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1 Introduction
Let ¢ : [b1, by] — R be a convex function. Then the following double inequality holds:

by + by 1 b2 Y (b1) + ¥ (b)
w( . )sz—bl fh yyax < VOV L1)

It is known in the literature as the Hermite—Hadamard inequality. This inequality has
instigated pletora of papers. Results concerning generalization, refinement, and extension
of (1.1) are also found; see [1-9, 12, 14, 15, 17-20, 23, 27-30] and the references therein.

In the early 16th century, the concept of g-calculus was introduced. Ever since, integral
inequalities of the trapeziod, Ostrowski, Cauchy—Bunyakovsky—Schwarz, Griiss, Holder,
Griiss—Cebysev, and other types have been established in the g-calculus sense. In 2014,
Tariboon and Ntouyas [33] obtained the following g-calculus version of (1.1).

Theorem 1.1 Let y : [by,b;] — R be a convex continuous function on (by,b,), and let

0<qg<1.Then
by + by 1 b gy (by) + ¥ (ba)
02 1.2
1//( 5 >5b2_b1 . Y (x)p, dgx < 1+q (1.2)

In 2016, Kunt and Is¢an [21] observed, via a counterexample, that the left-hand side of
inequality (1.2) is not necessarily true. Subsequently, Alp et al. [11] proved the following
correct version of (1.2).
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Theorem 1.2 ([11]) Let ¢ : [b1,b3] — R be a convex differentiable function on (b, b,),
andlet0<q< 1. Then

1+q (1.3)

(qbl + bz

1 ba
T+q ) < W (%), dgx <

o bZ_bl b1

Remark 1.3 Itis important to note that the inequality in Theorem 1.2 was first established
by Marinkovi¢ et al. [24, Theorem 5.3].

The aim of this work is to recast inequality (1.3) in Theorem 1.2 via another approach
different from that presented in [11]. Specifically, we do this using a Green function. In
the process, we establish some identities that are also used to obtain more results in this
direction.

We organize this paper as follows. Section 2 contains a brief introduction of the quantum
calculus. Our main results are then framed and proved in Sect. 3.

2 Preliminaries

Quantum calculus is known as the calculus without limits. In this section, we present a
quick overview of the theory of g-calculus. The interested reader is invited to the book
[16] for an in-depth study of this subject. We begin with these basic definitions.

Definition 2.1 ([32]) Let v : [b1,b,] — R be a continuous function, and let w € [by, b,].

Then the expression

- 1-g9)b .
D) = LS O00, oy 2, Db = fiy D) 21)

is called the g-derivative on [b1, b;] of the function at w.
We call  g-differentiable on [by, by] if 5, D,y (w) exists for all w € [by, b].

Definition 2.2 ([32]) Let ¥ : [b1,b;] — R be a continuous function. Then the g-integral
on [by, by] is defined as

[ v dy= - a0 -5 3 g (g w+ (1- ) (22)
by k=0
for w € [b1, by]. Moreover, if ¢ € (b1, w), then the g-integral on [b1, b,] is defined as

/ VO dt= [V dgs= [ v, dy 2.3)

Remark 2.3 In light of Definitions 2.1 and 2.2, we make the following remarks:
1. By taking b; = 0 expression (2.1) boils down to the well-known g-derivative D,y (w)
of the function y(w) defined by

Y(w) - 1//(qw).

PV = =G
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2. Also, if b; =0, then (2.2) reduces to the classical g-integral of a function
¥ :[0,00) — R defined by

[ v di-a-awd-du @)
k=0

Some known results in continuous calculus have been extended to the g-calculus frame-

work as follows.

Theorem 2.4 ([32]) Let v : [b1, 03] — R be a continuous function. Then we have

/ o Dyt W)y, = (W) = y(8) for 8 € (br,w).

s
Theorem 2.5 ([13]) Let ¥, ¢ : [b1,b2] — R be two continuous functions and suppose

¥ (x) < @d(x) for all x € [by,by). Then

Y (x)p, dgx < /b B (x)p, dy.

by

Theorem 2.6 ([32]) Let v : [b1,b;] — R be a continuous function. Then

nDy [l dy = )
by
w
[ Dt dy =00 - (@), foree (uw),
(4
Theorem 2.7 ([32]) Let ¥, ¢ : [b1,b;] — R be continuous functions, and let « € R. Then,

forw € [by,by] and c € (by,w), we have

w

[ e sw),, ds- [ Y dye [ #n s

1 by

/b P (@ dyr = /b Y @ dys

/ U (x)0, Dy )y

— Y Wpw) - Y (A(c) - / 0 (qx -+ (L= b1 )s, Dy (s, dy.

3 Main results

We will prove our fundamental results with the help of the following lemma.

Lemma 3.1 ([10, 25]) Let G be the Green function defined on [b1,b,] x [b1,b3] by

bi—u, bi<u<x;
Glx,u) =

b1—x, x<u<b,.

Page 3 of 20
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Then any r € C2([b1, b,)) can be expressed as

by
1ﬁ(x)=Iﬂ(l91)+(96—191)1//(192)+/b Gx, )y () dp. (3.1

We now state and justify our main results.

