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Abstract
In this paper, we show that the invariant subspace method can be successfully
utilized to get exact solutions for nonlinear fractional partial differential equations
with generalized fractional derivatives. Using the invariant subspace method, some
exact solutions have been obtained for the time fractional Hunter–Saxton equation, a
time fractional nonlinear diffusion equation, a time fractional thin-film equation, the
fractional Whitman–Broer–Kaup-type equation, and a system of time fractional
diffusion equations.
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1 Introduction
Fractional calculus has several applications in science and engineering [1, 2]. It is exten-
sively used in modeling physical and engineering phenomena in the form of fractional
partial differential equations [3–6]. Many definitions of the fractional derivative have been
introduced in the literature, such as the Riemann–Liouville definition [2], the Caputo def-
inition [2], the Riesz definition [2], the the Caputo–Fabrizio definition [7], and Atangana–
Baleanu definition [8]. In recent years, a novel fractional derivative has appeared in the
literature called the generalized fractional derivative [9, 10]

0Dα,ρ
t f (t) =

ρα

Γ (1 – α)
t1–ρ d

dt

∫ t

0

τρ–1

(tρ – τρ)α
f (τ ) dτ , 0 < α < 1,ρ is a constant,

which generalizes the Riemann–Liouville fractional derivative. This generalized fractional
derivative has attracted the interest of many researchers. Many properties and applications
of this generalized fractional derivative can be found in [9–16]. Some basic properties of
the generalized fractional derivative are given in the Appendix.

The invariant subspace method (ISM) is a very effective method that can be used for
obtaining exact solutions of fractional partial differential equations. It is widely used in
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getting exact solutions of fractional differential equations with Riemann–Liouville and
Caputo fractional derivatives [17–20]. It is also successfully utilized for getting exact solu-
tions of fractional partial differential equations with conformable derivatives [21]. In this
paper, we adapt the ISM to be utilized for obtaining exact solutions for some fractional par-
tial differential equations with the generalized fractional Riemann–Liouville derivative. In
the next section, we will introduce the ISM.

2 The invariant subspace method
The ISM can be used for solving the following fractional system of PDEs:

0Dα,ρ
t u = F1[u, v] = H1(x, v, u, vx, ux, vxx, uxx, . . . ),

0Dα,ρ
t v = F2[u, v] = H2(x, v, u, vx, ux, vxx, uxx, . . . ).

(1)

The ISM can be summarized in the following steps:
Step 1. Assume the solution of Eq. (1) in the form

u(x, t) =
j∑

i=1

Ai(t)Bi(x), v(x, t) =
k∑

i=1

Ci(t)Di(x), (2)

where j and k depend upon the dimension of the invariant subspace.
Step 2. Determine the functions Bi(x), Di(x) as follows:
• Solve the system of determining equations

(
dj

dxj + cj–1(x)
dj–1

dxj–1 + · · · + c1(x)
d

dx
+ c0(x)

)
F1

[
y1(x), y2(x)

]
= 0,

(
dk

dxk + rk–1(x)
dk–1

dxk–1 + · · · + r1(x)
d

dx
+ r0(x)

)
F2

[
y1(x), y2(x)

]
= 0,

(3)

to obtain the coefficients c0(x), . . . , cj–1(x) and r0(x), . . . , rk–1(x);
• Solve the system of ordinary differential equations

(
dj

dxj + cj–1(x)
dj–1

dxj–1 + · · · + c1(x)
d

dx
+ c0(x)

)
y1(x) = 0,

(
dk

dxk + rk–1(x)
dk–1

dxk–1 + · · · + r1(x)
d

dx
+ r0(x)

)
y2(x) = 0,

(4)

to obtain the solution

y1 =
j∑

i=1

hiBi(x), y2 =
k∑

i=1

siDi(x), (5)

where hi, i = 1, . . . , j, si, i = 1, . . . , k are arbitrary constants.
Step 3. Substitute Eq. (2) into Eq. (1) to obtain a system of fractional ordinary differential

equations in Ai(t) and Ci(t).
In the following section, we solve some fractional differential equations using ISM.
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3 Numerical examples
Example 3.1 Let us consider the time fractional Hunter–Saxton equation [19, 21]

