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Abstract
We consider the combined effect of concave–convex nonlinearities on the number of
solutions for an indefinite truncated Kirchhoff-type system involving the weight
functions. When α + β < 4, since the concave-convex nonlinearities do not satisfy the
mountain pass geometry, it is difficult to obtain a bounded Palais–Smale sequence by
the usual mountain pass theorem. To overcome the problem, we properly introduce a
method of Nehari manifold and then establish the existence of multiple positive
solutions when the pair of the parameters is under a certain range.
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1 Introduction and main results
In this paper, we consider the existence and multiplicity of positive solutions for the fol-
lowing truncated Kirchhoff-type system involving concave–convex nonlinearities:
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Problem (Eλ,μ,Mk ) is called nonlocal because of the presence of b1
∫

Ω
|∇u|2 and b2

∫

Ω
|∇v|2,

and b(
∫

Ω
|∇u|2)�u appears in the Kirchhoff equation

{
–(a + b

∫

Ω
|∇u|2)�u = f (x, u) in Ω ,

u = 0 on ∂Ω ,
(E1)

related to the stationary analogue of the equation

utt –
(

a + b
∫

Ω

|∇u|2
)

�u = f (x, u),

where u is the displacement, f (x, t) is the external force, a is the initial tension, and b is re-
lated to the intrinsic properties of the string. The equation was first proposed by Kirchhoff
[1] as an extension of the classical D’Alembert’s wave equation to describe free vibrations
of elastic strings. Several existence results for equation (E1) have been obtained in recent
years; see [2–7] and references therein. Moreover, other similar arguments are also ob-
tained; see [8–12].

When ai = 0 and bi = 1 (i = 1, 2), problem (Eλ,μ,Mk ) becomes

⎧
⎪⎨

⎪⎩

–�u = λf (x)|u|q–2u + α
α+β

|u|α–2u|v|β in Ω ,
–�v = μg(x)|v|q–2v + β

α+β
|u|α|v|β–2v in Ω ,

u = v = 0 on ∂Ω .
(E2)

Nowadays scientists and researchers paid more attentions to problem (E2) with sigh-
changing weight function. For instance, the case α + β = 2∗ is considered in [13], whereas
in [14, 15] the case α + β < 2∗ was studied, and the existence and multiplicity of positive
solutions when (λ,μ) belongs to a certain subset of R2 were obtained.

Meanwhile, the problem about Kirchhoff system has been studied. In [16, 17] the Kirch-
hoff system with boundary value shows several physical and biological systems with u
and v describing a process depending on the average of itself, such as population densi-
ties. Lv and Peng [18] established the existence of positive vector solutions and positive
vector ground state solutions by using variational methods and also studied the asymp-
totic behavior of these solutions. In [19] the authors studied the nonlocal boundary value
problem of Kirchhoff-type system, where Ω is a bounded domain in R

N , N = 1, 2, 3, β ∈R,
ai, bi,λi > 0 for i = 1, 2, and p and q are two positive numbers satisfying certain conditions.
They obtained the existence of positive solutions by the Nehari manifold and mountain
pass lemma and the multiplicity by using cohomological index of Fadell and Rabinowitz.
Also, they considered the critical case and proved the existence of positive least energy
solutions when β is sufficiently large.

Inspired by the works mentioned, in this paper, we mainly study the truncated Kirchhoff-
type system with concave–convex nonlinearities involving α + β < 4, since the case α +
β ≥ 4 is trivial, which is easy to be proved by using the method in [20]. To the best of
our knowledge, the usual mountain pass theorem cannot be directly applied because the
concave–convex nonlinearities do not satisfy the mountain pass geometry, so it is difficult
to obtain a bounded Palais–Smale sequence (see Theorem 1.15 in [21]). Hence, in this
work, by using the method of Nehari manifold, we overcome this difficulty and obtain the
existence of multiple positive solutions.
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Let us state our knowledge framework and main result. For u ∈ H1
0 (Ω), its usual norm

is denoted by

‖u‖2 =
∫

Ω

|∇u|2.