Theorem 3.2 Let i : [b1,by] — R be a convex twice differentiable function on (by, by). If

0<qg<1,then
qb1 + by 1 /b2 qyr(b1) + ¥ (by)
d, _ 3.2
w( - >5b2-b1 REREE (32)

Proof If we set x = qbql%bz in (3.1), then we get

by
o(T) w0+ (T b v [ (T ) v
qg+1 q+1 by qg+1
by
=) + 2P by + G(M,u)llﬂ'(u) du. (3.3)
q+1 b q+1

By computing we obtain that

1

by
b ), Y (X, dygx

1

by by
= bzibl /b1 {1/f(b1) +(x = b)Y (b) + /l;l Gx, u)y" (u) du} by dgx

by—b1 1
b
P v( 2)+b2—

by by
=y (b1) + ]91./19 fb G, u)¥" (u) duy, dyx. (3.4)

Subtracting (3.4) from (3.3), we get:

(qbl + b2

1 by
q+ 1 ) W(x)bl dqx

_bZ_bl by

_ by
) + 2y + G(‘”’l + by
qg+1 b +1

,u)tﬂ”(u) du

by—by 1

A e e

b (gby+b 1 (kb
= / G(q 1% , u)l/f”(u) du — / / G, u)y" (u) duy, dgx
b1 q+ 1 bZ - bl by b1

by by

qbl + ]92 1 / ,

B + ’ G X, U d X d
/1;1 { < q+1 ) by — by Jy, (0, 1) by }T/f (u)du

by _h\2
:/ [G(qbl+b2,u>+ 1 {(” by +(b2—u)(u—h1)}:|1ﬁ”(u)du. (3.5)
b q+1 bz—bl 6]+1

by by
/ / G, u)y" (u) duy, dgx
b Jo
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Next, we consider the function

2
f(u):G<qu;+b2,u)+ 1 {(”q"f’i) +(b2—u)(u—b1)}. (3.6)

+1 bz—bl

For this, the following cases are possible.
Casel.If b, <u< qbql%bz, then

by
R e e A SRt Ll
Therefore
” _ 1 2(L£—b1) )
f(u)——1+b2_bl{ e +(bz—u)—(u—b1)},
et 2 Gl 2
ros s e w0

This implies that f” is decreasing and f'(b;) = 0, which shows that f’(x) < 0. Thus f is also
decreasing, and f(b;) = 0, that is, f () < 0 for all u € [b;, L22].

g+1
Case 2. If qhql%bz < u < by, then

by - by 1 ((u—-b)? )
R s e LeRA R U]
- —— "0 -l 50
fu)_bz—bl{q+1 —q)+ 2—M}> .

Hence f is increasing and f(b;) = 0. So, f(#) <O forall u € [qbql%bz, b,].
Now, using (3.5) and the fact that ¥ () > 0 for all u € [by, b,], since ¥ is convex, we

obtain the first inequality:

qb1+b2 1 by
dgx.
‘”( g+1 )sz—lh Ve

For the right-hand side inequality, we recall that

by

W) = Yr(by) + (x— b)Y (b) + / Gl )y (u) s

b1

by
V(ba) = Y (b1) + (by — b)Y (ba) + /h G(by, w)Y" (u) dus (3.7)

v b) vy ) o by

/ 1 bz 1
. W (bs) + —— / Glbay )y (u) .
qg+1 qg+1 q+1Jp

Subtracting (3.4) from (3.7), we get

qpb)+ ) 1 (P
6]+1 bz—bl b1

Y (X)p, dyx

Page 5 of 20
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by G(b27 bl) 1 (M - b1)2 "
= / + + by —u)(u—b1) ¢ | (u) du. (3.8)
b q+ 1 b2 - bl q+ 1
Let
G(ba, u) 1 (u - by)?
F(u) = - - .
(u) 1 o —b1{ 1t (b2 — u)(u — by)
Then
b1 —-Uu 1 (M - b1)2
F(u) = _ _ :
(u) e +b2—b1{ ] +(by — u)(u - by)
, -1 1 2(u—by)
F'(u) = by—u)—(w—b)};
=5 +b2_bl{ R CRORC 1)}

F(w) = —2 2 L. 24,
by—by|g+1 (1+q)(by—b)

Here we also observe two cases.

Case3.1fby <u < %, then F”(u) < 0. Therefore F' is decreasing, and also F’(@) =
0, which shows that F'(#) > 0. Moreover, F is increasing, and F(b;) = 0. Hence F(u) > 0
for all u € [by, 23221,

Case 4. Also, if % < u < by, then F"(u) < 0. So, F' is decreasing, and F’(%) =0,
which implies that F'(#) < 0. Hence F is decreasing, and F(b,) = 0, and then F(u) > 0 for
all u e (232, ).

Combining these two cases, we conclude that F(z) > 0 for all u € [b1, b;]. Applying (3.8)
and the convexity of ¥, we establish the right-hand side of the desired inequality. The

proof is complete. O

Next, we prove new quantum Hermite—Hadamard inequalities for the class of monotone

and convex functions.

Theorem 3.3 Let yy € C*([b1,b;]) and 0 < q < 1. Then:
(i). If|W"| is an increasing function, then

b b 1 by by —by)?
‘ql/f( i)-:'qw( 2) _ b2 - bl i 1//(96) b dqx < Wf”(bz)| |:q(6(21 - ql)) ]
(ii). If|Y¥"| is a decreasing function, then
b b 1 b by — by)?
‘ql/f( i)-:'qw( 2) _ b2 - bl 5 1’&(x) by dqx < }I/f//(bl)| |:q(6(21 . ql)) ]

(iii). If|y"| is a convex function, then

o)+ Yy 1 P
‘ l+q Cby-b1 Jy, V)b
" 4 (b —b )2
< max{ [y (b)), |y (bz>|}[qs(217+ql)]

