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Abstract
We investigate the solutions of functional-integral equation of fractional order in the
setting of a measure of noncompactness on real-valued bounded and continuous
Banach space. We introduce a newμ-set contraction operator and derive generalized
Darbo fixed point results using an arbitrary measure of noncompactness in Banach
spaces. An illustration is given in support of the solution of a functional-integral
equation of fractional order.
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1 Introduction
We will discuss the solutions u ∈ C(I, X) of functional-integral equation of fractional order

u(t) = f
(
t, u(t)

)
+

Hu(t)
Γ (γ )

∫ t

0

g ′(s)
(g(t) – g(s))1–γ

k
(
t, s, u(s)

)
ds,

t ∈ I = [0, 1], 0 < γ < 1,

in the setting of measure of noncompactness (MNC) on real-valued bounded and contin-
uous Banach space. In particular, we also discuss

u(t) =
2t2e–λ(t+2)

t4 + 1
cos

(∣∣u(t)
∣
∣)

+
3
√|u(t)|

8(1 + |u(t)|2)Γ ( 1
2 )

∫ t

0

2s√
t2 – s2

t
(1 + s2)(1 + u2(s))

ds, λ > 0,

and its solution in C(I,R) (the space of all continuous mappings u : I = [0, 1] →R).
Denote R and N as the set of real numbers, the set of natural numbers, respectively, and

R
+ = [0, +∞) and N

∗ = N ∪ {0}. Let (E,‖ · ‖) be a real Banach space with zero element θ .
Let B(x, r) denote the closed ball centered at x with radius r. The symbol Br stands for
the ball B(θ , r). For X, a nonempty subset of E, we denote by X and Conv X the closure
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and the convex closure of X, respectively. Moreover, let us denote by ME the family of
all nonempty bounded subsets of E and by NE its subfamily consisting of all relatively
compact sets.

Definition 1.1 ([9]) A mapping μ : ME →R
+ is said to be a MNC in E if

(10) the family kerμ = {X ∈ME : μ(X) = 0} is nonempty and kerμ ⊂NE ,
(20) X ⊂ Y ⇒ μ(X) ≤ μ(Y ),
(30) μ(X) = μ(X),
(40) μ(Conv X) = μ(X),
(50) μ(λX + (1 – λ)Y ) ≤ λμ(X) + (1 – λ)μ(Y ) for λ ∈ [0, 1],
(60) if (Xn) is a decreasing sequence of nonempty, closed sets in ME such that Xn+1 ⊂ Xn

(n = 1, 2, . . .) and if limn→∞ μ(Xn) = 0, then the set X∞ =
⋂∞

n=1 Xn is nonempty and
compact.

The family kerμ defined in axiom (10) is called the kernel of the MNC μ.
One of the properties of the MNC is X∞ ∈ kerμ. Indeed, from the inequality μ(X∞) ≤

μ(Xn) for n = 1, 2, 3, . . . , we infer that μ(X∞) = 0.
The Kuratowski MNC is the map α : ME →R

+ with

α(Q) = inf

{

ε > 0 : Q⊂
n⋃

k=1

Sk , Sk ⊂ E, diam(Sk) < ε (k ∈N)

}

. (1.1)

We denote fix(T) as set of fixed points of T .
In 1955, Darbo [10] used the notion of Kuratowski MNC, α, to prove fixed point theorem

(FPT) and generalized topological Schauder FPT [9] and classical Banach FPT [8].

Theorem 1.2 ([9]) Let X be a closed, convex subset of a Banach space E. Then every com-
pact, continuous map T : X → X has at least one fixed point.

We denote by Ω a nonempty, bounded, closed and convex subset of a Banach space E.

Theorem 1.3 ([10]) Let T : Ω → Ω be a continuous and μ-set contraction operator, that
is, there exists a constant k ∈ [0, 1) with

μ(TM) ≤ kμ(M)

for any φ 
= M ⊂ Ω ; let μ be the Kuratowski MNC on E, then fix(T) 
= φ.