0Dα,ρ
t u –

(
0Dα,ρ

t u
)

xx = uuxxx + 2uxuxx. (6)

Using the ISM, we have obtained the following:
Four-Dimensional Invariant Subspace Classification of Eq. (6). Here, Eq. (4) is given by

y(4) + a3(x)y(3) + a2(x)y′′ + a1(x)y′ + a0(x)y = 0. (7)

Also,

F[y] = yy′′′ + 2y′y′′. (8)

Substituting Eqs. (7) and (8) into Eq. (3) (with j = 4), we obtain determining equations
in a3, a2, a1, a0. After solving them, we get

a3 = a2 = a1 = a0 = 0. (9)

Substituting Eq. (9) into Eq. (7) and solving Eq. (7), we obtain

y = c1 + c2x + c3x2 + c4x3. (10)

The solution of Eq. (6) can be written in the form

u(x, t) = A1(t) + A2(t)x + A3(t)x2 + A4(t)x3. (11)

Substituting Eq. (11) into Eq. (6), we obtain

–42A3A4 + 0Dα,ρ
t A3 = 0,

–8A2
3 – 18A2A4 + 0Dα,ρ

t A2 – 60Dα,ρ
t A4 = 0,

–4A2A3 – 6A1A4 + 0Dα,ρ
t A1 – 20Dα,ρ

t A3 = 0,

–42A2
4 + 0Dα,ρ

t A4 = 0.

(12)

Assume

A1 = s1tv1 , A2 = s2tv2 , A3 = s3tv3 , A4 = s4tv4 . (12a)

Using relation (A1) in the Appendix, system (12) becomes

s3ρ
α

Γ ( v3
ρ

+ 1)
Γ ( v3

ρ
– α + 1)

tv3–αρ – 42s3s4tv3+v4 = 0, (12b)

s2ρ
αΓ ( v2

ρ
+ 1)

Γ ( v2
ρ

– α + 1)
tv2–αρ – 18s2s4tv2+v4 – 8s2

3t2v3 –
6s4ρ

αΓ ( v4
ρ

+ 1)
Γ ( v4

ρ
– α + 1)

tv4–αρ = 0, (12c)
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–6s1s4tv1+v4 +
s1ρ

αΓ ( v1
ρ

+ 1)
Γ ( v1

ρ
– α + 1)

tv1–αρ – 4s2s3tv2+v3 –
2s3ρ

αΓ ( v3
ρ

+ 1)
Γ ( v3

ρ
– α + 1)

tv3–αρ = 0, (12d)

s4ρ
α

Γ ( v4
ρ

+ 1)
Γ ( v4

ρ
– α + 1)

tv4–αρ – 42s2
4t2v4 = 0. (12e)

Equation (12e) is satisfied when

v4 = –αρ, s4 =
ραΓ (1 – α)
42Γ (1 – 2α)

. (12f)

Substituting Eq. (12f) into Eq. (12c), we obtain

1
7

s2ρ
αtv2–αρ

( 7Γ ( v2
ρ

+ 1)
Γ ( v2

ρ
– α + 1)

–
3Γ (1 – α)
Γ (1 – 2α)

)
– 8s2

3t2v3 –
ρ2αΓ (1 – α)2t–2αρ

7Γ (1 – 2α)2 = 0. (12g)

Equation (12g) is satisfied when

v3 = v2 = –αρ, s2 =
ραΓ (1 – α)
4Γ (1 – 2α)

+
14s2

3ρ
–αΓ (1 – 2α)

Γ (1 – α)
. (12h)

Substituting Eq. (12f) and Eq. (12h) into Eq. (12d), we get

t–2αρ

(
–

56s3
3ρ

–αΓ (1 – 2α)
Γ (1 – α)

–
3s3ρ

αΓ (1 – α)
Γ (1 – 2α)

)

+
1
7

s1ρ
αtv1–αρ

( 7Γ ( v1
ρ

+ 1)
Γ ( v1

ρ
– α + 1)

–
Γ (1 – α)
Γ (1 – 2α)

)
= 0. (12i)