Page 6 of 20
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Proof To prove (i), by (3.8) we get:

by
‘qlﬁ(bl)ﬁﬂ(bz) 1 () oy dys

l+q by — by
b2 T G(by, 1) 1 (u— by)? )
B /2:1 |: qg+1 +b2—b1{ 7+1 +(b2—u)(u—b1)”1/f (u) du
:/ |:b1 “. 1 {(u by) —b1b2+(b1+b2)u—u2”1/f”(u)du
by q+1 bz—bl q+1

" bl by 1 b2 1 by (u—b1)2
1 —
<|y (bz)|[1 ‘1/171 du 1+4/b1 udu+b2_b1{/bl Trq du

by by by
—blbz/ 1du + (b1 + by) udu—/ uzdu”
by by by

, biba—b)) |1 [(w-b) |
= b — —biby(by — b
W(z)’[ 1+q 2(1+q)b1+b2—b1 31+ |, 1b2(b2 — by)
2 b2 31b2
ceb)| - ”
2 bl 3 bl

= b1by(by — by)

" ( ) b3-bi 1 (by —by)?
= v (B)] - +
1+gq 20+q) by-b1 | 3(1+¢q)
b%—b2 b3 - b3
3

+ (b1 + by) 5

q(by - by)*
— " b
v ”'[ 6(1+4)
which proves the inequality in (i).
Part (ii) can be proved in a similar fashion. For part (iii), using (3.8) and the fact that |"|

is bounded above, on the interval [b, b,], by max{|v"(b1)|, |¥"(b3)|} as a convex function,

we obtain:

qyr(by) + ¥ (by) 1
1+q bz—bl I/I(x) b1 qx
by — by)?
< max{ |y (b)), ”(bz>|}[%] -

Theorem 3.4 Let y € C*([by, b,)), and let || be a concave function. Then, for 0 < q <1,

qy (b1) + ¥ (b2) . ba
1 +q b2 —bl

b b
< (b2 =b1)” [2<q 1)“” ( o 2)‘

]91+3b2 7 bl+b2
3<q+1)’¢' ( )‘ ’1/' ( )H

W(QC) by dqx
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Proof Employing identity (3.8), we have:

by
‘qlﬁ(bl) + Y (ba) 1 V) by dy

l+qg by—by J,
B by G(by, ) 1 (u - by)?
_/bl |: qg+1 +b2—b1{ g+1 +(by — u)(u - bl}lp
B balrp, —u 1 (u - by)? )
i /hl [‘“1 +b2—b1{ q+1 + by —)(u - bl)HW () du|.

Suppose u = (1 — t)b; + th, with t € [0,1]. Then

/1 b1 — (1 =t)by — thy s 1 (L=2)b; + thy — by)?
0 g+1 by —b, g+1

+ (bz - (1 - t)bl - tbz)(—tbl + tbz)}]lﬁ”((l - t)bl + tbz)(bz - bl)dt’

_/1 —thr=b) 1 [Eha-b)’
0 g+1 by — by qg+1

+t(1=1)(by — b1) (b2 - bl)”‘ﬁ”((l — )by + thy) (by — bl)dt‘

1
< (b, _bl)z[—
qg+1

/1 " (1 - )by + thy) dt‘

0

1 1

1
+—f Y (L - )by + thy) dt | +
qg+11Jo

Now, using the Jensen integral inequality, we get the following estimates:

/1 ey (1 - )by + thy) dt‘

0

1 1 _

5/ tdt‘l//”(fo (1 tl)bl + thy) dt)’
0 Jo tdt

1

- 5

1 ” b1+2b2
‘E‘w( 3 )

1
/ 29" (1 - )by + thy) dt‘

0

< t at g Jy (L= t)by + thy) dt
B fo £ dt

//(bl [He-t2)dt+ by [, t2dt>‘
1

2

)

1| (b [y =8)dt+b, [} £dt
=—|y T
3 1
3
l ” bl + 3b2
3 4 ’

H1 =)y ((1 - )by + thy) dt‘].

(3.9)

(3.10)

(3.11)

Page 8 of 20
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and

1
/ (t =)y ((1 - 0)by + thy) dt‘
0

. fot—t2 —t)b1+tb2)dt>‘
-)d
E/o (t t‘w ( f (t-t2)dt

1| (b fyt =) A -t)dt+ b, [, - ) dt
o ( ! )
6
1 ” b1+b2
-1 < : )‘ (3.12)

Putting (3.10), (3.11), and (3.12) into (3.9), we get

Iﬁ(x) by g%

S(bz—bl)z[ ( //(bl -;2[92)‘

by + 3by o, b1+ b
rsaenl () el ()] .

Theorem 3.5 Suppose yr € C*([by,b,]) and q € (0,1). Then:
(i). If|W"| is an increasing function, then

1 qb1+b2 1 by
- d
‘W< 1+q ) by —by Jp, V@) b dy

< | (qb1+b2)2 qb1+b2 q(b2—b1)2 (bz—b1)2
=lv (b)|[2(1+q)2 B PR T 3(q+1>]

|611/f(b1) + 9 (b2) 1
1 +4q bz—bl

1

[y (b2)]

— T 727 [2b3 + b3 —3bb2].
6y — ) L2102 = 3013]

(il). If|¥"| is a decreasing function, then

1 qb1+b2 1 b
- d
‘M 1+q ) ba=by ), VO

” (qb1+b2)2 qbl+b2 q(bz—b1)2 (192—51)2
=lv “’”'[2(1@2 BTy Iy 2 3(q+1>]
//b
6'(‘@(_2’1') [26% + b3 — 36, 52].

(iii). If|y"| is a convex function, then

" qb1+b2 1
‘lﬁ< 1+q ) by— b I/f(x)b1 %

"

2(1 + q)? ! 1+q * (1+g¢)?
}[Zb?+b§—3b1b§}
6(by — by)

< max{ |y ( }|:(qb1 + by)? b gby +by  q(by —by)?