Various Darbo-type FPT and coupled theorems by using different types of control func-
tions arise (for instant, see [1–7, 10–12, 14–21, 23]). In this paper, we introduce a μ-set
contraction operator using new control functions and establish some new fixed point re-
sult, a Krasnoselskii fixed point result, that generalizes the results in [1–3, 10, 12, 13].

2 Generalized Darbo-type fixed point theorems
We introduce the following notion as a generalization of a concept given in [22].

Definition 2.1 Let ΘF be a family of all functions F : R+ ×R
+ →R such that:
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(Θ1) F is continuous and strictly increasing;
(Θ2) for each sequences {tn}, {sn} ⊆R

+, limn→∞ tn = limn→∞ sn = 0 ⇔ limn→∞ F(tn, sn) =
–∞.

ΠG,β denotes the set of pairs (G,β), where G : R+ →R and β : R+ ×R
+ → [0, 1), such that:

(Π1) for each sequence {tn} ⊆R
+, lim supn→∞ G(tn) ≥ 0 ⇔ lim supn→∞ tn ≥ 1;

(Π2) for the sequences {tn}, {sn} ⊆ R
+, lim supn→∞ β(tn, sn) = 1 ⇒ limn→∞ tn =

limn→∞ sn = 0;
(Π3) for the sequences {tn}, {sn} ⊆R

+,
∑∞

n=1 G(β(tn, sn)) = –∞.

Theorem 2.2 Let T : Ω → Ω is continuous operator. If there exist F ∈ ΘF , (G,β) ∈ ΠG,β

and a continuous and strictly increasing mapping ϕ : R+ →R
+ such that μ(TM) > 0 implies

F
(
μ(TM),ϕ

(
μ(TM)

)) ≤ F
(
μ(M),ϕ

(
μ(M)

))
+ G

(
β
(
μ(M),ϕ

(
μ(M)

)))
, (2.1)

for all ∅ 
= M ⊂ Ω , where μ is an arbitrary MNC, then fix(T) 
= ∅.

Proof We start with the assumption Ω0 = Ω and define a sequence {Ωn} by Ωn+1 =
Conv(TΩn), for n ∈ N

∗. If μ(Ωn0 ) = 0 for some natural number n0 ∈ N, then Ωn0 is com-
pact. We have T(Ωn0 ) ⊆ Conv(TΩn0 ) = Ωn0+1 ⊆ Ωn0 . In Theorem 1.2 we have μ(Ωn) > 0,
for all n ∈N

∗. From (2.1) and (40) of Definition 1.1,

F
(
μ(Ωn+1),ϕ

(
μ(Ωn+1)

))

= F
(
μ

(
Conv(TΩn)

)
,ϕ

(
μ

(
Conv(TΩn)

)))

= F
(
μ(TΩn),ϕ

(
μ(TΩn)

))

≤ F
(
μ(Ωn),ϕ

(
μ(Ωn)

))
+ G

(
β
(
μ(Ωn),ϕ

(
μ(Ωn)

)))

≤ F
(
μ(Ωn–1),ϕ

(
μ(Ωn–1)

))
+ G

(
β
(
μ(Ωn),ϕ

(
μ(Ωn)

)))

+ G
(
β
(
μ(Ωn–1),ϕ

(
μ(Ωn–1)

)))

...

≤ F
(
μ(Ω0),ϕ

(
μ(Ω0)

))
+

n∑

i=0

G
(
β
(
μ(Ωi),ϕ

(
μ(Ωi)

)))
,

that is,

F
(
μ(Ωn+1),ϕ

(
μ(Ωn+1)

)) ≤ F
(
μ(Ω0),ϕ

(
μ(Ω0)

))
+

n∑

i=0

G
(
β
(
μ(Ωi),ϕ

(
μ(Ωi)

)))
, (2.2)

for all n ∈N.
By the properties of (G,β) ∈ ΠG,β , F(μ(Ωn+1),ϕ(μ(Ωn+1))) → –∞ as n → ∞ and by

(Θ2), we have

lim
n→∞μ(Ωn) = lim

n→∞ϕ
(
μ(Ωn)

)
= 0.

