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Abstract
The Zhang neural network (ZNN) has become a benchmark solver for various
time-varying problems solving. In this paper, leveraging a novel design formula, a
noise-tolerant continuous-time ZNN (NTCTZNN) model is deliberately developed and
analyzed for a time-varying Lyapunov equation, which inherits the exponential
convergence rate of the classical CTZNN in a noiseless environment. Theoretical
results show that for a time-varying Lyapunov equation with constant noise or
time-varying linear noise, the proposed NTCTZNN model is convergent, no matter
how large the noise is. For a time-varying Lyapunov equation with quadratic noise,
the proposed NTCTZNN model converges to a constant which is reciprocal to the
design parameter. These results indicate that the proposed NTCTZNN model has a
stronger anti-noise capability than the traditional CTZNN. Beyond that, for potential
digital hardware realization, the discrete-time version of the NTCTZNN model
(NTDTZNN) is proposed on the basis of the Euler forward difference. Lastly, the
efficacy and accuracy of the proposed NTCTZNN and NTDTZNN models are illustrated
by some numerical examples.

Keywords: Time-varying Lyapunov equation; Noise-tolerant continuous-time
Zhang neural network; Noise-tolerant discrete-time Zhang neural network; Global
convergence

1 Introduction
Due to the important role that the time-varying Lyapunov equation plays in a broad spec-
trum of areas, there has been a rapid increase in its algorithm design, and many numerical
methods and neural dynamics have been proposed to solve this problem and its time-
invariant version; see, e.g., [1–6] on this subject. Let t0 ∈ R and tf ∈ R denote the start
and the final time instant of the solving process, respectively. The time-varying Lyapunov
equation can be expressed as

A(t)�X + XA(t) = B(t), t ∈ [t0, tf ], (1)

where A(t) ∈ R
n×n and B(t) ∈ R

n×n are smoothly time-variant matrix signals, and X ∈
R

n×n is the unknown matrix to be determined. In this paper, we are going to compute the
online solution of problem (1) in real time, and the solution set of (1) is assumed to be
nonempty throughout our discussions in this paper.
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Since the seminal paper written by Hopfield [7], neural networks, especially recur-
rent neural networks, have been widely utilized to solve various time-invariant and time-
varying problems. As an important subtopic of recurrent neural network, the Zhang neu-
ral network (ZNN) was firstly proposed by Zhang Yunong on March 2001 [1]. In recent
years, ZNN has been generally deemed as a benchmark solver for various dynamics sys-
tems appeared in practice, such as the robots’ kinematic control, the pendulum system
[8], the synchronization of chaotic sensor systems [9]. Based on a simple ordinary dif-
ferential equation (ODE), i.e., the test problem to analyze the stability property of a nu-
merical method for initial value problem, for the ZNN every component of an indefinite
error function directly exponentially tends to zero, which endows ZNN with the ability
to track the time-dependent solution of time-varying problems in an error-free manner.
The ZNN has been intensively studied in the literature with its increasingly applications,
and many more efficient variants of ZNN have been presented. For example, for potential
digital hardware realization, several multi-step discrete-time ZNNs have been designed in
[10–13]. To accelerate the convergence speed of the ZNN, a super-exponential ZNN with
time-varying design parameter is proposed by Chen et al. [9]. Moreover, based on some
deliberated designed activation functions, many continuous-time ZNNs with finite-time
convergence property have been presented [14, 15].

Though the above ZNNs have received remarkable progress in various time-varying or
future problem solving, they are sensitive to noise and prone to generating large error
in a noiseless environment. However, noise is ubiquitous in real life, which cannot be ig-
nored completely. For example, in the background extraction from surveillance video with
missing and noisy data [16, 17], the observed data are often contaminated with additive
Gaussian noise. The ZNN with anti-noise property has drawn increasing attention from
researchers in recent years. To the best or our knowledge, Jin et al. [18] firstly designed an
integration-enhanced ZNN formula to solve for real time-varying matrix inversion with
additive constant noise. Then, Guo et al. [19] proposed a modified ZNN formula to solve
a time-varying nonlinear equation with additive harmonic noise, whose convergence is
analyzed based on an ingenious Lyapunov function. To analyze time-dependent matrix
inversion with dynamic bounded gradually disappearing noise or dynamic bounded non-
disappearing noise, a new noise-tolerant and predefined-time ZNN model is presented by
Xiao et al. [20], in which the sign function plays an important role in proving its conver-
gence and robustness.