" "

(b2_b1) ] min|
3(g+1)
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Proof To prove item (i), we use (3.5) and the fact that |¢/”| is an increasing function to

obtain:

” qbl + bz 1 ba
- d
v ( l+g ) by — by n V@) b dy

b 2
2 (qb, + by 1 [(u-by) "
[e(r) s 2 -0 0w

by by +b 1 —by)?
3 |1////(b2)|/b G(qq1++12’u) . ﬂ{% +(b2—u)(u—b1)}

du

qby+by

+ 1 -b 2
§|1/f”(b2)|[/ e bl—u+—{(u ) —u2+(b1+b2)u—b1b2} du
by bz—bl q+1
b by b 1 - b)?
+/ LEC {(u ) —u2+(b1+b2)u—b1b2} du]
% g+l  by-b| gq+1
qb1+by
E 1 —by)?
=|¢”(b2)|[/ " {u_bl——{(” 1) —u2+(b1+b2)u—b1b2”du
by bz—bl q+1
2 by -by 1 [(u-b)*
+ﬁm{ q+1 _bz—bl{ q+1 —u +(b1+b2)u—b1b2}}du:|
|w”(zb)l[<u2 b >qbll::2 : {(”‘W LT
= _— u — —_—
N2 7, by—by | 3@+ |y, 3 |,
9 qb11+b2 qb11+b2
u + +q bg—bl qb1+b2 1
+ (b1 + by)— —bybu }+ (b— )—
) by o b 1+q \* l+gq by — by

—b)? 3 ’
« {(” 1) |h2 _M_|b2 +(b1+b2)%|b _b2b1u|b2 }]

S D) e T3 e sn ~ PPy
by +b by +b
P i € UR 2 W S W S s 2
> 2 "\1+g 2 ) T b—b1 | 3(g+1)
(qbl + bz)3 b? (qbl + b2)2 b% qbl + b2
-t — + (b1 + by)—— — (b1 + by)— —Dbyb -b
30+ ) tg (b 2) 20+ q)? (b1 + 2)5 ~bab 1+q 1
Jbambif, abi+by) 1 (bz—hl)S_(%—bl)?’_h_g
l+q ? l+gq by-bi1| 3(g+1) 3(g+1) 3
(gb1 + by)? b3 (gb1 + by)? qby + by
31+ ) + (b1 + b)) ) = (b1 +b2) 2(1+q)? —byby | by - 1+q
2 2 13
_ |¢//(b2)| <(qb1 +b2) —bl(qbl +b2) + ﬁ) _ 1 (b2 bl)
2(1 + g)? 1+gq 2 by—by | 3(g+1)*
3 13 2 2 _
LI M ST LU L2 A L A (e
3(1+q) 3 2(1+gq) 2 l+gq

. q(by — by)? B 1 (by - b1)? B (by - b1)? B b_% . (gb1 + by)?
(1+¢g)? by—b1| 3(g+1) 3(g+1)* 3 3(1+¢q)?

b% (gb1 + bz)z q(by — by)
+(b1+b2)3—(b1 +by) 2(1 + ) —byby 1+ }]
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- [ (by)| (gb1 + by)? _p(Trrba bi 1 [b] (bi+b)b
2(1+q)2 1+q 2 bz—bl 3 2
_bzbl(bz—bl)} N q(bz—blz)z 1 {_b_g , (it b)by (b= )
1+ (1+gq) by — by 3 2 3(g+1)
_%hﬂM—mq]
l+g
2 2 2 1 3 73
= [ (b)| (gb1 + b2) —blqbl + by . by . q(by —b1)" by by
2(1 + g)? l+gq 2 (1+g¢g)? by-b1 |3 3
(bl+b2)b% bob by - by (bl+b2)b% (bZ_bl)3 q(by — by)
-5 — b + + — 00—
2 1+ 2 3(g+1) 1+
, by + by)? b, +b, b? by —by)? 1 b’
=|1ﬁ/(b2)| (gb1 22) _b1611 2+_1+6I(2 12) _ 91
2(1+¢q) l+¢q 2 (1+gqg) by—b1 | 3
(by +by)b; by (by+b)b}  (by—by)?
A B ol —byb1(by—b
2 35T 2 tageny phb-by
Y (D) ] (g +by)%(by - by) b (gb1 + b2)(by — by) . b3(by - by) _ b_?
T by-by 2(1 + )2 ! l+q 2 3
q(by — by)? . (b1 + by)b} b3 _(b+ by)b} (b -by)? +B2b1 — b
(1+g¢g)? 2 3 2 3(g+1)
" (gby + by)* gby+by  q(by—b1)*  (by-by)*
= |W ¢ )| 5 b1 + 5
2(1+q) l+g (1+q) 3(g+1)
. 1Y (by)]
by — by
y |:3b%b2 — 303 - 2b3 + 3b3 + 3b2by + 2b3 — 3b1 b2 — 3b5 + 6b2b, — 6b2b§]
6
by + by)? by +b by —b1)*  (by—by)?
~ [ (b)| (gbr + 22) _p It 2, 4b ;) _(by—by)
2(1+9) l+gq (1+q) 3(g+1)
|¢//(b2)| 3 3 2
- ———"(2b3 + b; — 3b, b5 |.
&bs— by 201+ 12 =30t

Part (ii) can be proved in a similar way. For part (iii), using (3.5) and the fact that |¢”|
is bounded above, on the interval [y, by], by max{|y” (b1)], [Y¥" (b2)|} as a convex function,

we obtain:

" qb1+b2 1 ba
- d
’w( l+q ) by by Jy, V) dox

" (gb1 + by)* gby +by  q(by—b1)*  (by—by)?
SHHXHW(MM[2u+qP T YA %q+n}
|¢/,(b2)| "

" 6(b2 - b) w(h”[
. q(by — by)* _ (by - b1)2:| B [ (b1)]
(1+¢g)? 3(g+1) 6(by — by)

(qbl + ]92)2 _b qbl +by + 61(192 - b1)2 _ (by - b1)2:|
2(1 +q)? "1+q (1+4q)? 3(g+1) |

(l]bl + b2)2 _b ql’)l + b2
2(1 +¢q)? 1y q

(263 + b3 - 3b113),

[bea-bg-ablb%]}

= max{ W”(bz)|[

Page 11 of 20



Adil Khan et al. Advances in Difference Equations (2020) 2020:99

el S o g s )
+max{—|1/f”(b1)‘|:%i|’

Al =

=y v o[ G -n B SR - G

— min{|y" (by)

’

. 263 + b3 —3b1bg]
v w””[ 6br—b1) [

which gives the inequality in item (iii). O

Theorem 3.6 Let v € C2([b1, b)), and let |\"| be a convex function. Then for q € (0,1),
the following inequality holds:

e :2 V) by g
] 82
Proof Employing (3.8), we get:
L)L [
) /: 2 [G;bj}u) " o i b { (uq_+b11)2 (b — ) - bl)”w”(u) du
) ./:2|:bql-:lu * bzibl { (uq_fi)z t(by - u)(u—bl)}]llf"(u)du .
= /: [bql+_1u b i b, { (uq_ﬁ)z —u + (by + ba)u - bleH " ()| du.

Putting u = (1 — £)b; + thy, with ¢ € [0, 1], we get

_ /ll:bl—(l—t)bl—tbz 1 {((l—t)bl +tb2—b1)2
0

— (1= t)by + thy)’
qg+1 +b2—b1 qg+1 (( by + 2)

+ (bl + bz)((l - t)bl + tbg) - blbg}] ‘I/fﬁ((l - t)bl + tbg)‘(bg - bl) dt

Mibr-by) 1 [Pba=by) )
— (1=t — b3 —2(1 - t)th b
S/0|: q+1 +b2—b1{ g+1 ( )"by 5= 2( Vth1by

+ (b1 + ba)b1(1 =) + (by + ba)byt — blbz}] [(1 = t)W”(bl)‘ + t|¢”(b2)’](b2 —by)dt

t(1—£)(b1 — by) 1 {tz(l—l‘)(bz—bl)2

1
=(by-b "(b
(b, 1>|w<1)|/0[ el B

— (1 =82 — 2 (1 = )b} — 2(1 — £)th1 by + (by + by)by (1 — 1)*

Page 12 of 20
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11 42 b —b
+(by +b2)b2t(1—t)—blbz(l—t)”dt+(b2—b1)\w”(bz>| / [%
0
1 t3(by — by)?
* bz - bl { +1

—t(1 - t)*b? + £2b% + 2(1 — t)*b1 by

+ (bl + bg)blt(l — t) + (b1 + bz)bztz - blbzt}] dt

1

g+1 g+1 ~ (=08 - (£ - 2)b)

- 2(1 - t)zlfblbz + (bl + bz)bl(l - lf)2 + (bl + bz)bz(t - t2) - b1b2(1 - If)i| dt

T —t2(by — b))% £3(by—by)?
+|1////(b2)|/ [ (2 1) i (2 l) —t(l—t)zb%—tsb%—2(t2—t3)b1bz
0 q+1 qg+1

+ (bl + bz)bl (t - tz) + (bl + bg)bzlfz - blbzt}] dt
E-Dba-b)P (E-Dba-b) (1-0*, <t3 t4> ,
+ + by - b;
qg+1 qg+1 4

th o ar Q- £
+ ble(’fz to - 7) = (b1 +by)by 3 7 (b1 + bz)bz(a - §>

tz ! " _ts(bZ _b1)2 t4(b2 _b1)2 tz t4 2t3 2
_blbz(t_ 5):|o *lv (b2)||: 3(g+1) ’ 4g+1) (5 T ?)bl

- |w<b1>|[

4 Bt 2 3 3 2 1
AT 2<— - —)blbz + (b + bz)bl(— - —) t by + by —blbz—]
47? 3 4 2 3 3 2 |,
o —(by—b1)>  (by-b1)* b} b3 1 4
=lv (bl)‘[ 6(g+1)  120q+1) 4 12 +b1b2(1+ 2" 3)
— 2 _ 2
. (b1 + by)by . (by +by)by bl_bz:| . |1ﬂ//(b2)||:— (by —b1)*  (by—b1)

3 6 2 3g+1)  4(g+1)
1 1 2 2 ]9% blbz (bl + bz)bl (bl + bz)bg blbz
BRI i B S T
" 4b1by + q(by + by)* p q(by = b1)* = 2(q + 1)b1by
= b b .
v 1)‘[ 12(4+ 1) + [V (0 12(+ 1)

We now present our last result.