Equation (12i) is satisfied when

v1 = –αρ, s1 =
196

3
s3

3ρ
–2α

(
Γ (1 – 2α)
Γ (1 – α)

)2

+
7s3

2
. (12j)

When substituting Eq. (12f), Eq. (12h) and Eq. (12j) into Eq. (12b), we can see that
Eq. (12b) is satisfied identically. Hence, the solution of the system (12) is given by

A1 = t–αρ

(
196

3
s3

3ρ
–2α

[
Γ (1 – 2α)
Γ (1 – α)

]2

+
7s3

2

)
, α �= 1,

A2 =
(

ραΓ (1 – α)
4Γ (1 – 2α)

+
14s2

3ρ
–αΓ (1 – 2α)

Γ (1 – α)

)
t–αρ , α �= 1

2
,

A3 = s3t–αρ ,

A4 =
ραΓ (1 – α)
42Γ (1 – 2α)

t–αρ ,

(13)

where s3 is a constant. Finally, the solution of Eq. (6) is given by

u(x, t) =
(

196
3

s3
3ρ

–2α

[
Γ (1 – 2α)
Γ (1 – α)

]2

+
7s3

2

)
t–αρ
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+
(

ραΓ (1 – α)
4Γ (1 – 2α)

+
14s2

3ρ
–αΓ (1 – 2α)

Γ (1 – α)

)
t–αρx + s3t–αρx2

+
ραΓ (1 – α)
42Γ (1 – 2α)

t–αρx3. (14)

Example 3.2 Let us consider the time fractional nonlinear diffusion equation [22]

0Dα,ρ
t u = kuxx –

1
2

(ux)2. (15)

Using the same technique used in Example 3.1, we obtain the following case for Eq. (15):
Three-Dimensional Invariant Subspace of Eq. (15). It is easy to show that Eq. (15) admits

the invariant subspace [22] L{1, x, x2}. The solution of Eq. (15) can be formulated as

u = A5(t) + A6(t)x + A7(t)x2. (16)

Substituting Eq. (16) into Eq. (15) and comparing both sides of Eq. (15), we get

A2
6

2
– 2kA7 + 0Dα,ρ

t A5 = 0,

2A6A7 + 0Dα,ρ
t A6 = 0,

2A2
7 + 0Dα,ρ

t A7 = 0.

(17)

We now solve system (17), to get

A5 = –
k(Γ (1 – α))2

Γ (1 – 2a)
–

b2
2ρ

–αΓ (1 – 2α)
2Γ (1 – α)

t–αρ ,

A6 = b2t–αρ ,

A7 = –
ραΓ (1 – α)
2Γ (1 – 2α)

t–αρ ,

(18)

where b2 is a constant. Finally, the exact solution of Eq. (15) is given by

u = –
k(Γ (1 – α))2

Γ (1 – 2a)
–

b2
2ρ

–αΓ (1 – 2α)
2Γ (1 – α)

t–αρ + b2xt–αρ –
ραΓ (1 – α)
2Γ (1 – 2α)

x2t–αρ .

Example 3.3 Let us consider the time fractional thin-film equation [19, 21]

0Dα,ρ
t u = –uuxxxx + βuxuxxx + γ (uxx)2. (19)

Using the same technique used in Example 3.1, we obtain the following cases for Eq. (19):
Case 1: Two-Dimensional Invariant Subspace Classification of Eq. (19). The two-

dimensional invariant subspace admitted by Eq. (19) is {1, (b3 + x)4}, where b3 is a constant.
Therefore, the solution of Eq. (19) can be written in the form

u(x, t) = A8(t) + A9(t)(b3 + x)4. (20)
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Substituting Eq. (20) into Eq. (19), we get

–24(–1 + 4β + 6γ )A2
9 + 0Dα,ρ

t A9 = 0,

24A8A9 + 0Dα,ρ
t A8 = 0.