However, the above three noise-tolerate ZNNs [18–20] all fail to deal with time-varying
linear noise, which is unbounded and differs from the noise considered in the previous
studies [18–20]. Thus there is much room for those papers to be improved. In this paper,
based on a novel design formula, we are going to design a noise-tolerate continuous-time
ZNN (termed NTCTZNN) to solve the time-varying Lyapunov equation which is con-
taminated with linear noise. The new ZNN is immune to linear noise and can counter
its negative compact completely. Moreover, for potential digital hardware realization, the
discrete-time version of NTCTZNN model is proposed on the basis of the Euler forward
difference. A theoretical analysis of the proposed NTCTZNN and its discrete version is
also discussed in detail.

In a nutshell, the contributions of this paper can be summarized as follows.
• A novel noise-tolerant continuous-time Zhang neural network (termed NTCTZNN)

with double integrals is proposed for solving the time-varying linear equations.
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• The proposed ZNN model is guaranteed to converge to the solution of the
time-varying linear equations without noise or with constant noise or with
time-varying linear noise.

• A discrete-time version of the NTCTZNN model is proposed based on the Euler
forward difference.

• Numerical results including comparisons are presented to verify the obtained
theoretical results.

The remainder of this paper is organized as follows. In Sect. 2, a novel noise-tolerant
continuous-time ZNN (termed NTCTZNN) model is designed for the time-varying Lya-
punov equation, and its convergence results are rigorously discussed. Section 3 describes
the discrete version of the NTCTZNN (termed NTDTZNN), and proves its global conver-
gence. Section 4 presents some numerical results to verify the efficiency of the NTCTZNN
and the NTDTZNN. Finally, Sect. 5 concludes the paper with future research directions.

2 NTCTZNN model and its convergence
In this section, we shall design a novel noise-tolerant continuous-time Zhang neural net-
work (NTCTZNN) for the time-varying Lyapunov equation and prove its convergence.

Firstly, let us review the noise-tolerant ZNN model with integral designed by Jin et al.
[18]:

ė(t) = –γ e(t) – λ

∫ t

0
e(τ ) dτ , (2)

where γ > 0 and λ > 0 are two designed parameters. Setting e(t) = A(t)�X + XA(t) – B(t)
in (2), we get a noise-tolerant continuous-time ZNN model for time-varying Lyapunov
equation as follows:

A(t)�Ẋ(t) + Ẋ(t)A(t)

= –γ
(
A(t)�X(t) + X(t)A(t) – B(t)

)
– λ

∫ t

0

(
A(τ )�X(τ ) + X(τ )A(τ ) – B(τ )

)
dτ

–
(
Ȧ(t)�X(t) + X(t)Ȧ(t) – Ḃ(t)

)
+ n(t), (3)

where n(t) ∈R
n×n denotes an unknown additive noise. The noise-tolerant ZNN model (3)

has the following convergence property.

Lemma 2.1 The noise-tolerant ZNN model (3) converges to a theoretical solution of prob-
lem (1) globally, no matter how large the unknown matrix-form constant noise is. In addi-
tion, it converges towards a theoretical solution of problem (1) with the upper bound of the
limit of the steady-state residual error being ‖a‖/λ in the presence of the unknown matrix-
form time-varying linear noise, where n(t) = at ∈R

n×n is a constant nose.