Theorem 3.7 Let € ([b1,b3]) be such that |V"| is a convex function. Then for any q €

(0,1), the following inequality holds:

by
l/f”(qbl + b2> 1 l[f(x) b dqx

1+ q - b2 - bl b1
< || (by = b1)*(5q* +4q + 1) — 4(by + by) by N 3b? — b} + 6b, b,
12(1 + ¢)® 12
by —b1)*’(3(1 +q)* +10)  (by — by)?
+ |w//(b2)| ( 2 1) ( ( q) )_( 2 1) .
12(1 + ¢q) 12

Page 13 of 20
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Proof Using (3.5), we get:

” qb1+b2
1p( 1+6I> bz— /

b, +b by)?
=/ [ (" by {” 2 (hz—u)(u—bl)”w’/(u)du
by q+1 1 q+ 1
qb1+b
g 1 b
<[ b {(” D (b= ) bl)HW(u)wu
b1 2— U1
b by~ by 1 (u—by)? p
+ﬁb11::2 1+q +b2—b1{ v +(b2—u)(u—b1)”|1p (u)|du
qby +by
T 1 —b)?
= v [u—bl——{(u b1) —u2+(b1+b2)u—b1b2”|1,lf”(u)‘du
b bg—bl q+1
by b2 - b1 1 (I/l - b1)2 2 ”
+ﬁb1+b2|: 174 bz—h{ e —u +(b1+b2)u—b1b2HW (u)’du

1 (1 =8)by + thy - b1)2
by, — by

- (b _bl)/“q [(1 — )by + thy — by —
0 qg+1

- ((1 - t)bl + tb2)2 + (bl + bz)((l - t)bl + tbz) — blbz}] |w//((1 - t)bl + tbz) | dt

/1 |:b2—b1 1 {((1—t)b1+tb2—b1)2
+ ) -

1+q bz—bl q+1 —((1—t)b1+tb2)2

T+q

+ (bl + ]92)((1 - t)bl + lsz) - b1b2}1| |lﬁ//((1 - t)bl + lsz) |(b2 - bl)dt

£2(by — by)?
bz—bl q+ 1

<(b2- bl)/ [f(bz by) - - (1-1)°b; - b5
= 2U(1 = £)b1by + (b1 + b2)b1(1 1) + t(b1 + b2)by — blbzﬂ [1-1)|y" (b))

1 _ 200 _h.)2
ey e de+ | [”2 b 1 {”bz )" n

l+q by-bh qg+1
— th% — 2t(1 — If)blbz + (hl + bg)bl(l - t) + t(bl + bz)bz - blbz}]

x [A =) |y (b)] + |y (b2)|] (b2 — by) dt

1 { 21— t)(by - b1)?

=(b2_bl)’w//(bl)|\/(;m[t(l—t)(bz—bl)_ bz—bl

qg+1
—(1=1)%p — £*(1 — )b} — 2t(1 — £)*b1by + (by + by)b1 (1 — t)*

+ (1= 1)(b1 + by)by — biby(1 - t)” + (by = b)) [y (bo)| /W [tz(bz —b1)
0

- —t(1 - )b - 3b2 - 22 (1 - )by b
b =D e (1-16)7by 5 (1-t)b1b,y

+ (bl + bz)blt(l - t)

1 {ﬁ(bz —by)?
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"Tb-b
+t2<b1+b2)b2—rblbzﬂdt+(b2—b1)|w”(b1>| f 1 [ Al

— (1=} —£*(1 = t)b% — 2t(1 — £)*b1 by

1 2(1-t)(by - by)?
bz—bl q+ 1

+ (b1 + by)by (1= 1)* + (1 = £)(by + ba)by — by by(1 - t)” dt + (by = by) |y (b2)|

1 3 2
by — by 1 t°(by — by) 272,312 2
- —t(1 - £)*b? — £3b2 — 26%(1 — )by b
x/ |:1+q bz—bl{ g1 (1=-8)by = by = 2t°(1 = t)b1 by

1+q

+ (bl + bz)blt(l - t) + tz(bl + bz)bz - tblbz}] dt

1 [(£2-2)(by—by)?
bz—bl q+ 1

-(1-1°h - (t2 - ts)b§ - 2(t +£2 - 2t2)b1b2 + (b1 + by)by (1 - t)?

=(bz—bl)|1/f”(b1)|/ohq[(t—tz)(bz—bl)—

+ (t—tz)(b1+b2)b2—b1b2(1—t }i| b2—b1 ‘W b2 ‘/ |: bg—bl

1 £3(by - by)*
by — b,

+ (bl + bz)bl (t - tz)

p (t+8 = 262)b} - £2b5 — 2(¢* - £)b1by

Y Tby-b
+t2<b1+b2)b2—tblbzﬂdt+<bz—b1)|1/f”(b1>| f 1 [ T, 4

—(1-t)’b} - (- 2)b} - 2(t + £ — £*)b1bs

1 (t* - £2)(by - by)?
bg—bl q+ 1

+ (bl + bz)bl(l - t)z + (If — tz)(bl + bz)bz — blbg(l - t)}] dt + (b2 - b1)|¢//(b2)|

1 3 2
by — by 1 t°(by — by) 3 52122 4352 2 3
t— —(t+ 2 -262)b? — 302 - 2(£* - ) b1 b
x/ |:1+q bz—b1{ g+1 (+ )1 2 ( )12

T+q

+ (bl + bz)bl (t — tz) + t2(b1 + bz)bz — tblbz }j| dt

3

2 3 St by — be)?
—(bz— 1)|1/’//(h1)||:(t__t_)(b2 bl)—b lb {(3 4)( 2 1)
2 — 01

1— 3 4 2 4 3 1-p)3
DY (t—-t—)bg—2<t— %—2t)b12—<b1+b2) (3”

g+1

4 3 4 2

t2 3

+ (E - t—)(b1 +ba)by — b1by (t - 5) ” +(by - b1)|1ﬁ//(b2)|
0

£ 1 t4(by — by)? 2ot 28, A
~(by—by) - o= _ol -
X[g(bz & b2—b1{ g+ 1) (2+4 3>b1 (3 4)b1b2