From (60) of Definition 1.1, Ω∞ =
⋂∞

n=1 Ωn is a nonempty, closed, convex set and Ω∞ ⊆ Ωn

for all n ∈ N. Also T(Ω∞) ⊂ Ω∞ and Ω∞ ∈ kerμ. Therefore, by Theorem 1.2, fix(T) 
= ∅. �
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Corollary 2.3 Let T : Ω → Ω is continuous operator. If there exist τ > 0, F ∈ ΘF , and a
continuous and strictly increasing mapping ϕ : R+ →R

+ such that

μ(TM) > 0 ⇒ τ + F(μ(TM),ϕ
(
μ(TM)

) ≤ F
(
μ(M),ϕ

(
μ(M)

))
(2.3)

for all ∅ 
= M ⊂ Ω , where μ is an arbitrary MNC, then fix(T) 
= ∅.

Proof If we consider G(t) = ln t (t > 0), β(t, s) = λ ∈ (0, 1) and τ = – lnλ > 0 in (2.1) of The-
orems 2.2, we have (2.3), and the result follows from Theorem 2.2. �

Corollary 2.4 Let T : Ω → Ω is continuous operator. If there exists a continuous and
strictly increasing mapping ϕ : R+ →R

+ such that for λ ∈ (0, 1)

μ(TM) > 0 ⇒ μ(TM) + ϕ
(
μ(TM)

) ≤ λ
[
μ(M) + ϕ

(
μ(M)

)]
(2.4)

for all ∅ 
= M ⊂ Ω , where μ is an arbitrary MNC. Then fix(T) 
= ∅.

Proof If we consider F(t, s) = ln(t + s) (t, s > 0) and τ = ln( 1
λ

) (λ ∈ (0, 1)) in (2.3) of Corol-
lary 2.3, we have condition (2.4). �

Proposition 2.5 Let T : Ω → Ω is continuous operator. If there exist F ∈ ΘF , (G,β) ∈ ΠG,β

and a continuous mapping ϕ : R+ →R
+ such that diam(TM) > 0 implies

F
(
diam(TM),ϕ

(
diam(TM)

)) ≤ F
(
diam(M),ϕ

(
diam(M)

))

+ G
(
β
(
diam(M),ϕ

(
diam(M)

)))
(2.5)

for all ∅ 
= M ⊂ Ω , then fix(T) 
= ∅.

Proof Following the argument of Proposition 3.2 [12], Theorem 2.2 guarantees the ex-
istence of a T-invariant nonempty closed convex subset M with diam(M∞) = 0, which
means that M∞ is a singleton and therefore fix(T) 
= ∅.

Uniqueness. In order to get a contradiction we may suppose that there exist two different
fixed points ζ 
= ξ ∈ Ω , then we may define the set M := {ζ , ξ}. In this case diam(M) =
diam(T(M)) = ‖ξ – ζ‖ > 0. Then using (2.5)

F
(
diam

(
T(M)

)
,ϕ

(
diam

(
T(M)

))) ≤ F
(
diam(M),ϕ

(
diam(M)

))

+ G
(
β
(
diam(M),ϕ

(
diam(M)

)))
.

Therefore, G(β(diam(M),ϕ(diam(M)))) ≥ 0 and hence β(diam(M),ϕ(diam(M))) ≥ 1, which
is a contradiction, and hence ξ = ζ . �

A generalized classical fixed point result derived from Proposition 2.5 follows.

Corollary 2.6 Let T : Ω → Ω be an operator. It there exist F ∈ ΘF , (G,β) ∈ ΠG,β and
a continuous and strictly increasing mapping ϕ : R+ → R

+ such that ‖Tu – Tv‖ > 0 im-
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plies

F
(‖Tu–Tv‖,ϕ

(‖Tu–Tv‖)) ≤ F
(‖u–v‖,ϕ

(‖u–v‖))+G
(
β
(‖u–v‖,ϕ

(‖u–v‖))) (2.6)

for all u, v ∈ Ω , then fix(T) 
= ∅.