Consider system (Eλ,μ,Mk ) in the framework of the Sobolev space H = H1
0 (Ω)×H1

0 (Ω) with
the standard norm

∥
∥(u, v)

∥
∥2

H =
∫

Ω

(|∇u|2 + |∇v|2).

The energy functional associated with the equation (Eλ,μ,Mk ) is defined by

Iλ,μ,Mk (u, v) =
1
2

M̂k
1
(‖u‖2) +

1
2

M̂k
2
(‖v‖2) –

1
q

∫

Ω

(
λf |u|q + μg|v|q)

–
1

α + β

∫

Ω

|u|α|v|β ,

where M̂k
i (t) =

∫ t
0 Mk

i (s) ds. It is well known that the functional Iλ,μ,Mk is of class C1. Further,
we denote

Λ =
((

λ‖f ‖∞
)2/(2–q) +

(
μ‖g‖∞

)2/(2–q))(2–q)/2.

Theorem 1.1 Assume that conditions (F), (G) hold. If α + β < 2∗, then there exists
Λ0 > 0 such that for 0 < Λ < Λ0, equation (Eλ,μ,Mk ) has at least two positive solutions
(u+

λ,μ,Mk , v+
λ,μ,Mk ) and (u–

λ,μ,Mk , v–
λ,μ,Mk ).

2 Preliminaries
Let us introduce the Nehari manifold

Nλ,μ,Mk =
{

(u, v) ∈ H \ (0, 0) | 〈I ′
λ,μ,Mk (u, v), (u, v)

〉
= 0

}
,

and denote Ψλ,μ,Mk (u, v) = 〈I ′
λ,μ,Mk (u, v), (u, v)〉 and Φλ,μ,Mk (u, v) = 〈Ψ ′

λ,μ,Mk (u, v), (u, v)〉. If
(u, v) ∈ Nλ,μ,Mk , then

Φλ,μ,Mk (u, v) = 2
(
Mk

1
)′(‖u‖2)‖u‖4 + 2

(
Mk

2
)′(‖v‖2)‖v‖4 + 2Mk

1
(‖u‖2)‖u‖2

+ 2Mk
2
(‖v‖2)‖v‖2 – q

∫

Ω

(
λf |u|q + μg|v|q) – (α + β)

∫

Ω

|u|α|v|β

= (2 – q)Mk
1
(‖u‖2)‖u‖2 + 2

(
Mk

1
)′(‖u‖2)‖u‖4 + (2 – q)Mk

2
(‖v‖2)‖v‖2

+ 2
(
Mk

2
)′(‖v‖2)‖v‖4 – (α + β – q)

∫

Ω

|u|α|v|β (2.1)

= (2 – α – β)Mk
1
(‖u‖2)‖u‖2 + 2

(
Mk

1
)′(‖u‖2)‖u‖4

+ (2 – α – β)Mk
2
(‖v‖2)‖v‖2 + 2

(
Mk

2
)′(‖v‖2)‖v‖4

– (q – α – β)
(
λf |u|q + μg|v|q). (2.2)
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We split Nλ,μ,Mk into three parts:

N+
λ,μ,Mk =

{
(u, v) ∈ Nλ,μ,Mk | Φλ,μ,Mk (u, v) > 0

}
,

N0
λ,μ,Mk =

{
(u, v) ∈ Nλ,μ,Mk | Φλ,μ,Mk (u, v) = 0

}
,

N–
λ,μ,Mk =

{
(u, v) ∈ Nλ,μ,Mk | Φλ,μ,Mk (u, v) < 0

}
.

The best Sobolev constant Sr (1 < r < 2∗) and Sα,β are respectively defined by

Sr = inf
u∈H1

0 (Ω)\{0}

∫

Ω
|∇u|2

(
∫

Ω
|u|r)2/r ,

Sα,β = inf
u,v∈H1

0 (Ω)\{0}

∫

Ω
(|∇u|2 + |∇v|2)

(
∫

Ω
|u|α|v|β )2/(α+β) .

Lemma 2.1 Assume that conditions (F) and (G) hold. Then the energy functional Iλ,μ,Mk

is coercive and bounded below on Nλ,μ,Mk .