2B\ B £?
- —b + (bl + bz)b1<— - g) + E(bl + bz)bz - Eblbz}]

1
T+q
0

+(by - b1)|w//(b1)|
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y by — by t—i 1 (?—%)(bz—b1)2+(1—t)4b2_ ﬁ_ﬁ L2
l+g 2) by-b g+1 4 P \3 4)7

£ 28 -t (P
_2<E I )blbz—(bl +b2)b1( ) + (2 )(b1 +b2)b,

3
£2 ! . -b 2 1 t4(by — by)?
—b1b2<t—§>”L+(b2—bl)|l/f (b)) |: 71+ q) bz_bl{ ag+ 1)

I+q
2o 28 t t 28
_<E+Z—?>b%— 2 (— b2+(]91+]92)b1<——§>

3 £ 1
— (b1 + by)by — —b1b
+3(1+ 2)bo D) 12”11
+q

~ , 1 1 1 q*b?
— (b= b1)|¥ (bn\[( e 3(1+q)3)<b2—b1)— bz—b1{4(1+q)4
b (W B 4(1+q ) (b2 - b1)? 1 1 2
_Z+ qg+1 _(3(1+q)3_4(1+q)4>
5 1 1 2 b @ (b1 + by)by (b1 + by)by
B (2(1+q>2 Talvgt 3(1+q)3> 2T 30w gp T B+ qp
1 1 (1 +2q)b1b2
’ (2(1 +q)? 30 +q)3)(b1 Hha)b = e ”

by —b; 1 {(bz—b1)2_< 1

+(b2_b1)|w//(b2)||:3(1+q)3_bz—bl 4g+17 \2(1+qp

1 2 9 1 2 1 1
+ a1+ q)" - 3(1 +q)3) 1~ 4(1 +q)4b2—2<3(1 +q)? - 4(1 +q)4)b1b2
1 1 (bl +b2)l’)2 blbz
21+9? 301 +q>3) "3+ qP 200+ qP }]

b1 (by—b1)(1+29) 1 { (by — by)?
20+q)  2(1+q)p? by—by | 12(g+1)

+ (b1 + bz)bl(

+(by - b1)|1/’”(b1)| |:

1 1
_ (3(1+q)3 - 4(1+q)4)(b2 B bl) _ q4b% _ 1 _ 1 b2
g+1 41+q* \3 4)7

1 L VoLl 2, o
+ - -2[=-+--= +2{ ——
31+qP 41+9*) 2 “\2" a2 3)7"7 721 +92

1 2 q>(by + by)by 1 1
Talrgt 30+ q)?’)blb2 T T E <5 } 5)(1’1 +balbs
1 1 b bz b1by(1 + 2q)
- (2(1 +q? 3(1+q7 )“’1 +ha)br - ==+ =1 T q? ”
" by by — by 1 (by —b1)?  (by—by)?
+(b=bi)|¥ “’”'[2(1 2 20+qp _bg—bl{ ag+1)  Ag+1p

1 1 2 1 1 2 b2 b2
N . I bZ _ b2__2 2
<2+4 3) 1+(2(1+q)2+4(1+q)4 3(1+q)3) 172 T 41+t

1 1 1 1 1
_2<§ ) Z)”lb” <3<1 vqP a4l +q)4>b1b2 r o ”’2”’1(5 ) 5)
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- (b1 + bz)b1<

b1b,
T o1+ qp H

— (bs - b0)| " (b)) [(

1 1 (b1 +b2)by (b1 +by)by  b1by
21 +¢9)? 3(1+g)? 3 3(1 +¢q)3 2

1 1
2(1+¢9)?* 3(1+gq)3

412
)(hz—bl)— ! {"bl

bz — bl 4(1 + q)4’
1 1

2
b (3(1+q)3 B 4(1+q)4)(b2 —b) 1 1 2
4 qg+1 31+¢g)3 41 +qg)*

1 1 2 qg(b1 +by)b1 (b1 + b))y
— + — b1b2 — +
20+¢9)? 41+q* 3(1+¢q)? 3(1 +¢g)® 3(1 + )3

1 1 (1 + 2q)b1b2 bz - bl
+(2(1+q>2‘3<1+q>3)(b”b2)b2‘ 21+ }+2(1+q>

1

(ba-b)(1+29) 1 (by — by)? ~ (3(1+q)3 - 4(1101)4)(1’2 -b)?
2(1 +¢)? by—by | 12(g+1) qg+1

412

s 11\, 1 1 , (1 1 2
- —(==Z)» - -2 =+=-2 )b
4(1+q) (3 1)\ 31 +qp a+qt) 2 \2 T2 3)

s 11 2 b +613(191+bz)b1
20+¢q)?  4(1+q9)* 3(1+gq)3 172 3(1+¢)?

+ (% — %)(1’)1 + l’)z)bg
1 1 biby  biby(1+2q)
B <2<1 rq? 301 +q)3)(bl Eb T T g ”

by — by 1 (by — by)* 1
3(1+q)® by—by | 4g+1)° 2(1 + g)?

