)

The control parameters of the designed controllers are selected as k1 = 25, k2 = 20, k3 =
25, k4 = 50, c1 = 0.01, c2 = 0.02, c3 = 0.01, c4 = 0.01, d1 = 60, d2 = 50, d3 = 55, d4 = 60, b1 = 5,
b2 = 10, b3 = 10, b4 = 10, m2 = m3 = m4 = 1500, r1 = 0.1, r2 = 0.2, r3 = 0.1, r4 = 0.5.

Furthermore, the RBF NNs are adopted as the following way. The RBF NNs φT
2 P2(Z2),

φT
3 P3(Z3), φT

4 P4(Z4) cover nine nodes with centers μi spaced evenly in the range [–8, 8]
and the widths are set to be 2, respectively.

Previous study shows that the fractional-order PMSM occurs chaos without controllers.
The trajectory tracking of the fractional-order PMSM is shown in Figs. 2–5 with the de-
signed controllers being applied. The time curves of the output response x1 and the de-
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Figure 2 The trajectory tracking of sin(t) in the case of α = 0.98. (a) x1 and xd . (b) The tracking error

sired signal xd are depicted in Fig. 2(a). As we can see, the state x1 can track the desired
value xd precisely. A change of load torque disturbance does not result in performance
degradation. The amplitude of the tracking error between x1 and xd reduces to zero in
finite time. Figure 2(b) displays the curve of tracking error, it shows that the rotor posi-
tion tracking error goes to zero rapidly. The time curves of si, i = 1, 2, 3 are provided in
Figs. 3–4. From both Figs. 3 and 4, one sees that the sliding motion obtains in a short time.
Therefore, a conclusion can be achieved that our method has good convergence proper-
ties.

The curves of d – q axis currents are given in Fig. 5. The results of trajectory tracking
performance for different α are shown in Fig. 6. Figure 6(a) is the curve of the position,
and the tracking error is given in Fig. 6(b). The time evolution of s1 is displayed in Fig. 6(c).
It can be obviously observed that the fractional-order PMSM system achieves finite-time
stability despite the orders are different, which means that the proposed controllers are
effective for fractional-order PMSM system.

Figure 7 exhibits the performance of the controller when perturbation of the parameter
γ occurs. As the system parameter γ alters a little, the system is still stable. That is to say,
the designed controllers show good robustness for the system with parameter perturba-
tions and uncertainties in the whole process.
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Figure 3 The time evolution of s1

Figure 4 Sliding mode surfaces s2 and s3

Figure 5 d – q axis currents

Although there exist chaotic motion, load torque disturbance, parameter perturbations
and uncertainties, the proposed method is an efficient approach to obtaining the finite-
time stability for fractional-order chaotic PMSM system.
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Figure 6 The trajectory tracking performance for different α . (a) x1 and xd . (b) The tracking error. (c) The time
evolution of s1

Figure 7 The trajectory tracking performance for different γ

5.2 Scheme contrast
To display the superiority of the finite-time controller presented in this paper, the result is
given comparing with [34] under the condition of α = 0.98. For the fractional-order PMSM
system, the neural networks command filtered backstepping controller (NCBC) proposed
in [34] can be constructed as

a1f = –k1f z1 + C
0 Dα

t xd, (63)
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a2f = –k2f z2 –
1
2

v2 – z1 –
1

2l2
2
θ̂f PT

2f P2f , (64)

uqf = –k3f z3 –
1
2

v3 – z2 –
1

2l2
3
θ̂f PT

3f P3f , (65)

udf = –k4f z4 –
1
2

v4 –
1

2l2
4
θ̂f PT

4f P4f . (66)

The command filter has the following form:
⎧
⎨

⎩

C
0 Dαϕ1 = wnϕ2,
C
0 Dαϕ2 = –ζwnϕ2 – wn(ϕ1 – q),

(67)

where ϕ1 indicates the output of the filter with q being the input.
The adaptive law is designed as

C
0 Dα

t θf =
4∑

i=2

h
2l2

i
v2

i PT
i Pi – mf θ̂f , (68)

where kif > 0 for i = 1, . . . , 4, h and li for i = 2, 3, 4 are positive constants, Pif denote the
NNs basis function.

Compared with the NCBC proposed in [34], our method can realize finite-time signal
tracking. Figure 8 depicts the trajectory tracking contrast between NCBC and the pro-
posed control strategy. It reveals that our scheme is more accurate than the NCBC. There-
fore, it is concluded that the fractional-order chaotic PMSM possesses better performance
by utilizing the proposed control strategy.

Remark 7 The NCBC method proposed in [34] cannot guarantee the tracking error cov-
erages to zero in finite time. Through these comparisons, we can know that our method
can solve the tracking problem for fractional-order PMSM in finite time.

Remark 8 So far, to the best of our knowledge, no results are available for finite-time
control of fractional-order PMSM. Compared with the existing literature, the finite-time
tracking control issue is considered in this paper for fractional-order chaotic PMSM.

6 Conclusions
In this brief, a finite-time adaptive NN control method is presented to deal with the po-
sition tracking issue of fractional-order PMSM with chaotic motion, load torque distur-
bance, parameter perturbations and uncertainties. The finite-time adaptive control ap-
proach consists of adaptive NNs, command filters, backstepping, fractional-order error
compensating mechanism and terminal sliding surface technique. With the aid of adaptive
NNs, the unknown function can be estimated by designed weight adaptive laws. The com-
mand filters with a compensating mechanism not only solve the ‘explosion of complexity’
problem in backstepping, but also reduce the filtering errors. Meanwhile, the fractional-
order terminal sliding manifolds are integrated into control signals to ensure finite-time
stability of the tracking error. Our simulation results show the superior performance of
the proposed control strategy for the fractional-order chaotic PMSM. In future work, we
will study the finite-time tracking control problem for incommensurate fractional-order
PMSM system with unmeasured states and input saturation.
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Figure 8 Trajectory tracking contrast between NCBC and the proposed control strategy. (a) x1 and xd . (b) The
tracking error
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