Proof For (u, v) ∈ Nλ,μ,Mk ,

Mk
1
(‖u‖2)‖u‖2 + Mk

2
(‖v‖2)‖v‖2

=
∫

Ω

(
λf |u|q + μg|v|q) +

∫

Ω

|u|α|v|β .

Setting M0 = min{ a1
2 – M1(k)

α+β
, a2

2 – M2(k)
α+β

}, by the Sobolev and Hölder inequalities we obtain

Iλ,μ,Mk (u, v) = Iλ,μ,Mk (u, v) –
1

α + β
Ψλ,μ,Mk (u, v)

=
(

1
2

M̂k
1
(‖u‖2) –

1
α + β

Mk
1
(‖u‖2)‖u‖2

)

+
(

1
2

M̂k
2
(‖v‖2) –

1
α + β

Mk
2
(‖v‖2)‖v‖2

)

–
α + β – q
(α + β)q

∫

Ω

(
λf |u|q + μg|v|q).

To finish this proof, we need the following claims.

Claim 1 1
2 M̂k

1(‖u‖2) – 1
α+β

Mk
1(‖u‖2)‖u‖2 ≥ ( a1

2 – M1(k)
α+β

)‖u‖2.

Claim 2 1
2 M̂k

2(‖v‖2) – 1
α+β

Mk
2(‖v‖2)‖v‖2 ≥ ( a2

2 – M2(k)
α+β

)‖v‖2.

Claim 3
∫

Ω
(λf |u|q + μg|v|q) ≤ S–q/2

q Λ‖(u, v)‖q
H .

First, by the Sobolev and Hölder inequalities we easily obtain Claim 3. Then, since the
proof of Claim 2 is the same as that of Claim 1, here we only give the proof of Claim 1. If
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‖u‖2 ≤ k, then we have that

1
2

M̂k
1
(‖u‖2) –

1
α + β

Mk
1
(‖u‖2)‖u‖2 –

(
a1

2
–

M1(k)
α + β

)

‖u‖2

=
1

α + β
b1‖u‖2(k – ‖u‖2) +

b1

4
‖u‖4 ≥ 0,

and if ‖u‖2 > k, then we conclude that

1
2

M̂k
1
(‖u‖2) –

1
α + β

Mk
1
(‖u‖2)‖u‖2 –

(
a1

2
–

M1(k)
α + β

)

‖u‖2

=
1
2

∫ k

0
M1(s) ds +

1
2

∫ ‖u‖2

k
M1(k) ds –

a1

2
‖u‖2

=
1
4

b1k
(
2‖u‖2 – k

) ≥ 0,

which completes the proof of Claim 1.
Thus, we could obtain that

Iλ,μ,Mk (u, v) ≥
(

a1

2
–

M1(k)
α + β

)

‖u‖2 +
(

a2

2
–

M2(k)
α + β

)

‖v‖2 –
α + β – q
(α + β)q

S–q/2
q Λ

∥
∥(u, v)

∥
∥q

H

≥ M0
∥
∥(u, v)

∥
∥2

H –
α + β – q
(α + β)q

S–q/2
q Λ

∥
∥(u, v)

∥
∥q

H . (2.3)

Since k < min{ a1(α+β–2)
2b1

, a2(α+β–2)
2b2

}, we have M0 > 0. Thus Iλ,μ,Mk is coercive and bounded
below on Nλ,μ,Mk . �

Lemma 2.2 Suppose that (u0, v0) is a local minimizer for Iλ,μ,Mk on Nλ,μ,Mk , (u0, v0) /∈
N0

λ,μ,Mk . Then I ′
λ,μ,Mk (u0, v0) = 0 in H–1.

Proof We refer to Theorem 2.3 of [22]. �

Since 2 < α + β < 4, we have k < a1(α+β–2)
2b1

< a1(α+β–2)
b1(4–α–β) and k < a2(α+β–2)

2b2
< a2(α+β–2)

b2(4–α–β) , so that
a1(α + β – 2) – b1(4 – α – β)k > 0 and a2(α + β – 2) – b2(4 – α – β)k > 0.

