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Abstract
LetM be a commutative monoid, and let B be a Banach space. We give a new
recursive method to obtain a Gǎvruţa-type stability result for the functional equation

�n+1
y f (x) :=

n+1∑

k=0

(–1)n+1+k
(
n + 1
k

)
f (x + ky) = 0

via algebraic manipulations of the forward difference operator.
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1 Motivation
One of the best-known classes of functional equations, the Fréchet functional equations,
consists of functional equations equivalent to the equation

�y1�y2 · · ·�yn+1 f (0) = 0, (1)

studied by Fréchet [1] in 1909. In this paper, we focus on the equation

�n+1
y f (x) = 0, (2)

for which the stability result relies on its equivalence with the equation

�y1�y2 · · ·�yn+1 f (x) = 0. (3)

The stability problem of functional equations originated from a problem posed by S.
Ulam regarding “almost additive” functions that satisfy

∥∥f (x + y) – f (x) – f (y)
∥∥ ≤ ε
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for a fixed ε. This inequality was studied (under stricter assumptions than those for the
posed problem) by Hyers [2] in 1941. The result was that such a function can be approxi-
mated by an additive function. Hence the problems in this sense, where the assigned bound
is a constant, became known as Hyers–Ulam-type stability. Years later, Aoki [3] and Ras-
sias [4] presented stability results where the bound is a power function of x and y. Thus
the stability in this sense became known as the Aoki–Rassias-type stability. Later Gǎvruţa
[5] generalized this so that the bound (which can also be called the control function) is a
function with specific properties.

The solutions of (1), (2), and (3) are called generalized polynomials of degree at most
n. It is well known that a generalized polynomial p is constructed from diagonalization
of multiadditive functions [6]. The Hyers–Ulam stability of (2) and (3) has been studied
in [6–9]. The Gǎvruţa-type stability of (1) has been studied by Dăianu [10]. Dăianu used
an equivalence theorem, which is more general than that presented by Kuczma [11], to
obtain a stability result for (2) under the assumption that M is (n + 1)!-divisible. In this
paper, we present a result in which divisibility of M is not required. Instead, we require
(n + 1)!-divisibility of B, which is readily true since B is a Banach space.

2 The forward difference operator
Let M be a commutative monoid, let be B be a Banach space, and letN be the set of positive
integers. For a function f : M → B and y ∈ M, define �yf : M → B by

�yf (x) = f (x + y) – f (x)

for x ∈ M. Also, define its iterations

�y1�y2 · · ·�yn f = �y1 (�y2�y3 · · ·�yn f ) and �n
y f = �y�y · · ·�y︸ ︷︷ ︸

n terms

f

for y, y1, y2, . . . , yn ∈ M. Observe that �y1�y2 f = �y2�y1 f , so the ordering of yi is inter-
changable, and

�n
y f (x) =

n∑

k=0

(–1)n–k

(
n
k

)
f (x + ky)

and

�y1�y2 · · ·�yn f (x) =
1∑

ε1,ε2,...,εn=0

(–1)n+ε1+ε2+···+εn f

(
x +

n∑

i=1

εiyi

)
.

We will establish some algebraic manipulation of the forward difference operator �. We
begin with a modified version of Kuczma’s theorem.

Lemma 2.1 Let n ∈N and f : M → B. Then

�y1�2y2�3y3 · · ·�nyn f (x) =
1∑

ε1,ε2,...,εn=0

(–1)ε1+ε2+···+εn�n
bε1,ε2,...,εn

f (x + aε1,ε2,...,εn ) (4)
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for all x, y1, y2, . . . , yn ∈ X, where

aε1,ε2,...,εn =
n∑

i=1

iεiyi and bε1,ε2,...,εn =
n∑

i=1

(1 – εi)yi.

Proof Recall that

�n
bε1,ε2,...,εn

f (x + aε1,ε2,...,εn )

=
n∑

k=0

(–1)n–k

(
n
k

)
f

(
x +

n∑

i=1

iεiyi + k
n∑

i=1

(1 – εi)yi

)
.

We will show that each of these terms cancels out in the sum on the right-hand side of
(4), except for k = 0. For k �= 0, we observe that εk is absent in the term where i = k. So
changing εk does not change the argument of this term.

Consider another term in the sum on the right-hand side of (4), where only εk differs
from this term. Then the kth term in its expansion cancels the term we mentioned before.