(21)

Upon solving Eq. (21), we get

A9 =
ραΓ (1 – α)

24Γ (1 – 2α)(4β + 6γ – 1)
t–αρ , α �= 1

2
, 4β + 6γ – 1 �= 0,

A8 = b4ts1 ,
(22)

where s1 satisfies the equation

(4β + 6γ – 1)
Γ ( s1

ρ
+ 1)

Γ ( s1
ρ

– α + 1)
+

Γ (1 – α)
Γ (1 – 2α)

= 0, (23)

and b4 is a constant.
The solution of Eq. (19), in this case, is given by

u(x, t) = b4ts1 +
ραΓ (1 – α)

24Γ (1 – 2α)(4β + 6γ – 1)
(b3 + x)4t–αρ . (24)

Case 2: Three-Dimensional Invariant Subspace Classification of Eq. (19). The first three-
dimensional invariant subspace admitted by Eq. (19) is {1, sin(b5x), cos(b5x)} with β = 1 –γ

and b5 being a constant. Therefore, the solution of Eq. (19) can be written in the form

u(x, t) = A10(t) + A11(t) cos(b5x) + A12(t) sin(b5x). (25)

Substituting Eq. (25) into Eq. (19), we get

–b4
5(–1 + γ )

(
A2

11 + A2
12

)
+ 0Dα,ρ

t A10 = 0,

b4
5A10A11 + 0Dα,ρ

t A11 = 0,

b4
5A10A12 + 0Dα,ρ

t A12 = 0.

(26)

Upon solving Eq. (26), we get

A10 = –
ραΓ (1 – α)
b4

5Γ (1 – 2α)
t–αρ , α �= 1

2
,

A11 = ±
√

ρ2αΓ (1 – α)2

b8
5(1 – γ )Γ (1 – 2α)2 – b2

6t–αρ , γ �= 1,

A12 = b6t–αρ ,

(27)

where b6 is a constant.
The solution of Eq. (19), in this case, is given by

u = t–αρ

(
–

ραΓ (1 – α)
b2

5Γ (1 – 2α)
±

√
ρ2αΓ (1 – α)2

b8
5(1 – γ )Γ (1 – 2α)2 – b2

6 cos(b5x) + b6 sin(b5x)
)

. (28)
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The second three-dimensional invariant subspace admitted by Eq. (19) is {1, x, (b7 + x)4}
with β = 1 – γ and b7 being a constant. Therefore, the solution of Eq. (19) can be written
in the form

u(x, t) = A13(t) + A14(t)x + A15(t)(b7 + x)4. (29)

Substituting Eq. (29) into Eq. (19), we get

24A15
(
A13 + b7(–1 + γ )A14 – b4

7(3 + 2γ )A15
)

+ 0Dα,ρ
t A13(t) + b4

70Dα,ρ
t A15(t) = 0,

24γ A14A15 + 0Dα,ρ
t A14(t) = 0,

24(3 + 2γ )A2
15 – 0Dα,ρ

t A15(t) = 0.

(30)

Upon solving Eq. (30), we get

A13 = –
b7b8(–1 + γ )Γ (1 – α)Γ (1 – α + s2

ρ
)

Γ (1 – α)Γ (1 – α + s2
ρ

) + 3Γ (1 – 2α)Γ ( s2
ρ

+ 1) + 2γΓ (1 – 2α)Γ ( s2
ρ

+ 1)
ts2 ,

A14 = b8ts2 , (31)

A15 =
ραΓ (1 – α)

24(3 + 2γ )Γ (1 – 2α)
t–αρ ,

where b8 is a constant and s2 is the root of the equation

γΓ (1 – α)
(3 + 2γ )Γ (1 – 2α)

+
Γ ( s2

ρ
+ 1)

Γ (1 – a + s2
ρ

)
= 0,

and γ �= {1, – 3
2 },α �= 1

2 , 1 – α + s2
ρ

�= 0, s2
ρ

�= –1.
The solution of Eq. (19), in this case, is given by

u = –
b7b8(–1 + γ )Γ (1 – α)Γ (1 – α + s2

ρ
)

Γ (1 – α)Γ (1 – α + s2
ρ

) + 3Γ (1 – 2α)Γ ( s2
ρ

+ 1) + 2γΓ (1 – 2α)Γ ( s2
ρ

+ 1)
ts2

+ b8ts2 x +
ραΓ (1 – α)

24(3 + 2γ )Γ (1 – 2α)
t–αρ(b7 + x)4. (32)

Example 3.4 Let us consider the fractional Whitman–Broer–Kaup-type equation [19, 21]

0Dα,ρ
t u = fuxx – guxxx –

1
2

vux –
1
2

uvx,

0Dα,ρ
t v = –fuxx – vvx – ux.