Setting

Λ̃ =
C̃2Sq/2

q

α + β – q

( (2 – q)C̃1S(α+β)/2
α,β

α + β – q

)(2–q)/(α+β–2)

,

where C̃1 = min{a1, a2, M1(k), M2(k)}, and C̃2 = min{a1(α + β – 2) – b1(4 – α – β)k,
a2(α + β – 2) – b2(4 – α – β)k, M1(k)(α + β – 2), M2(k)(α + β – 2)}, we obtain the following
result.

Lemma 2.3 Assume that conditions (F) and (G) hold. If α + β < 2∗, then N0
λ,μ,Mk = ∅ for

Λ ∈ (0, Λ̃).

Proof For each (u, v) ∈ N0
λ,μ,Mk , in (2.1), we discuss the problem in four cases.
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Case 1: If ‖u‖2 ≤ k, ‖v‖2 ≤ k, and

Φλ,μ,Mk (u, v) = (2 – q)a1‖u‖2 + (4 – q)b1‖u‖4 + (2 – q)a2‖v‖2 + (4 – q)b2‖v‖4

– (α + β – q)
∫

Ω

|u|α|v|β ,

then

(2 – q)a
∥
∥(u, v)

∥
∥2

H ≤ (2 – q)a1‖u‖2 + (2 – q)a2‖v‖2

≤ (α + β – q)
∫

Ω

|u|α|v|β

≤ (α + β – q)S–(α+β)/2
α,β

∥
∥(u, v)

∥
∥α+β

H , (2.4)

where a = min{a1, a2} > 0.
Case 2: If ‖u‖2 ≤ k, ‖v‖2 > k, and

Φλ,μ,Mk (u, v) = (2 – q)a1‖u‖2 + (4 – q)b1‖u‖4 + (2 – q)M2(k)‖v‖2

– (α + β – q)
∫

Ω

|u|α|v|β ,

then

(2 – q)ak
1
∥
∥(u, v)

∥
∥2

H ≤ (2 – q)a1‖u‖2 + (2 – q)M2(k)‖v‖2

≤ (α + β – q)S–(α+β)/2
α,β

∥
∥(u, v)

∥
∥α+β

H , (2.5)

where ak
1 = min{a1, M2(k)}.

Case 3: If ‖u‖2 > k, ‖v‖2 ≤ k, and

Φλ,μ,Mk (u, v) = (2 – q)M1(k)‖u‖2 + (2 – q)a2‖v‖2 + (4 – q)b2‖v‖4

– (α + β – q)
∫

Ω

|u|α|v|β ,

then

(2 – q)ak
2
∥
∥(u, v)

∥
∥2

H ≤ (2 – q)M1(k)‖u‖2 + (2 – q)a2‖v‖2

≤ (α + β – q)S–(α+β)/2
α,β

∥
∥(u, v)

∥
∥α+β

H , (2.6)

where ak
2 = min{a2, M1(k)}.

Case 4: If ‖u‖2 > k, ‖v‖2 > k, and

Φλ,μ,Mk (u, v) = (2 – q)M1(k)‖u‖2 + (2 – q)M2(k)‖v‖2 – (α + β – q)
∫

Ω

|u|α|v|β ,

then

(2 – q)M(k)
∥
∥(u, v)

∥
∥2

H ≤ (α + β – q)
∫

Ω

|u|α|v|β
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≤ (α + β – q)S–(α+β)/2
α,β

∥
∥(u, v)

∥
∥α+β

H , (2.7)

where M(k) = min{M1(k), M2(k)}.
For (2.2), we also split the proof into four cases as follows.
Case 1: If ‖u‖2 ≤ k, ‖v‖2 ≤ k, and

Φλ,μ,Mk (u, v) =
(
b1(4 – α – β)‖u‖2 – a1(α + β – 2)

)‖u‖2

+
(
b2(4 – α – β)‖v‖2 – a2(α + β – 2)

)‖v‖2

+ (α + β – q)
∫

Ω

(
λf |u|q + μg|v|q),

then since k < a1(α+β–2)
2b1

< a1(α+β–2)
b1(4–α–β) and k < a2(α+β–2)

2b2
< a2(α+β–2)

b2(4–α–β) , we have a1(α + β – 2) –
b1(4 – α – β)k > 0 and a2(α + β – 2) – b2(4 – α – β)k > 0. Thus

(
a1(α + β – 2) – b1(4 – α – β)k

)‖u‖2 +
(
a2(α + β – 2) – b2(4 – α – β)k

)‖v‖2

≤ (α + β – q)
∫

Ω

(
λf |u|q + μg|v|q)

≤ (α + β – q)S–q/2
q Λ

∥
∥(u, v)

∥
∥q

H .