Proof See Theorems 1–3 in [18]. �

To further improve the efficiency of noise-tolerant continuous-time ZNN model (3), we
present a novel design formula with double integrals as follows:

ė(t) = –γ e(t) – λ

∫ t

0
e(τ ) dτ – μ

∫ t

0
du

∫ u

0
e(v) dv. (4)
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Setting e(t) = A(t)�X + XA(t) – B(t) in the design formula (4), we get a new noise-tolerant
continuous-time ZNN model for a time-varying Lyapunov equation:

A(t)�Ẋ(t) + Ẋ(t)A(t)

= –γ
(
A(t)�X(t) + X(t)A(t) – B(t)

)
– λ

∫ t

0

(
A(τ )�X(τ ) + X(τ )A(τ ) – B(τ )

)
dτ

– μ

∫ t

0
du

∫ u

0

(
A(v)�X(v) + X(v)A(v) – B(v)

)
dv

–
(
Ȧ(t)�X(t) + X(t)Ȧ(t) – Ḃ(t)

)
+ n(t). (5)

Setting

X2(u) =
∫ u

0

(
A(v)�X(v) + X(v)A(v) – B(v)

)
dv, X1(t) =

∫ t

0
X2(u) du,

the integral and differential equation (5) can be written as the following system of differ-
ential equations:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ẋ1(t) = X2(t),

Ẋ2(t) = A(t)�X(t) + X(t)A(t) – B(t),

A(t)�Ẋ(t) + Ẋ(t)A(t) = –γ (A(t)�X(t) + X(t)A(t) – B(t)) – λX2(t) – μX1(t)

– (Ȧ(t)�X(t) + X(t)Ȧ(t) – Ḃ(t)) + n(t).

In a practical computation, we need to transform the above system of differential equa-
tions in matrix form to that in vector form. Based on the Kronecker product ⊗ and the
vec-operator vec, we get the NTCTZNN in vector form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

vec(Ẋ1(t)) = vec(X2(t)),

vec(Ẋ2(t)) = vec(A(t)�X(t) + X(t)A(t) – B(t)),

(In ⊗ A(t)� + A(t)� ⊗ In) vec(Ẋ(t))

= vec(–γ (A(t)�X(t) + X(t)A(t) – B(t)) – λX2(t)

– μX1(t) – (Ȧ(t)�X(t) + X(t)Ȧ(t) – Ḃ(t)) + n(t)).

The design formula (4) can be utilized to solve the time-varying linear matrix equation
and the time-varying Sylvester equation.

(1) Consider the time-varying linear matrix equation

A(t)X = B(t),

where A(t) ∈R
m×n, B(t) ∈R

m×p. Applying the design formula (4) to solve the above
time-varying linear matrix equation, we have

Â(t) vec
(
Ẋ(t)

)

= –γ
(
Â(t) vec(X) – vec

(
B(t)

))
– λ

∫ t

0

(
Â(τ ) vec

(
X(τ )

)
– vec

(
B(τ )

))
dτ
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– μ

∫ t

0
du

∫ u

0

(
Â(v) vec

(
X(v)

)
– vec

(
B(v)

))
dv –

( ˙̂A(t) vec
(
X(v)

)

– vec
(
Ḃ(t)

))
+ vec

(
n(t)

)
, (6)

where Â(t) = Ip ⊗ A(t).
(2) Consider the time-varying Sylvester equation

A1(t)X + XA2(t) = B(t),

where A1(t) ∈ R
m×m, A2(t) ∈R

n×n and B(t) ∈R
m×n. Applying the design formula

(4) to solve the time-varying Sylvester equation, we have

Â(t) vec
(
Ẋ(t)

)

= vec

(
–γ

(
A(t)�X(t) + X(t)A(t) – B(t)

)

– λ

∫ t

0

(
A(τ )�X(τ ) + X(τ )A(τ ) – B(τ )

)
dτ

– μ

∫ t

0
du

∫ u

0

(
A(v)�X(v) + X(v)A(v) – B(v)

)
dv

–
(
Ȧ(t)�X(t) + X(t)Ȧ(t) – Ḃ(t)

)
+ n(t)

)
, (7)

where Â(t) = In ⊗ A1(t) + A2(t)� ⊗ Im.