(33)

For a two-dimensional invariant subspace, we can assume the solution of (33) in the
form

u = A16(t) + A17(t)x,

v = A18(t) + A19(t)x.
(34)
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Substituting (34) into (33), we obtain

A19A16 + A18A17 + 20Dα,ρ
t A16 + 2x

(
A19A17 + 0Dα,ρ

t A17
)

= 0,

A18A19 + A17 + 0Dα,ρ
t A18 + x

(
A2

19 + 0Dα,ρ
t A19

)
= 0.

(35)

Equating the coefficients of x with zero, we obtain

A19A16 + A18A17 + 20Dα,ρ
t A16 = 0,

A19A17 + 0Dα,ρ
t A17 = 0,

A18A19 + A17 + 0Dα,ρ
t A18 = 0,

A2
19 + 0Dα,ρ

t A19 = 0.

(36)

The determining equations (36) have the solution

A16 =
b2

9Γ ( 2s3
ρ

– α + 1)(Γ ( s3
ρ

– α + 1)2 – Γ ( s3
ρ

+ 1)Γ ( s3
ρ

– 2α + 1))

Γ ( s3
ρ

– α + 1)(Γ ( s3
ρ

– α + 1)Γ ( 2s3
ρ

– α + 1) – 2Γ ( 2s3
ρ

+ 1)Γ ( s3
ρ

– 2α + 1))
t2s3 ,

A17 =
b9ρ

α

Γ ( s3
ρ

– α + 1)

(
Γ ( s3

ρ
– α + 1)2

Γ ( s3
ρ

– 2α + 1)
– Γ

(
s3

ρ
+ 1

))
ts3–αρ ,

A18 = b9ts3 ,

(37)

A19 = –
ραΓ ( s3

ρ
– α + 1)

Γ ( s3
ρ

– 2α + 1)
t–αρ ,

where b9 is a constant and s3 satisfies the equation

Γ ( s3
ρ

– α + 1)
Γ ( s3

ρ
– 2α + 1)

–
Γ (1 – α)
Γ (1 – 2α)

= 0.

Substituting (37) into (34), we obtain

u =
b2

9Γ ( 2s3
ρ

– α + 1)(Γ ( s3
ρ

– α + 1)2 – Γ ( s3
ρ

+ 1)Γ ( s3
ρ

– 2α + 1))

Γ ( s3
ρ

– α + 1)(Γ ( s3
ρ

– α + 1)Γ ( 2s3
ρ

– α + 1) – 2Γ ( 2s3
ρ

+ 1)Γ ( s3
ρ

– 2α + 1))
t2s3

+
b9ρ

α

Γ ( s3
ρ

– α + 1)

(
Γ ( s3

ρ
– α + 1)2

Γ ( s3
ρ

– 2α + 1)
– Γ

(
s3

ρ
+ 1

))
ts3–αρx, (38)

v = b9ts3 –
ραΓ ( s3

ρ
– α + 1)

Γ ( s3
ρ

– 2α + 1)
xt–αρ .

Example 3.5 Let us consider the following system of time fractional diffusion equations
[20]:

0Dα,ρ
t u = uxx + ρ1(vvx)x + μv2,

0Dα,ρ
t v = vxx + βuxx + γ u + δv.

(39)
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It is easy to show that Eq. (39) admits the invariant subspace [20] L{cos(√a0x),
sin(√a0x)} × L{e–b0x}. The solution of Eq. (39) can be formulated as

u = A20(t) cos(
√

a0x) + A21(t) sin(
√

a0x),

v = A22(t)e–b0x,
(40)

where γ = βa0 and μ = –2ρ1b2
0. We now substitute Eq. (40) into Eq. (39) and compare both

sides of Eq. (39) to get

0Dα,ρ
t A20 = –a0A20,

0Dα,ρ
t A21 = –a0A21,

0Dα,ρ
t A22 =

(
δ + b2

0
)
A22.