Let T1 = min{a1(α + β – 2) – b1(4 – α – β)k, a2(α + β – 2) – b2(4 – α – β)k}. Then

T1
∥
∥(u, v)

∥
∥2

H ≤ (α + β – q)S–q/2
q Λ

∥
∥(u, v)

∥
∥q

H . (2.8)

Case 2: If ‖u‖2 ≤ k and ‖v‖2 > k, then

Φλ,μ,Mk (u, v) =
(
b1(4 – α – β)‖u‖2 – a1(α + β – 2)

)‖u‖2 – M2(k)(α + β – 2)‖v‖2

+ (α + β – q)
∫

Ω

(
λf |u|q + μg|v|q)

and

T2
∥
∥(u, v)

∥
∥2

H ≤ (
a1(α + β – 2) – b1(4 – α – β)k

)‖u‖2 + M2(k)(α + β – 2)‖v‖2

≤ (α + β – q)S–q/2
q Λ

∥
∥(u, v)

∥
∥q

H , (2.9)

where T2 = min{a1(α + β – 2) – b1(4 – α – β)k, M2(k)(α + β – 2)}.
Case 3: If ‖u‖2 > k, ‖v‖2 ≤ k, then

Φλ,μ,Mk (u, v) = –M1(k)(α + β – 2)‖u‖2 +
(
b2(4 – α – β)‖v‖2 – a2(α + β – 2)

)‖v‖2

+ (α + β – q)
∫

Ω

(
λf |u|q + μg|v|q)

and

T3
∥
∥(u, v)

∥
∥2

H ≤ M1(k)(α + β – 2)‖u‖2 +
(
a2(α + β – 2) – b2(4 – α – β)k

)‖v‖2

≤ (α + β – q)S–q/2
q Λ

∥
∥(u, v)

∥
∥q

H , (2.10)
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where T3 = min{M1(k)(α + β – 2), a2(α + β – 2) – b2(4 – α – β)k}.
Case 4: If ‖u‖2 > k, ‖v‖2 > k, then

Φλ,μ,Mk (u, v) = –M1(k)(α + β – 2)‖u‖2 – M2(k)(α + β – 2)‖v‖2

+ (α + β – q)
∫

Ω

(
λf |u|q + μg|v|q)

and

T4
∥
∥(u, v)

∥
∥2

H ≤ M1(k)(α + β – 2)‖u‖2 + M2(k)(α + β – 2)‖v‖2

≤ (α + β – q)S–q/2
q Λ

∥
∥(u, v)

∥
∥q

H , (2.11)

where T4 = min{M1(k)(α + β – 2), M2(k)(α + β – 2)}.
So, it follows from (2.4)–(2.7) that

(2 – q)C̃1
∥
∥(u, v)

∥
∥2

H ≤ (α + β – q)S–(α+β)/2
α,β

∥
∥(u, v)

∥
∥α+β

H . (2.12)

Similarly, by (2.8)–(2.11) we also get that

C̃2
∥
∥(u, v)

∥
∥2

H ≤ (α + β – q)S–q/2
q Λ

∥
∥(u, v)

∥
∥q

H , (2.13)

and by (2.12)–(2.13) we have

( (2 – q)C̃1S(α+β)/2
α,β

α + β – q

)1/(α+β–2)

≤ ∥
∥(u, v)

∥
∥

H ≤
(

(α + β – q)Λ
C̃2Sq/2

q

)1/(2–q)

.