Assumption 2.1 To ensure the convergence property of the residual error ‖e(t)‖ generated
by the NTCTZNN (5), the designed parameters γ , λ and μ are restricted to satisfy γ > 0,
λ > 0, μ > 0 and all the roots of the polynomial

s3 + γ s2 + λs + μ = 0, (8)

are in the left half plane.

Remark 2.1 If we set γ = 3, λ = 2, μ = 1, three roots of (8) are –0.7849 + 1.3071i, –0.7849 –
1.3071i, –0.4302. So Assumption 2.1 holds with γ = 3, λ = 2, μ = 1.

According to a different type of the noise n(t), we divide the proof of the convergence of
NTCTZNN (5) into the following four cases.

Case 1: If the unknown noise n(t) = 0 ∈R
n×n, we have the following convergence result.

Theorem 2.1 When n(t) = 0 and γ , λ satisfy the condition (8), the residual error ‖e(t)‖
generated by NTCTZNN (5) globally and exponentially converges to zero.

Proof Set

ε(t) =
∫ t

0
du

∫ u

0
e(v) dv
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and let eij(t), εij(t), ε̇ij(t), ε̈ij(t) and ...
ε ij(t) be the ijth element of e(t), ε(t), ε̇(t), ε̈(t) and ...

ε (t),
respectively. Then the ijth subsystem of the dynamical system (6) can be written as

...
ε (t) + γ ε̈(t) + λε̇(t) + με(t) = 0, (9)

whose characteristic equation is

s3 + γ s2 + λs + μ = 0. (10)

The discriminant of the cubic equation (10) is defined as

� = 3
(
4λ3 – λ2γ 2 – 18λμγ + 27μ2 + 4μγ 3).

According to the Fan equations [21], if γ 2 = 3λ, γ λ = 9μ, Eq. (10) has a real triple root,
denoted by s1, which is a negative constant due to Assumption 2.1. So the general solution
of the third-order ordinary differential equation (9) is

εij(t) =
(
c1ij + c2ijt + c3ijt2) exp(s1t), ∀i, j = 1, 2, . . . , n,

where c1ij, c2ij, c3ij are three constants determined by the initial conditions. Then, differ-
entiating the above equation twice, we have

eij(t) =
[
c1ijs2

1 + (2 + s1t)c2ijs1 +
(
2 + 4ts1 + t2s2

1
)
c3ij

]
exp(s1t).

The matrix form error e(t) is

e(t) =
[
s2

1c1 + (2 + s1t)s1c2 +
(
2 + 4ts1 + t2s2

1
)
c3

]
exp(s1t),

where c1 = (c1ij) ∈R
n×n, c2 = (c2ij) ∈ R

n×n, c3 = (c3ij) ∈R
n×n. Then

∥∥e(t)
∥∥ ≤ [

s2
1‖c1‖ +

∣∣(2 + s1t)s1
∣∣‖c2‖ +

∣∣2 + 4ts1 + t2s2
1
∣∣‖c3‖

]
exp(s1t).

The conclusion of this theorem holds from the above inequality and s1 < 0.
If � > 0, Eq. (10) has a real root and two complex conjugate roots, denoted by

s1, s2 = α + βi, s3 = α – βi,

where i =
√

–1 denotes the imaginary unit. Since γ , λ and μ satisfy Assumption 2.1, we
have s1 < 0, α < 0. From the above analysis, the general solution of the third-order ordinary
differential equation (9) is

εij(t) = c1ij exp(s1t) + exp(αt)
(
c2ij cos(βt) + c3ij sin(βt)

)
,

where c1ij, c2ij, c3ij are three constants determined by the initial conditions. Then, differ-
entiating the above equation twice, we have

eij(t) = c1ijz2
1 exp(s1t) +

(
α2 – β2) exp(αt)

(
c2ij cos(βt) + c3ij sin(βt)

)
.