Hence every term where k �= 0 has its negative in the sum in (4). Then

1∑

ε1,ε2,...,εn=0

(–1)ε1+ε2+···+εn�n
bε1,ε2,...,εn

f (x + aε1,ε2,...,εn )

=
1∑

ε1,ε2,...,εn=0

(–1)n+ε1+ε2+···+εn f

(
x +

n∑

i=1

εiiyi

)

= �y1�2y2�3y3 · · ·�nyn f (x). �

Lemma 2.2 Let n, m ∈N and f : M → B. Then

�n
y f (x + my) = �n

y f (x) +
m–1∑

k=0

�n+1
y f (x + ky)

for all x, y ∈ X.

Proof Since �n+1
y f (x) = �n

y f (x + y) – �n
y f (x) for all x, y ∈ M,

�n
y f (x + my) = �n

y f
(
x + (m – 1)y

)
+ �n+1

y f
(
x + (m – 1)y

)

= �n
y f

(
x + (m – 2)y

)
+ �n+1

y f
(
x + (m – 2)y

)
+ �n+1

y f
(
x + (m – 1)y

)

...

= �n
y f (x) +

m–1∑

k=0

�n+1
y f (x + ky). (5)

�

In the following theorems, for convenience, we let
∑–1

i=0 ai = 0 for any sequence (ai).
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Lemma 2.3 Let n ∈N and f : M → B. Then

n!�n
y f (x) = �2y,3y,...,(n+1)yf (x) –

1∑

l1=0

2∑

l2=0

· · ·
n∑

ln=0

l2+l3+···+ln–1∑

s=0

�n+1
y f (x + sy)

for all x, y ∈ X.

Proof By Lemma 2.2 it is sufficient to show that

�2y,3y,...,(n+1)yf (x) =
1∑

l1=0

2∑

l2=0

· · ·
n∑

ln=0

�n
y f

(
x + (l1 + l2 + · · · + ln)y

)
. (6)

For the case n = 1, we have

�2yf (x) = f (x + 2y) – f (x)

= f (x + 2y) – f (x + y) + f (x + y) – f (x) = �yf (x + y) + �yf (x).

Suppose that (6) is true for n = k. Since the order of �iy is interchangable,

�2y,3y,...,(k+2)yf (x) = �2y,3y,...,(k+1)y(�(k+2)yf )(x)

=
1∑

l1=0

2∑

l2=0

· · ·
k∑

lk =0

�n
y (�(k+2)yf )

(
x + (l1 + l2 + · · · + lk)y

)

=
1∑

l1=0

2∑

l2=0

· · ·
k∑

lk =0

�(k+2)y
(
�k

y f
)(

x + (l1 + l2 + · · · + lk)y
)

=
1∑

l1=0

2∑

l2=0

· · ·
k∑

lk =0

k+1∑

lk+1=0

�y
(
�k

y f
)(

x + (l1 + l2 + · · · + lk)y + lk+1y
)
.

�

The following theorem follows from Lemmas 2.3 and 2.1.

Theorem 2.4 Let n ∈ N and f : M → B. Then there exist m ∈ N and nonnegative integers
ai, bi, ci, di, ei for i ∈ {1, 2, . . . , m} such that

n!�y1�
n
y2 f (x) =

m∑

i=1

(–1)ai�n+1
biy1+ciy2 f (x + diy1 + eiy2)

for x, y1, y2 ∈ M. To be precise,

n!�y1�
n
y2 f (x) =

1∑

ε1,ε2,...,εn+1=0

(–1)ε1+ε2+···+εn+1�n+1
bε1,ε2,...,εn+1

f (x + aε1,ε2,...,εn+1 )

–
1∑

l1=0

2∑

l2=0

· · ·
n∑

ln=0

l1+l2+···+ln–1∑

s=0

�n+1
y2 f (x + y1 + sy2)

+
1∑

l1=0

2∑

l2=0

· · ·
n∑

ln=0

l1+l2+···+ln–1∑

s=0

�n+1
y2 f (x + sy2),
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where

aε1,ε2,...,εn+1 = ε1y1 +
n+1∑

i=2

iεiy2 and bε1,ε2,...,εn+1 = (1 – ε1)y1 +
n+1∑

i=2

(1 – εi)y2.

3 The stability of �n+1
y f (x) = 0

We recall a theorem from the author’s dissertation [12].

Theorem 3.1 Let n ∈N and f : M → B. Then

2n�n
y f (x) = �n

2yf (x) –
n∑

i=1

(
n
i

) i–1∑

k=0

�n+1
y f (x + ky)

for x, y ∈ M.