Consequently,

Λ ≥ C̃2Sq/2
q

α + β – q

( (2 – q)C̃1S(α+β)/2
α,β

α + β – q

)(2–q)/(α+β–2)

= Λ̃.

Therefore N0
λ,μ,Mk = ∅ for Λ ∈ (0, Λ̃). �

Similarly to the argument of [20], we conclude that for Λ ∈ (0, Λ̃), Nλ,μ,Mk = N+
λ,μ,Mk ∪

N–
λ,μ,Mk and N±

λ,μ,Mk �= ∅. Denoting

α+
λ,μ,Mk = inf

(u,v)∈N+
λ,μ,Mk

Iλ,μ,Mk (u, v), α–
λ,μ,Mk = inf

(u,v)∈N–
λ,μ,Mk

Iλ,μ,Mk (u, v),

we have the following conclusion.

Lemma 2.4 Assume that conditions (F) and (G) hold. If α + β < 4, then
(i) α+

λ,μ,Mk < 0 for all Λ ∈ (0, Λ̃);

(ii) for some D0 > 0, α–
λ,μ,Mk > D0 for all Λ ∈ (0, (α+β)qM0Λ̃

C̃2
).

In particular, for each 0 < Λ < Λ0 = min{1, (α+β)qM0
C̃2

}Λ̃, α+
λ,μ,Mk = inf(u,v)∈N

λ,μ,Mk Iλ,μ,Mk (u, v).

Proof (i) For (u, v) ∈ N+
λ,μ,Mk , we prove it in four cases.
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Case 1: If ‖u‖2 ≤ k and ‖v‖2 ≤ k, then we obtain that

(
a1(α + β – 2) – b1(4 – α – β)k

)‖u‖2 +
(
a2(α + β – 2) – b2(4 – α – β)k

)‖v‖2

≤ (
a1(α + β – 2) – b1(4 – α – β)‖u‖2)‖u‖2

+
(
a2(α + β – 2) – b2(4 – α – β)‖v‖2)‖v‖2

< (α + β – q)
∫

Ω

(
λf |u|q + μg|v|q).

Since (α + β – 2)a1 – b1(4 – α – β)k > 0 and (α + β – 2)a2 – b2(4 – α – β)k > 0, we have

Iλ,μ,Mk (u, v) =
1
2

M̂k
1
(‖u‖2) +

1
2

M̂k
2
(‖v‖2) –

1
α + β

Mk
1
(‖u‖2)‖u‖2

–
1

α + β
Mk

2
(‖v‖2)‖v‖2 –

α + β – q
(α + β)q

∫

Ω

(
λf |u|q + μg|v|q)

=
α + β – 2
2(α + β)

(
a1‖u‖2 + a2‖v‖2) +

α + β – 4
4(α + β)

(
b1‖u‖4 + b2‖v‖4)

–
α + β – q
q(α + β)

∫

Ω

(
λf |u|q + μg|v|q)

<
[

α + β – 2
2(α + β)

a1 +
α + β – 4
4(α + β)

b1k –
a1(α + β – 2) – b1(4 – α – β)k

q(α + β)

]

‖u‖2

+
[

α + β – 2
2(α + β)

a2 +
α + β – 4
4(α + β)

b2k –
a2(α + β – 2) – b2(4 – α – β)k

q(α + β)

]

‖v‖2

< 0.

Case 2: If ‖u‖2 ≤ k and ‖v‖2 > k, then we get

(
a1(α + β – 2) – b1(4 – α – β)k

)‖u‖2 + M2(k)(α + β – 2)‖v‖2

< (α + β – q)
∫

Ω

(
λf |u|q + μg|v|q).