Sun and Liu Advances in Difference Equations        (2020) 2020:116 Page 7 of 15

The matrix form error e(t) is

e(t) = c1z2
1 exp(s1t) +

(
α2 – β2) exp(αt)

(
c2 cos(βt) + c3 sin(βt)

)
,

where c1 = (c1ij) ∈R
n×n, c2 = (c2ij) ∈ R

n×n, c3 = (c3ij) ∈R
n×n. Then

∥∥e(t)
∥∥ ≤ ‖c1‖z2

1 exp(s1t) +
∣∣α2 – β2∣∣(‖c2‖ + ‖c3‖

)
exp(αt).

The conclusion of this theorem holds from the above inequality and s1 < 0 and α < 0.
If � = 0, Eq. (10) has a multiple root and all of its roots are real, denoted by s1, s2 = s3.

The general solution of third-order ordinary differential equation (9) is

εij(t) = c1ij exp(s1t) + (c2ij + c3ijt) exp(s2t), ∀i, j = 1, 2, . . . , n,

where c1ij, c2ij, c3ij are three constants determined by the initial conditions. Then, differ-
entiating the above equation twice, we have

eij(t) = c1ijs2
1 exp(s1t) +

[
c3ij + 2c3ijs2 + (c2ij + c3ijt)s2

2
]

exp(s2t).

The matrix form error e(t) is

e(t) = s2
1c1 exp(s1t) +

[
c3 + 2s2c3 + (c2 + c3t)s2

2
]

exp(s2t),

where c1 = (c1ij) ∈R
n×n, c2 = (c2ij) ∈ R

n×n, c3 = (c3ij) ∈R
n×n. Then

∥∥e(t)
∥∥ ≤ [s2

1‖c1‖ exp(s1t) +
[‖c3‖ + 2|s2|‖c3‖ +

(‖c2‖ + ‖c3t
)‖s2

2
]

exp(s2t).

The conclusion of this theorem holds from the above inequality and s1 < 0 and s2 < 0.
If � < 0, Eq. (10) has three distinct real roots, denoted by s1, s2, s3. The general solution

of third-order ordinary differential equation (9) is

εij(t) = c1ij exp(s1t) + c2ij exp(s2t) + c3ijt exp(s3t), ∀i, j = 1, 2, . . . , n,

where c1ij, c2ij, c3ij are three constants determined by the initial conditions. Then, differ-
entiating the above equation twice, we have

eij(t) = c1ijs2
1 exp(s1t) + c2ij exp(s2t) + c3ij exp(s3t).

The matrix form error e(t) is

e(t) = s2
1c1 exp(s1t) + s2

2c2 exp(s2t) + s2
3c3 exp(s3t),

where c1 = (c1ij) ∈R
n×n, c2 = (c2ij) ∈ R

n×n, c3 = (c3ij) ∈R
n×n. Then

∥∥e(t)
∥∥ ≤ s2

1‖c1‖ exp(s1t) + s2
2‖c2‖ exp(s2t) + s2

3‖c3‖ exp(s3t).



Sun and Liu Advances in Difference Equations        (2020) 2020:116 Page 8 of 15

The conclusion of this theorem holds from the above inequality and s1 < 0, s2 < 0 and
s3 < 0. �

Case 2: If the unknown noise n(t) is a constant noise n(t) = a ∈ R
n×n, we have the fol-

lowing convergence result.

Theorem 2.2 No matter how large the unknown constant noise n(t) = (aij) ∈ R
n×n is, the

residual error ‖e(t)‖ generated by NTCTZNN (5) for problem (1) converges to zero.

Proof Obviously, the NTCTZNN (5) can be decoupled into n2 differential equations:

ėij(t) = –γ eij(t) – λ

∫ t

0
eij(τ ) dτ – μ

∫ t

0
du

∫ u

0
eij(v) dv + aij. (11)

Taking the Laplace transformation on both sides of (11), one has

sεij(s) – eij(0) = –γ εij(s) –
λ

s
εij(s) –

μ

s2 εij(s) +
aij

s
, (12)

where εij(t) is the image function of eij(t). From (12), we have

εij(s) =
eij(0)s2 + aijs

s3 + γ s2 + λs + μ
.