Next, we introduce the class of preferred control functions. Consider the following prop-
erties of a function ϕ : M → [0,∞).

P1 ϕ(x + y) ≤ ϕ(x) + ϕ(y) for all x, y ∈ M.
P2 For each x ∈ M, either there exists N ∈N such that ϕ(2kx) = 0 for every k > N , or

limk→∞ ϕ(2k+1x)
ϕ(2k x) < 2.

We take the notation of limit in P2 more loosely than normal. We allow it to not actually
converge, as long as every of its limit points are in [0, 2).

Also note that P2 implies that
∑∞

k=0
ϕ(2k x)

2k converges. The next proposition states that
the set of these functions forms a convex cone under pointwise addition and scalar mul-
tiplication.

Proposition 3.2 Let ϕ1,ϕ2 : M → [0,∞) satisfy P1 and P2. Then, for all c1, c2 ∈ [0,∞),
c1ϕ1 + c2ϕ2 also satisfies P1 and P2.

Proof The case c1c2 = 0 is straightforward, so we omit it. Firstly, it is clear that c1ϕ1 + c2ϕ2

satisfies P1. Let x ∈ M. We will consider the cases depending on whether N1 and N2 exist
such that ϕ1(2kx) = 0 for k > N1 and ϕ2(2lx) = 0 for l > N2.

• If both such N1 and N2 exist, then c1ϕ1(2kx) + c2ϕ2(2kx) = 0 whenever
k > max{N1, N2}.

• If only one exists, then without loss of generality we assume that N1 exists but N2 does
not. Then

lim
k→∞

c1ϕ1(2k+1x) + c2ϕ2(2k+1x)
c1ϕ1(2kx) + c2ϕ2(2kx)

= lim
k→∞

c2ϕ2(2k+1x)
c2ϕ2(2kx)

< 2.

• If there are no such N1 and N2, then there exist N ′
1, N ′

2 ∈N and r ∈ (0, 2) such that
ϕ1(2k+1x) < rϕ1(2kx) for k > N ′

1 and ϕ2(2l+1x) < rϕ2(2lx) for l > N ′
2. Thus

c1ϕ1
(
2k+1x

)
+ c2ϕ2

(
2k+1x

)
< rc1ϕ1

(
2kx

)
+ rc2ϕ2

(
2kx

)

for k > max{N ′
1, N ′

2}. This implies that limk→∞ c1ϕ1(2k+1x)+c2ϕ2(2k+1x)
c1ϕ1(2kx)+c2ϕ2(2k x) ≤ r < 2,

and we conclude that c1ϕ1 + c2ϕ2 satisfies P2. �
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Let C = {ϕ : M → [0,∞)|ϕ satisfy P1 and P2}. For all ϕ : M → [0,∞) and n ∈ N, we de-
fine λnϕ : M → [0,∞) by

λnϕ(x) =
∞∑

k=0

ϕ(2kx)
2kn .

The next theorem shows that λn(C) ⊆ C.

Theorem 3.3 Let ϕ ∈ C and n ∈N. Then λnϕ ∈ C.

Proof It is clear that λnϕ satisfies P1. We will consider P2 for λnϕ. Let x ∈ M.
If there exists N ∈N such that ϕ(2kx) = 0 for all k > N , then it is straightforward to show

that λnϕ(2kx) = 0 for every k > N .
If no such N exists, then ϕ(2kx) > 0 for all k ∈ N. This implies that λnϕ(2kx) > 0 for all

k ∈ N. Since ϕ satisfies P2, there exist N ∈ N and r ∈ (0, 2) such that ϕ(2k+1x) < rϕ(2kx)
whenever k > N . So,

λnϕ(2k+1x)
ϕ(2kx)

=
∞∑

i=0

ϕ(2k+i+1x)
2inϕ(2kx)

<
∞∑

i=0

ri+1

2in = r
∞∑

i=0

(
r

2n

)i

=
2nr

2n – r
.

Also note that λnϕ(2kx) = ϕ(2kx) + 1
2n λnϕ(2k+1x). Thus

λnϕ(2kx)
λnϕ(2k+1x)

=
ϕ(2kx)

λnϕ(2k+1x)
+

1
2n >

2n – r
2nr

+
1
2n =

1
r

.