Therefore

Iλ,μ,Mk (u, v)

=
α + β – 2
2(α + β)

a1‖u‖2 +
α + β – 4
4(α + β)

b1‖u‖4 +
1
2
(
M̂2(k) – M2(k)k

)

+
M2(k)(α + β – 2)

2(α + β)
‖v‖2 –

α + β – q
q(α + β)

∫

Ω

(
λf |u|q + μg|v|q)

<
(

α + β – 2
2(α + β)

a1 +
α + β – 4
4(α + β)

b1k –
a1(α + β – 2) – b1(4 – α – β)k

q(α + β)

)

‖u‖2

+
1
2

(

a2k +
b2k2

2
– (a2 + b2k)k

)

+
M2(k)(α + β – 2)

2(α + β)
‖v‖2 –

M2(k)(α + β – 2)
q(α + β)

‖v‖2

< 0.
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Case 3: If ‖u‖2 > k and ‖v‖2 ≤ k, then we have that

Iλ,μ,Mk (u, v)

<
1
2

(

a1k +
b1k2

2
– (a1 + b1k)k

)

+
M1(k)(α + β – 2)

2(α + β)
‖u‖2 –

M1(k)(α + β – 2)
q(α + β)

‖u‖2

+
(

α + β – 2
2(α + β)

a2 +
α + β – 4
4(α + β)

b2k –
a2(α + β – 2) – b2(4 – α – β)k

q(α + β)

)

‖v‖2

< 0.

Case 4: If ‖u‖2 > k and ‖v‖2 > k, then we deduce that

Iλ,μ,Mk (u, v)

< –
b1

4
k2 +

M1(k)(α + β – 2)(q – 2)
22∗q

‖u‖2 +
M2(k)(α + β – 2)(q – 2)

2(α + β)q
‖v‖2 –

b2

4
k2

< 0.

Therefore α+
λ,μ,Mk = inf(u,v)∈N+

λ,μ,Mk
Iλ,μ,Mk (u, v) < 0.

(ii) For (u, v) ∈ N–
λ,μ,Mk , by (2.4)–(2.7) we have

C̃1(2 – q)
∥
∥(u, v)

∥
∥2

H < (α + β – q)
∫

Ω

|u|α|v|β

≤ (α + β – q)S–(α+β)/2
α,β

∥
∥(u, v)

∥
∥α+β

H ,

which implies that

∥
∥(u, v)

∥
∥

H >
( C̃1(2 – q)S(α+β)/2

α,β

α + β – q

)1/(α+β–2)

.

From (2.3) we get that

Iλ,μ,Mk (u, v)

≥ M0
∥
∥(u, v)

∥
∥2

H –
α + β – q
(α + β)q

S–q/2
q Λ

∥
∥(u, v)

∥
∥q

H

>
( C̃1(2 – q)S(α+β)/2

α,β

α + β – q

)q/(α+β–2)

·
(

M0

( C̃1(2 – q)S(α+β)/2
α,β

α + β – q

)(2–q)/(α+β–2)

–
α + β – q
(α + β)q

S–q/2
q Λ

)

.

Thus, if Λ < (α + β)qM0
Λ̃

C̃2
, then α–

λ,μ,Mk > D2 for some D2 > 0. �

3 The (PS) condition
Lemma 3.1 Every bounded Palais–Smale sequence for Iλ,μ,Mk on H has a strongly conver-
gent subsequence.
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Proof Let {(un, vn)} be a bounded Palais–Smale sequence for Iλ,μ,Mk on H . Then the se-
quence {un} ({vn}) is bounded on H1

0 (Ω). Thus there exist a subsequence {un} ({vn}) and
u0 ∈ H1

0 (Ω) (v0 ∈ H1
0 (Ω)) such that

un ⇀ u0 weakly in H1
0 (Ω)

(
vn ⇀ v0 weakly in H1

0 (Ω)
)
,

un → u0 strongly in Lr(Ω)
(
vn → v0 strongly in Lr(Ω)

)
for 1 < r < 2∗.

Then

∣
∣
∣
∣

∫

Ω

f |un|q–2un(un – u0) dx
∣
∣
∣
∣ ≤ ‖f ‖∞

(∫

Ω

|un|q dx
)(q–1)/q(∫

Ω

|un – u0|q dx
)1/q

→ 0, (3.1)
∣
∣
∣
∣

∫

Ω

g|vn|q–2vn(vn – v0) dx
∣
∣
∣
∣ ≤ ‖g‖∞

(∫

Ω

|vn|q dx
)(q–1)/q(∫

Ω

|vn – v0|q dx
)1/q

→ 0, (3.2)
∣
∣
∣
∣

∫

Ω

|un|α–2un(un – u0)|vn|β dx
∣
∣
∣
∣ ≤

(∫

Ω

|un|α+β dx
)(α–1)/(α+β)