Three poles of its transfer function are s1, s2 and s3, which are located on the left half-
plane because γ , λ and μ satisfy Assumption 2.1. Thus the system (12) is stable and the
final value theorem holds. That is,

lim
t→∞ eij(t) = lim

s→0
sεij(s) = lim

s→0

eij(0)s3 + nijs2

s3 + γ s2 + λs + μ
= 0.

This completes the proof. �

Case 3: If the unknown noise n(t) is a time-varying linear noise n(t) = at + b ∈R
n×n, we

have the following convergence result.

Theorem 2.3 No matter how large the unknown linear noise n̄ = at + b = (aijt + bij) ∈R
n×n

is, the residual error ‖e(t)‖ generated by NTCTZNN (5) for problem (1) converges to zero.

Proof Similar to the proof of Theorem 2.3, we have

lim
t→∞ eij(t) = lim

s→0
sεij(s) = lim

s→0

eij(0)s3 + bijs2 + aijs
s3 + γ s2 + λs + μ

= 0.

This completes the proof. �

Case 4: If the unknown noise n(t) is a time-varying quadratic noise n(t) = at2 + bt + c ∈
R

n×n, we have the following convergence result.
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Theorem 2.4 For the unknown quadratic noise n̄ = at2 + bt + c = (aijt2 + bijt + cij) ∈R
n×n,

we have

lim
t→∞

∥∥e(t)
∥∥ =

2‖a‖
μ

.

Proof Similar to the proof of Theorem 2.3, we have

lim
t→∞ eij(t) = lim

s→0
sεij(s) = lim

s→0

eij(0)s3 + cijs2 + bijs + 2aij

s3 + γ s2 + λs + μ
=

2aij

μ
.

This completes the proof. �

3 NTDTZNN and its convergence
For potential digital hardware realization, we shall present a noise-tolerant discrete-time
ZNN (NTDTZNN) model for problem (1) and prove its global convergence.

We use the Euler forward difference to discretize the term Ẋ(t) in NTCTZNN (5) and
get the following NTDTZNN model:

A�
k Xk+1 + Xk+1Ak

= A�
k Xk + XkAk – γ τek – λτ

k∑
j=1

ej – μτ

k∑
j=1

j∑
i=1

ei

– τ
(
Ȧ�

k Xk + XkȦk – Ḃk
)

+ τnk , (13)

where τ > 0 is the sampling gap.

Lemma 3.1 NTDTZNN (13) can be written as

ek+1 + (γ τ – 1)ek + λτ

k∑
j=1

ej + μτ

k∑
j=1

j∑
i=1

ei – τnk + O
(
τ 2) = 0. (14)

Proof From (13), we have

– γ τek – λτ

k∑
j=1

ej – μτ

k∑
j=1

j∑
i=1

ei

= A�
k (Xk+1 – Xk) + (Xk+1 – Xk)Ak + τ

(
Ȧ�

k Xk + XkȦk – Ḃk
)

– τnk

= τ
(
A�

k Ẋk + ẊkAk
)

+ τ
(
Ȧ�

k Xk + XkȦk – Ḃk
)

– τnk + O
(
τ 2)

= τ ėk – τnk + O
(
τ 2)

= ek+1 – ek – τnk + O
(
τ 2),

in which the second and the fourth equalities follows from the Euler forward differ-
ence. Then the above equality can be easily further written as (14). This completes the
proof. �
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Theorem 3.1 Considering the linear noise nk = ak + b ∈ R
n×n, the limit of the residual

error ‖ek‖ generated by NTDTCNN (13) is O(h2) if and only if the parameters γ , λ and τ

satisfy

μτ > 0, μτ + 4γ τ + 2λτ < 8, (γ τ – 1)2 < 1,
(
(λ + 2γ )τ + (γ τ – 1)

(
(λ + μ + γ )τ – 3

)
– 3

)2 <
(
(γ τ – 1)2 – 1

)2.
(15)

Proof Obviously, equality (14) also holds for k, that is,

ek + (γ τ – 1)ek–1 + λτ

k–1∑
j=1

ej + μτ

k–1∑
j=1

j∑
i=1

ei – τnk–1 + O
(
τ 2) = 0. (16)