(41)

The determining equations (41) have the solution [11]

A20 = b10

(
tρ

ρ

)α–1

Eα,α

(
–a0

(
tρ

ρ

)α)
,

A21 = b11

(
tρ

ρ

)α–1

Eα,α

(
–a0

(
tρ

ρ

)α)
,

A22 = b12

(
tρ

ρ

)α–1

Eα,α

((
δ + b2

0
)( tρ

ρ

)α)
,

where b10, b11 and b12 are constants. In this case, the solution of Eq. (39) is given by

u =
(

tρ

ρ

)α–1

Eα,α

(
–a0

(
tρ

ρ

)α)(
b10 cos(

√
a0x) + b11 sin(

√
a0x)

)
,

v = b12

(
tρ

ρ

)α–1

Eα,α

((
δ + b2

0
)( tρ

ρ

)α)
e–b0x,

(42)

where Eα,β (t) is the Mittag-Leffler function defined by [2]

Eα,β (t) =
∞∑

k=0

tk

Γ (kα + β)
.

Also, Eq. (39) admits the invariant subspace [20] L{1, e–b13x, e–2b13x} × L{1, e–b13x}. The
solution of Eq. (39) can be formulated as

u = A23(t) + A24(t)e–b13x + A25(t)e–2b13x,

v = A26(t) + A27(t)e–b13x,
(43)
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where γ = –4βb2
13. We now substitute Eq. (43) into Eq. (39) and compare both sides of

Eq. (39) to get

0Dα,ρ
t A23 = μA2

26,

0Dα,ρ
t A24 =

(
ρ1b2

13 + 2μ
)
A26A27 + b2

13A24,

0Dα,ρ
t A25 = 4b2

13A25 +
(
2ρ1b2

13 + μ
)
A2

27,

0Dα,ρ
t A26 = δA26 – 4βb2

13A23,

0Dα,ρ
t A27 =

(
δ + b2

13
)
A27 – 3βb2

13A24.

(44)

The exact solution of the system (44) can’t be obtained, in general. A special solution of
the system (44) when μ = –2ρ1b2

13 is given by

A23 = A26 = 0,

A24 = b14

(
tρ

ρ

)α–1

Eα,α

(
b2

13

(
tρ

ρ

)α)
,

A25 = b15

(
tρ

ρ

)α–1

Eα,α

(
4b2

13

(
tρ

ρ

)α)
,

A27 = b16

(
tρ

ρ

)α–1

Eα,α

((
δ + b2

13
)( tρ

ρ

)α)

– 3b14βb2
13

∫ t

0

(
tρ – τρ

ρ

)α–1

× Eα,α

((
δ + b2

13
)( tρ – τρ

ρ

)α)(
τρ

ρ

)α–1 Eα,α(b2
13( τρ

ρ
)α)

τρ–1 dτ .

In this case, the solution of Eq. (39) is given by

u = b14

(
tρ

ρ

)α–1

Eα,α

(
b2

13

(
tρ

ρ

)α)
e–b13x + b15

(
tρ

ρ

)α–1

Eα,α

(
4b2

13

(
tρ

ρ

)α)
e–2b13x,

v =
(

b16

(
tρ

ρ

)α–1

Eα,α

((
δ + b2

13
)( tρ

ρ

)α)

– 3b14βb2
13

∫ t

0

(
tρ – τρ

ρ

)α–1

Eα,α

((
δ + b2

13
)( tρ – τρ

ρ

)α)

×
(

τρ

ρ

)α–1 Eα,α(b2
13( τρ

ρ
)α)

τρ–1 dτ

)
e–b13x,

(45)

where, b13, b14, b15, b16 are constants.

4 Conclusions
In this paper, we have utilized the ISM for getting exact solutions for some nonlinear frac-
tional partial differential equations with generalized fractional derivatives. The obtained
solutions in this paper are given in generalized forms which depend upon the parameter
ρ . We can retrieve the obtained solutions in [19, 20, 22] by putting ρ = 1 in our obtained
solutions. The ISM is a very powerful method that can be used to solve various fractional
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PDEs. In our future work, we will use the ISM for getting exact solutions of some fractional
PDEs with Hilfer–Katugampola fractional derivatives [23].