·
(∫

Ω

|un – u0|α+β dx
)1/(α+β)

·
(∫

Ω

|vn|α+β dx
)β/(α+β)

→ 0, (3.3)

and

∣
∣
∣
∣

∫

Ω

|un|α|vn|β–2vn(vn – v0) dx
∣
∣
∣
∣ ≤

(∫

Ω

|un|α+β dx
)α/(α+β)(∫

Ω

|vn – v0|α+β dx
)1/(α+β)

·
(∫

Ω

|vn|α+β dx
)(β–1)/(α+β)

→ 0 (3.4)

as n → ∞. Since {(un, vn)} is a Palais–Smale sequence for Iλ,μ,Mk , it follows that

〈
I ′
λ,μ,Mk (un, vn), (un – u0, 0)

〉

= Mk
1
(‖un‖2)

∫

Ω

∇un∇(un – u0) dx – λ

∫

Ω

f |un|q–2un(un – u0) dx

–
α

4

∫

Ω

|un|α–2un(un – u0)|vn|β dx

→ 0 (3.5)

and

〈
I ′
λ,μ,Mk (un, vn), (0, vn – v0)

〉
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= Mk
2
(‖vn‖2)

∫

Ω

∇vn∇(vn – v0) dx – μ

∫

Ω

g|vn|q–2vn(vn – v0) dx

–
β

4

∫

Ω

|un|α|vn|β–2vn(vn – v0) dx

→ 0 (3.6)

as n → ∞. By (3.1), (3.3), and (3.5) we get that

∫

Ω

∇un∇(un – u0) dx → 0 as n → ∞.

By (3.2), (3.4), and (3.6) we obtain that

∫

Ω

∇vn∇(vn – v0) dx → 0 as n → ∞.

Thus

∥
∥(un, vn) – (u0, v0)

∥
∥2

H = ‖un – u0‖2 + ‖vn – v0‖2 → 0 as n → ∞. �

Proof of Theorem 1.1 Take Λ < Λ0. By Lemma 2.1 and the Ekeland variational principle
[23] there exist two bounded minimizing sequences {(u±

n , v±
n )} for Iλ,μ,Mk on N±

λ,μ,Mk such
that

Iλ,μ,Mk
(
u±

n , v±
n
)

= α±
λ,μ,Mk + o(1), I ′

λ,μ,Mk
(
u±

n , v±
n
)

= o(1) on H–1.

By Lemma 3.1 there exist subsequences {(u±
n , v±

n )} and (u±
λ,μ,Mk , v±

λ,μ,Mk ) ∈ H , the
nonzero solutions of the equation (Eλ,μ,Mk ), such that (u±

n , v±
n ) → (u±

λ,μ,Mk , v±
λ,μ,Mk ) strongly

in H . So (u±
λ,μ,Mk , v±

λ,μ,Mk ) ∈ N±
λ,μ,Mk and Iλ,μ,Mk (u±

λ,μ,Mk , v±
λ,μ,Mk ) = α±

λ,μ,Mk . Since
Iλ,μ,Mk (u±

λ,μ,Mk , v±
λ,μ,Mk ) = Iλ,μ,Mk (|u±

λ,μ,Mk |, |v±
λ,μ,Mk |), by Lemma 2.2 and Lemma 2.4 we could

obtain that (u+
λ,μ,Mk , v+

λ,μ,Mk ) and (u–
λ,μ,Mk , v–

λ,μ,Mk ) are two distinct solutions of equation
(Eλ,μ,Mk ) such that u±

λ,μ,Mk ≥ 0 and v±
λ,μ,Mk ≥ 0 in Ω . By an argument similar to Lemma 2.6

and Theorem 3.2 in [15] we get u±
λ,μ,Mk �= 0 and v±

λ,μ,Mk �= 0. By the strong maximum prin-
ciple [24] we get that u±

λ,μ,Mk > 0 and v±
λ,μ,Mk > 0. �
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