Hence we have λnϕ(2k+1x)
λnϕ(2k x) ≤ r < 2 whenever k > N . This completes the proof. �

Now we establish our main theorems.

Theorem 3.4 Let n ∈N, f : M → B, θ ∈ [0,∞), and ϕ1,ϕ2 ∈ C. If

∥∥�n+1
y f (x)

∥∥ ≤ θ + ϕ1(x) + ϕ2(y)

for all x, y ∈ M, then there exists ϕ3 ∈ C such that

∣∣�y1�
n
y2 f (x)

∣∣ ≤ n2n

2n – 1
θ +

n2n–1ϕ1(y1)
2n – 1

+
n2n

2n – 1
ϕ1(x) + ϕ3(y2)

for all x, y1, y2 ∈ M, where ϕ3 is defined by

ϕ3 :=
n(n – 1)

4
λnϕ1 + nλnϕ2.

Proof According to Theorem 2.4, there exist m ∈N and nonnegative integers ai, bi, ci, di,
ei for i ∈ {1, 2, . . . , m} such that

∥∥�y1�
n
y2 f (x)

∥∥ =
1
n!

∥∥∥∥∥

m∑

i=1

(–1)ai�n+1
biy1+ciy2 f (x + diy1 + eiy2)

∥∥∥∥∥

≤ 1
n!

m∑

i=1

(
θ + ϕ1(x + diy1 + eiy2) + ϕ2(biy1 + ciy2)

)
. (7)
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Denote the right-hand side of (7) by α0(x, y1, y2). Since ϕ1,ϕ2 ∈ C,

lim
k→∞

α0(x, y1, 2ky2)
2kn = 0.

For each nonnegative integer k, let

αk+1(x, y1, y2) =
αk(x, y1, 2y2)

2n

+
1
2n

n∑

i=1

(
n
i

) i–1∑

k=0

(
2θ + 2ϕ1(x) + ϕ1(y1) + 2kϕ1(y2) + 2ϕ2(y2)

)
.

We can see that if ‖�y1�
n
y2 f (x)‖ ≤ αk(x, y1, y2), then by Theorem 3.1

∥∥�y1�
n
y2 f (x)

∥∥

=

∥∥∥∥∥
1
2n �y1�

n
2y2 f (x) –

1
2n

n∑

i=1

(
n
i

) i–1∑

k=0

�y1�
n+1
y2 f (x + ky2)

∥∥∥∥∥

≤ αk(x, y1, 2y2)
2n +

1
2n

n∑

i=1

(
n
i

) i–1∑

k=0

∥∥�n+1
y2 f (x + y1 + ky2) – �n+1

y2 f (x + ky2)
∥∥

≤ αk(x, y1, 2y2)
2n +

1
2n

n∑

i=1

(
n
i

) i–1∑

k=0

(
2θ + ϕ1(x + y1 + ky2) + ϕ1(x + ky2) + 2ϕ2(y2)

)

≤ αk(x, y1, 2y2)
2n +

1
2n

n∑

i=1

(
n
i

) i–1∑

k=0

(
2θ + 2ϕ1(x) + ϕ1(y1) + 2kϕ1(y2) + 2ϕ2(y2)

)

= αk+1(x, y1, y2).

Hence ‖�y1�
n
y2 f (x)‖ ≤ αk(x, y1, y2) for any nonnegative integer k. Observe that, for m ≥ 1,

αm(x, y1, y2) =
α0(x, y1, 2my2)

2mn

+
1
2n

m–1∑

j=0

n∑

i=1

(
n
i

) i–1∑

k=0

(
2θ + 2ϕ1(x) + ϕ1(y1)

2jn +
2kϕ1(2jy2) + 2ϕ2(2jy2)

2jn

)

=
α0(x, y1, 2my2)

2mn

+
1
2n

n∑

i=1

(
n
i

) i–1∑

k=0

m–1∑

j=0

(
2θ + 2ϕ1(x) + ϕ1(y1)

2jn +
2kϕ1(2jy2) + 2ϕ2(2jy2)

2jn

)
.

It follows that

lim
m→∞ am(a, y1, y2)

= 0 +
1
2n

n∑

i=1

(
n
i

) i–1∑

k=0

∞∑

j=0

(
2θ + 2ϕ1(x) + ϕ1(y1)

2jn +
2kϕ1(2jy2) + 2ϕ2(2jy2)

2jn

)
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=
1
2n

n∑

i=1

(
n
i

) i–1∑

k=0

(
2n

2n – 1
(
2θ + 2ϕ1(x) + ϕ1(y1)

)
+ 2kλnϕ1(y2) + 2λnϕ2(y2)

)

=
n2n–1

2n – 1
(
2θ + 2ϕ1(x) + ϕ1(y1)

)
+

n(n – 1)
4

λnϕ1(y2) + nλnϕ2(y2).