Appendix: Certain basic properties of the generalized fractional derivative
The definitions and properties of the generalized derivative used in this paper can be found
in [9–16]. In this appendix, we give some basic properties of the generalized derivative.

Theorem A1 ([10]) For 0 < α < 1 and ρ ∈R, the generalized fractional derivative of f (t) =
tv is given by

0Dα,ρ
t tv = ρα

Γ ( v
ρ

+ 1)
Γ ( v

ρ
+ 1 – α)

tv–ρα , (A1)

where v is arbitrary constant.

Proof Using the definition of the generalized fractional derivative [13–16], we get

0Dα,ρ
t tv =

ρα

Γ (1 – α)
t1–ρ d

dt

∫ t

0

τρ–1

(tρ – τρ)α
τ v dτ

=
ρα

Γ (1 – α)
t1–ρ d

dt

∫ t

0

τρ+v–1

(tρ – τρ)α
dτ . (A2)

Let

I =
∫ t

0

τρ+v–1

(tρ – τρ)α
dτ =

∫ t

0
τρ+v–1(tρ – τρ

)–α dτ .

Assume τ = tu
1
ρ . So we get

I =
1
ρ

tρ+v–ρα

∫ 1

0
u

v
ρ (1 – u)–α du =

1
ρ

tρ+v–ραβ

(
v
ρ

+ 1, 1 – α

)
,

where β(m, n) is beta function defined as

β(m, n) =
∫ 1

0
um–1(1 – u)n–1 du =

Γ (m)Γ (n)
Γ (m + n)

.

So we obtain

I =
1
ρ

tρ+v–ρα
Γ ( v

ρ
+ 1)Γ (1 – α)

Γ ( v
ρ

– α + 2)
. (A3)

Substituting Eq. (A3) into Eq. (A2), we obtain

0Dα,ρ
t tv =

ρα

Γ (1 – α)
t1–ρ d

dt

(
1
ρ

tρ+v–ρα
Γ ( v

ρ
+ 1)Γ (1 – α)

Γ ( v
ρ

– α + 2)

)

=
1
ρ

ρα

Γ (1 – α)
t1–ρ

Γ ( v
ρ

+ 1)Γ (1 – α)
Γ ( v

ρ
– α + 2)

d
dt

(
tρ+v–ρα

)
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=
1
ρ

ραt1–ρ
Γ ( v

ρ
+ 1)

Γ ( v
ρ

– α + 2)
(ρ + v – ρα)tρ+v–ρα–1

=
ραΓ ( v

ρ
+ 1)

Γ ( v
ρ

– α + 2)

(
v
ρ

+ 1 – α

)
tv–ρα .

Using the relation Γ (γ + 1) = γΓ (γ ), we obtain

0Dα,ρ
t tv =

ραΓ ( v
ρ

+ 1)
( v
ρ

+ 1 – α)Γ ( v
ρ

+ 1 – α)

(
v
ρ

+ 1 – α

)
tv–ρα = ρα

Γ ( v
ρ

+ 1)
Γ ( v

ρ
+ 1 – α)

tv–ρα . �

Remark In [10], the generalized fractional derivative of f (t) = tv is obtained as (see
Eq. (5.7)) as

0Dα,ρ
t tv = ρα–1

Γ ( v
ρ

+ 1)
Γ ( v

ρ
+ 1 – α)

tv–ρα .

So we can see that there is a misprint in this relation. The correct relation is given by Eq.
(A1).

Theorem A2 ([11]) The Cauchy problem

0Dα,ρ
t y(t) – λy(t) = f (t), t > 0, 0 < α < 1,λ ∈R

0I1–α,ρy(0) = b, b ∈R

has the solution

y(t) = b
(

tρ

ρ

)α–1

Eα,α

(
λ

(
tρ

ρ

)α)
+

∫ t

0

(
tρ – τρ

ρ

)α–1

Eα,α

(
λ

(
tρ – τρ

ρ

)α)
f (τ )

dt
τ 1–ρ

.
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