Proof Let μ : ME → R
+ be a set quantity defined by μ(Ω) = diamΩ , where diamΩ =

sup{‖u – v‖ : u, v ∈ Ω}, the diameter of Ω . Therefore μ is a MNC in a space E in the sense
of Definition 1.1, and from (2.6)

sup
u,v∈Ω

‖Tu – Tv‖ > 0

⇒ F
(

sup
u,v∈Ω

‖Tu – Tv‖,ϕ
(

sup
u,v∈Ω

‖Tu – Tv‖
))

= sup
u,v∈Ω

F
(‖Tu – Tv‖,ϕ

(‖Tu – Tv‖))

≤ sup
u,v∈Ω

[
F
(‖u – v‖,ϕ

(‖u – v‖)) + G
(
β
(‖u – v‖,ϕ

(‖u – v‖)))]

≤ F
(

sup
u,v∈Ω

‖u – v‖,ϕ
(

sup
u,v∈Ω

‖u – v‖
))

+ G
(
β
(

sup
u,v∈Ω

‖u – v‖,ϕ
(

sup
u,v∈Ω

‖u – v‖
)))

,

that is, diam(T(Ω)) > 0, which implies

F
(
diam

(
T(Ω)

)
,ϕ

(
diam

(
T(Ω)

))) ≤ F(diam(Ω),ϕ
(
diam(Ω)

)

+ G
(
β
(
diam(Ω),ϕ

(
diam(Ω)

)))
.

Thus following Proposition 2.5, fix(T) 
= ∅. �

Corollary 2.7 Let (E,‖ · ‖) be a Banach space and let Ω be a closed convex subset of E. Let
T1, T2 : Ω → Ω be two operators satisfying the following conditions:

(I) (T1 + T2)(X) ⊆ Ω , for X ∈ Ω ;
(II) there exist F ∈ ΘF and (G,β) ∈ ΠG,β and a continuous and increasing mapping

ϕ : R+ →R
+ such that ‖T1u – T1v‖ > 0 implies

F
(‖T1u – T1v‖,ϕ

(‖T1u – T1v‖))

≤ F
(‖u – v‖,ϕ

(‖u – v‖)) + G
(
β
(‖u – v‖,ϕ

(‖u – v‖))); (2.7)

(III) T2 is a continuous and compact operator.
Then J := T1 + T2 : Ω → Ω has a fixed point u ∈ Ω .

Proof Suppose M ⊂ Ω with α(M) > 0. Invoking the notion of a Kuratowski MNC,
for each n ∈ N, there exist C1, . . . ,Cm(n) bounded subsets such that M ⊆ ⋃m(n)

i=1 Ci and
diam(Ci) ≤ α(M) + 1

n . Suppose that α(T1(M)) > 0. Since T1(M) ⊆ ⋃m(n)
i=1 T1(Ci), there ex-

ists i0 ∈ {1, 2, . . . , m(n)} such that α(T1(M)) ≤ diam(T1(Ci0 )). Using (2.7) the condition of
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T1 with the discussed arguments, we have

F
(
α
(
T1(M)

)
,ϕ

(
α
(
T1(M)

)))

≤ F
(
diam

(
T1(Ci0 )

)
,ϕ

(
diam

(
T1(Ci0 )

)))

≤ F(diam(Ci0 ),ϕ
(
diam(Ci0 )

)
+ G(β

(
diam(Ci0 ),ϕ

(
diam(Ci0 )

))

≤ F
(

α(M) +
1
n

,ϕ
(

α(M) +
1
n

))
+ G

(
β

(
α(M) +

1
n

,ϕ
(

α(M) +
1
n

)))
. (2.8)

Passing to the limit in (2.8) as n → ∞, we get

F
(
α
(
T1(M)

)
,ϕ

(
α
(
T1(M)

))) ≤ F
(
α(M),ϕ

(
α(M)

))
+ G

(
β
(
α(M),ϕ

(
α(M)

)))
.