+ (b = b)) |y (b)] |:

1 2 , 1, 1 1
_ _ _9 _
Talrgt 301+ q)3) Yo+ q)“b2 <3(1 +q)® 41+ q)4)b1b2

1 1 (b] + bz)bz b1b2
+(br+ bz)b1(2(1 vq2? 30+ q)s) "3 qP 21+ g? }

by—-b1  by-b 1 (by—b1)*  (by—by)? 11 %bz
T2lvq) 201+qP bi-bi| gD agr1p

1 1 2 b? b? 1 1
- i 2 __of--=)bb
+<2(1+q>2+4(1+q>4 3(1+q)3> 1T T a1 g (3 4) 1

1 1 1 1 1
’ 2<3(1 QP A+ q)4>b1b2 +{br 3 ool <5 B 5) (b bz”’l(z(l +q)?

1 ) . (b1 + by)by B (b1 + b2)by % b1by }]

T3(1+qP 3 31+qP° 2 2(+¢p2
1 1 q*b?
— "(h _ by —b 2 1
[ 1)’[<2<1+q)2 3(1+q)3)( ) g
LB Gag mmg® b’ 1
4 g+1 3(1+9)3 4(1+g)* )2
2 1 + 1 _ 2 biby + q3(b1 + bz)bl B (bl + bz)bl
21+¢9)* 4(1+gq* 3(+gq)? 172 3(1+¢)? 3(1+¢g)?
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1 1 (1 + 2q)b1b2 (bz — b1)2
- - b1 + by)b
(2(1 vq? 30 +q)3>( A EATH +q)2 " 219
1
_(a=b)’(1429)  (a-b0)® (Giegp ~ awegn) (02— b1)?
2(1 +¢q)3 12(g+1) g+1
2% (1 1\ (1 L Vool 12
T+ 371 by 31+¢g3 4(1+q)* byt2(5+ 53730l
1 1 2 qg(b1 +by)by
20+¢9)? 41+q* 3(1+¢q)? 3(1 +¢g)®

- G - %)(bl +b)bs

1 1 1
( )(bl +by)by + @ - 7171[92( b 2q)i|

21+¢? 3(1+¢q)? 2 2(1 +¢q)?
" (b2 - b1)2 (b2 - b1)2 ]- 1 2 2
+lv (b2)|[ 31+q°  4q+1p <2(1 vq? al+gt 30 +q)3>b

1 1 1 1
b2 +2 - biby — (b1 + by))by| ——
Talegr 2t (3(1+q)3 4<1+q)4> b2 = by +b2) 1(2<1+q)2

B 1 ) B (b1 + by)by N b1by N (by — by)? N (by — by)?
3(1+¢)? 31+q)?  2(1+q?* 2(1+q) 201+9)?

(by=b1)> (ba-b1)*> (1 1 2 B ( 1 1
ag+1)  Ag+1)p <§+Z_§) 10+ g2 a1+ gt

2 b2 b3 1 1 1
-— = )? +2 —\b1by -2 ——
3(1+q)3) T T Al gt ( 4) " (i*‘>(1+61)3
1 1 1
- 41+ g biby — (by + by)by | - — 3 + (b1 + by)by W
B 1 (b + by)by . (b1 + b2)b,y N biby  biby
3(1 + q)3 3 3(1+¢q)3 2 2(1 + q)?

| 1 1 2 b2 (b1+b2)b1 (by — by)?
i wl)'[(zuw)z‘3(1+q)3>(b2 Wy 3(1+q>3 i)

(b= b1)*(1+2q) (bz—b1)2+ 1 1b2+ 1.1 bib
T 21+qF 124+ \3 4)tE\a Ty 3)

1 " (bZ - bl)2 (b2 - b1)2
_<§——)(b1+bz)bz+—} v “’2"[3(1 2?2+

— 2 — 2 3
Jamb)? (bamb)? (112, b1 LY,
g ag+n \272 3)77 2N\

1 1 by +by)by  bib
(b1+b2)b1<——§>—%+172]

- [v" ()| (1+3q)(by — b1)? s b_% _ (b1 +by)by . (by — by)*
! 6(1+q) 4 3(1+qP  2(1+9q)
(b -b1)*(1+2q) (b -by)? . b_% . biby  (by + by)by . biby
2(1+¢q)3 12(g+1) 12 6 6 2

(by=b1)*  (by=b1)* (ba—b1)* (ba—b1)* b} b3
+ + - +—+ =
3(1+¢q)* 2(1+¢q) 2(1+¢q)3 dg+1) 12 4

+ |1/f//(b2)||:
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+ b1by _ (b1 + by)by _ (b1 + by)by + @
6 6 3 2

~ [y b)) (1+3q)(by — b1)? (b + by)b . (by — by)? _(ba - b1)*(1 +2q)
' 6(1 +4q)° 31+9°  2(1+q) 2(1+q)3
_ (bz—b1)2 + b_% b_% + % _ (b1 + by)by + bib,
120+1) 4 12 6 6 2

" (by=b1)* (by—b1)* (by-b1)* (by-b1)* b} b}
+ ’1// (bz)} + + - +—+—=
3(1 +¢q)3 2(1+q) 2(1 + )3 4g+1) 12 4

+ b1by _ (b1 + by)by _ (b1 + by)by + @]

6 6 3 2

_ ” (b2 - b1)2(5q2 + 4q + 1) - 4(b1 + bz)bl Bb% - b% + 6b1b2
=¥ wl)'[ 12(1 + 9)° * 12 ]
" (by —b1)*(3(1 + q)* +10) (b — by)?
i (bZ)}[ 12(1 +q) T 12 ] .

4 Conclusion

We revisited the Hermite—Hadamard inequality in quantum calculus. We deduced some
new identities in the way. Using these identities, we obtained new estimates in this regard.
Employing the method outlined in this paper, we anticipate that some other inequalities
may be reestablished. More results on the Hermite—Hadamard inequality in quantum cal-
culus can be found in [22, 26, 31, 34].
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