Hence

∥∥�y1�
n
y2 f (x)

∥∥ ≤ lim
m→∞αm(x, y1, y2)

=
n2n

2n – 1

(
θ + ϕ1(x) +

ϕ1(y1)
2

)
+

n(n – 1)
4

λnϕ1(y2) + nλnϕ2(y2). �

Let Λn,kϕ = (
∏n

k+1
2k

2k –1 )λ1λ2 · · ·λkϕ for k < n and Λn,n = λ1λ2 · · ·λnϕ. Using Theorem 3.4
inductively, we get the following theorem.

Theorem 3.5 Let n ∈ N, θ ∈ [0,∞), ϕ1,ϕ2 ∈ C, and f : M → B. If |�n+1
y f (x)| ≤ θ + ϕ1(x) +

ϕ2(y) for all x, y ∈ M, then there exists ϕ3 ∈ C such that

∥∥�y1�y2 · · ·�yn+1 f (x)
∥∥ ≤ n!

( n∏

k=1

2k

2k – 1

)(
θ + ϕ1(x) +

n∑

i=1

ϕ1(yi)
2

)
+ ϕ3(yn+1)

for all x, y1, y2 ∈ M, where ϕ3 is defined by

ϕ3 := n!Λn,nϕ2 + n!
n∑

i=1

i – 1
4

Λn,iϕ1.

Proof Let y1 ∈ M. By Theorem 3.4 there exists ϕ′
2 ∈ C such that

∥∥�y1�
n
y2 f (x)

∥∥ ≤ n2n

2n – 1

(
θ + ϕ1(x) +

ϕ1(y1)
2

)
+

n(n – 1)
4

λnϕ1 + nλnϕ2.

Let fy1 = �y1 f , θy1 = n2n

2n–1 (θ + ϕ1(y1)
2 ), ψ1 = n2n

2n–1ϕ1, and ψ2 = n(n–1)
4 λnϕ1 + nλnϕ2. Since the

order of �yi can be interchanged without affecting the value on the left-hand side, we
have

∥∥�n
y2 fy1 (x)

∥∥ =
∥∥�n

y2�y1 f (x)
∥∥

≤ n2n

2n – 1

(
θ + ϕ1(x) +

ϕ1(y1)
2

)
+

n(n – 1)
4

λnϕ1(y2) + nλnϕ2(y2)

= θ ′
y1 + ψ1(x) + ψ2(y2).

Since y1 is currently fixed and ψ1,ψ2 ∈ C, the theorem is true by induction on n. �

Now we apply this to the result of Theorem 4.4 in [10]. For all ϕ : Mn+1 → [0,∞) and
n ∈N, define rnϕ, Rnϕ : Mn →R

∗ by

rnϕ(x1, x2, . . . , xn)

= ϕ(2x1, 2x2, . . . , 2xn–1, xn, xn) + 2ϕ(2x1, 2x2, . . . , 2xn–2, xn, xn–1, xn–1) + · · ·
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+ 2n–2ϕ(2x1, xn, xn–1, . . . , x3, x2, x2) + 2n–1ϕ(xn, xn–1, . . . , x2, x1, x1),

Rnϕ(x1, x2, . . . , xn) =
∞∑

k=0

rnϕ(2kx1, 2kx2, . . . , 2kxn)
2n(k+1) .

Also, let

D+
n =

{
(
ϕ,ϕ′)|ϕ : Mn+1 →R

∗,
∞∑

k=0

2–n(k+1)ϕ
(
2kz

)
< ∞, z ∈ Mn+1,

ϕ′ : Mn → [0,∞),ϕ′(y) ≥ Rnϕ(y), and lim
k→∞

2–nkϕ′(2ky
)

= 0, y ∈ Mn

}
.

We restate the theorem as follows.