From (14)–(16), we can get

ek+1 +
(
(γ + λ)τ – 2

)
ek – (γ τ – 1)ek–1 + μτ

k∑
i=1

ei – ah + O
(
τ 2) = 0. (17)

Similarly, equality (17) also holds for k, that is,

ek +
(
(γ + λ)τ – 2

)
ek–1 – (γ τ – 1)ek–2 + μτ

k–1∑
i=1

ei – aτ + O
(
τ 2) = 0. (18)

From (17)–(18), we thus have

ek+1 +
(
(γ + λ + μ)τ – 3

)
ek +

(
3 – (2γ + λ)τ

)
ek–1 + (γ τ – 1)ek–2 + O

(
τ 2) = 0. (19)

Setting ēk = ek – O(τ 2), equality (19) can rewritten as

ēk+1 +
(
(γ + λ + μ)τ – 3

)
ēk +

(
3 – (2γ + λ)τ

)
ēk–1 + (γ τ – 1)ēk–2 = 0. (20)

The characteristic equation of (20) is

v3 +
(
(γ + λ + μ)τ – 3

)
v2 +

(
3 – (2γ + λ)τ

)
v + γ τ – 1 = 0. (21)

If all of the characteristic-equation roots’ moduli in (21) are less than 1, the NTDTZNN
(13) is stable. According to the Jury stability criterion [22], it is easy to deduce that the roots
of characteristic equation (21) is inside the unit circle if and only if the four inequalities in
(15) hold. The proof is completed. �

Remark 3.1 If we set γ = 5, λ = 2, μ = 1 and τ = 0.1, it is easy to check that the four in-
equalities in (15) hold. If we set γ = 5, λ = 2, μ = 1 and τ = 0.01, it is easy to check that the
fourth inequality in (15) does not hold.
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Following a similar procedure, we can deduce the discrete form of the continuous-time
ZNN in [18] for problem (1), which is denoted by NTDTZNN-p, as follows:

A�
k Xk+1 + Xk+1Ak

= A�
k Xk + XkAk – γ τek – λτ

k∑
j=1

ej – τ
(
Ȧ�

k Xk + XkȦk – Ḃk
)

+ τnk . (22)

Corollary 3.1 NTDTZNN-p (22) with constant noise n(t) = a is convergent if and only if
the parameters γ , λ and τ satisfy

λτ > 0, 2γ τ + λτ < 4, (γ τ – 1)2 < 1. (23)

Proof Equality (22) can be written as

ek+1 + (γ τ – 1)ek + λτ

k∑
j=1

ej – τnk + O
(
τ 2) = 0,

which also holds for k, that is,

ek + (γ τ – 1)ek–1 + λτ

k–1∑
j=1

ej – τnk–1 + O
(
τ 2) = 0.

Subtracting the above two equalities, we have

ek+1 +
(
(γ + λ)τ – 2

)
ek – (γ τ – 1)ek–1 + O

(
τ 2) = 0.

That is,

ēk+1 +
(
(γ + λ)τ – 2

)
ēk – (γ τ – 1)ēk–1 = 0,

whose characteristic equation is

v2 +
(
(γ + λ)τ – 2

)
v + 1 – γ τ = 0. (24)

According to the Jury stability criterion [22] again, it is easy to deduce that the roots of
characteristic equation (24) is inside the unit circle if and only if the three inequalities in
(23) hold. The proof is completed. �

Remark 3.2 If we set γ = 5, λ = 2 and τ = 0.1, it is easy to check that the three inequalities
in (23) hold.

4 Numerical results
In this section, two simulation examples are included to substantiate the validity and fast
convergence performance of NTCTZNN (5) and NTDTZNN (13). For comparative pur-
poses, the CTZNN model in [8] (denoted by CTZNN), the NTCTZNN in [18] (denoted
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by NTCTZNN-p) and NTDTZNN-p (22) are included to solve time-varying Lyapunov
equation.

By some simple manipulations, the CTZNN model in [8] for problem (1) is

A(t)�Ẋ(t) + Ẋ(t)A(t) = –γ
(
A(t)�X(t) + X(t)A(t) – B(t)

)

–
(
Ȧ(t)�X(t) + X(t)Ȧ(t) – Ḃ(t)

)
+ n(t),

and the NTCTZNN model in [18] for problem (1) is

⎧⎪⎪⎨
⎪⎪⎩

Ẋ1(t) = X2(t),

A(t)�Ẋ(t) + Ẋ(t)A(t) = –γ (A(t)�X(t) + X(t)A(t) – B(t)) – λX1(t)

– (Ȧ(t)�X(t) + X(t)Ȧ(t) – Ḃ(t)) + n(t).

In the following experiments, we set γ = 5, λ = 2, μ = 1, h = 0.1, and

Res =
∥∥A(t)�X(t) + X(t)A(t) – B(t)

∥∥.

Example 4.1 Consider the following time-varying Lyapunov equation:

A(t)�X + XA(t) = B(t), t ∈ [0, 50] s,

where

A(t) =

[
3 + sin(t) 1

1 3 + cos(t)

]
, B(t) =

[
sin(t) 1 + cos(t)

1 + cos(t) sin(t)

]
.

Firstly, we consider the zero noise n(t) = 0 and the constant noise n(t) = 1. The numerical
results are plotted in Fig. 1.

Secondly, we consider the linear noise n(t) = t + 1 and the quadratic noise n(t) = t2 + t + 1.
The numerical results are plotted in Fig. 2.

The numerical results are depicted in Figs. 1 and 2 indicate that: (1) For the zero noise,
CTZNN becomes oscillating firstly, and NTCTZNN is the last one. The three tested mod-
els all can solve Example 4.1 with high accuracy. (2) For the constant noise, CTZNN fails

Figure 1 Numerical results of Example 4.1
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Figure 2 Numerical results of Example 4.1

to solve Example 4.1, and the other two models successfully solve Example 4.1. Moreover,
we again find that NTCTZNN-p becomes oscillating firstly than NTCTZNN. (3) For the
linear noise, both CTZNN and NTCTZNN-p fail to solve Example 4.1, while NTCTZNN
successfully solve Example 4.1. (4) For the quadratic noise, all the three tested models do
not work well, and the accuracy of NTCTZNN is about 1, which is in accordance with
Theorem 2.4 (aij = 1, μ = 1). Overall, this example indicates that

NTCTZNN � NTCTZNN – p � CTZNN,

where A � B denotes the performance of model A is better than that of model B.

Example 4.2 Consider the following time-varying Lyapunov equation:

A(t)�X + XA(t) = B(t), t ∈ [0, 50] s,

where

A(t) =

[
3 + t 1 + t
1 + t 3 + t

]
, B(t) =

[
t 1 + t

1 + t t

]
.

We use the NTDTZNN (13) to solve this problem with constant noise n(t) = 1 or linear
noise n(t) = t + 1. The numerical results are depicted in Fig. 3, from which we find that
Res generated by NTDTZNN is oscillating decreasing. In fact, at the final time, 50 s, Res
generated by NTDTZNN with the both types of noises is about 10–9, which indicates
that NTDTZNN successfully solves this problem with high accuracy. For NTDTZNN
with constant noise, the accuracy is about 10–7, a litter worse than that of NTDTZNN,
but NTDTZNN with linear noise fails to solve this problem, which is in accordance with
Corollary 3.1.

5 Conclusions
In this paper, a novel noise-tolerant continuous-time ZNN (NTCTZNN) model and its
discrete form (NTDTZNN) have been designed to solve a time-varying Laypunov equa-
tion. It has been proved that NTCTZNN and NTDTZNN inherently possess robustness
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Figure 3 Numerical results of Example 4.2

to various type of noise. Numerical results as regards the two proposed models have been
presented to substantiate their efficiency for solving time-varying Lyapunov equation.

In the future, we shall further improve NTCTZNN by introducing triple integrals to en-
hance its robustness to quadratic noise and study delayed ZNNs based on the theoretical
results obtained in [23–28].
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