Theorem 3.6 Let n ∈ N, and let ϕ1,ϕ2, . . . ,ϕn+1 : Mi → [0,∞) for i ∈ {1, 2, . . . , n + 1} be
such that (ϕi+1,ϕi) ∈ D+

i for 1 ≤ i ≤ n. If f : M → B satisfies

∥∥�y1�y2 · · ·�yn+1 f (0)
∥∥ ≤ ϕn+1(y1, y2, . . . , yn+1)

for all y1, y2, . . . , yn+1 ∈ M, then there exists a generalized polynomial p : M → B of degree
at most n such that

∥∥f (x) – p(x)
∥∥ ≤ ϕ1(x)

for all x ∈ M and p(0) = f (0).

If we let

ϕ(x1, x2, . . . , xn, xn+1) = θ +
n+1∑

i=1

ϕi(xi)

with ϕ1,ϕ2, . . . ,ϕn+1 ∈ C, then

rn(x1, x2, . . . , xn) ≤ (
2n – 1

)
θ +

((
2n – 2

)
ϕ1(x1) + 2n–1ϕn(x1) + 2n–1ϕn+1(x1)

)

+
(
2n–1 – 2

)
ϕ2(x2) + 2n–1ϕn–1(x2) + 2n–2ϕn(x2) + 2n–2ϕn+1(x2)

...

+ ϕn+1(xn) +
n∑

i=1

2n–iϕi(xn).

So

Rnϕ(y1, y2, . . . , yn) ≤ 2nθ +
(

2n – 2
2n λnϕ1(x1) +

1
2
λnϕn(x1) +

1
2
λnϕn+1(x1)

)

+
2n–1 – 2

2n λnϕ2(x2) +
1
2
λnϕn–1(x2) +

1
4
λnϕn(x2) +

1
4
λnϕn+1(x2)
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...

+
1
2n λnϕn+1(xn) +

n∑

i=1

1
2i λnϕi(xn). (8)

Let Ψ (y1, y2, . . . , yn) be the right-hand side of (8). Then (ϕ,Ψ ) ∈ D+
n and Ψ can be used

to produce the next pair, resulting in a stability chain. We have the following result.

Theorem 3.7 Let n ∈N, θ ∈ [0,∞), ϕ1,ϕ2 ∈ C, and f : M → B. If

∥∥�n+1
y f (x)

∥∥ ≤ θ + ϕ1(x) + ϕ2(y)

for all x, y ∈ M, then there exist a generalized polynomial p : M → B of degree at most n
and ϕ3 ∈ C such that

∥∥f (x) – p(x)
∥∥ ≤ (

2
n(n+1)

2
)
(

n!
n∏

i=1

2n

2n – 1

)
θ + ϕ3(x)

for all x ∈ M.

A direct corollary of this theorem is the Aoki–Rassias stability:

∥∥�n+1f (x)
∥∥ ≤ θ + c1

∣∣xp∣∣ + c2|y|p

for 0 < p < 1 when M is either N∪{0} or the set of all integers. In this case, ϕ1(x) = |x|p and

λnϕ1(x) =
∞∑

k=0

|2kx|p
2kn =

∞∑

k=0

|2kx|p
2kn = |x|p

∞∑

k=0

1
2k(n–p) =

2n–p

2n–p – 1
|x|p.

Theorem 3.8 Let n ∈N, θ , c1, c2 ∈ [0,∞), p ∈ (0, 1), and f : N∪ {0} → B. If

∥∥�n+1
y f (x)

∥∥ ≤ θ + c1|x|p + c2|y|p

for all x, y ∈ N ∪ {0}, then there exist Mn ∈ [0,∞) and a polynomial p : N ∪ {0} → B of
degree at most n such that

∥∥f (x) – p(x)
∥∥ ≤ (

2
n(n+1)

2
)
(

n!
n∏

i=1

2n

2n – 1

)
θ + Mn|x|p

for all x ∈ N∪ {0}.

Acknowledgements
The author would like to show his gratitude to the reviewers for their beneficial remarks. They were also generous
enough to understand many mistypes the author made, including [0, 1], where it should be [0,∞) at many places.

Funding
Not applicable.

Availability of data and materials
Not applicable.



Sukhonwimolmal Advances in Difference Equations        (2020) 2020:108 Page 11 of 11

Competing interests
The author declares that he has no competing interests.

Author’s contributions
Author read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 12 December 2019 Accepted: 21 February 2020

References
1. Fréchet, M.: Une definition fonctionnelle des polynômes. Nouv. Ann. Math. 9, 145–182 (1909)
2. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. 27, 222–224 (1941)
3. Aoki, T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2(1–2), 64–66 (1950)
4. Rassias, T.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72(2), 297–300 (1978)
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