Using hypothesis (III), we have, invoking the notion of α,

F
(
α
(
J (M)

)
,ϕ

(
α
(
J (M)

)))

= F
(
α
(
T1(M) + T2(M)

)
,ϕ

(
α
(
T1(M) + T2(M)

)))

≤ F
(
α
(
T1(M)

)
+ α

(
T2(M)

)
,ϕ

(
α
(
T1(M)

)
+ α

(
T2(M)

)))

= F
(
α
(
T1(M)

)
,ϕ

(
α
(
T1(M)

)))

≤ F
(
α(M),ϕ

(
α(M)

))
+ G

(
β
(
α(M),ϕ

(
α(M)

)))
.

Thus by Theorem 2.2, fix(J ) 
= ∅. �

3 Application
Let (X,‖ ·‖) be a real Banach algebra and let the symbol C(I, X) stand for the space consist-
ing of all continuous mappings u : I = [0, 1] → X and C+(I) for the space of positive real-
valued continuous function defined on I and C1

+(I) for the space of positive real-valued
continuous differential function defined on I . We will consider the existence of a solution
u ∈ C(I, X) to the integral equation

u(t) = f
(
t, u(t)

)
+

Hu(t)
Γ (γ )

∫ t

0

g ′(s)
(g(t) – g(s))1–γ

k
(
t, s, u(s)

)
ds,

t ∈ I = [0, 1], 0 < γ < 1.
(3.1)

Assume:
(A1) f : I × X → X is a continuous mapping such that there exist F ∈ ΘF , (G,β) ∈ ΠG,β

and a nondecreasing function ϕ : R+ →R
+ such that

∥∥f (t, u) – f (t, v)
∥∥ > 0

⇒ F
(∥∥f (t, u) – f (t, v)

∥∥,ϕ
(∥∥f (t, u) – f (t, v)

∥∥))

≤ F
(‖u – v‖,ϕ

(‖u – v‖)) + G
(
β
((‖u – v‖,ϕ

(‖u – v‖)))). (3.2)

Also, there exist a function φ1 : R+ →R
+ such that

∥∥f (t, u)
∥∥ ≤ φ1

(‖u‖)
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and

M0 = sup
{∣∣φ1(t)

∣∣ : t ∈R
+}

< ∞.

(A2) H is some operator acting continuously from the space C(I, X) into itself and there
is an increasing function ψ1 : R+ →R

+ such that

∥∥H(u)
∥∥ ≤ ψ1

(‖u‖).

(A3) The function k : I × I ×R →R is continuous such that k(I × I ×R+) ⊆R+ and

K0 = sup
{∣∣k

(
t, s, u(s)

)∣∣ : t, s ∈ I, u ∈ C+(I)
}

< ∞.

(A4) The function g : I → R+ is C1
+ and nondecreasing.

(A5) lim infζ→∞ ψ1(ζ )K0(g(1)–g(0))γ
ζΓ (γ +1) < 1.

Theorem 3.1 Under assumptions (A1)–(A6), Eq. (3.1) has at least one solution in the space
u ∈ C(I, X).

Proof Define an integral operator T : C(I, X) → C(I, X) by

Tu(t) = f
(
t, u(t)

)
+ Hu(t)Fu(t),

where

Fu(t) =
1

Γ (γ )

∫ t

0

g ′(s)
((g(t) – g(s))1–γ

k
(
t, s, u(s)

)
ds.

We prove fix(T) 
= ∅.
Consider the two mappings T1, T2 : C(I, X) → C(I, X),

T1u(t) = f
(
t, u(t)

)
,

T2u(t) = Hu(t)Fu(t),

where T = T1 + T2. It is easy to see that T1 is well defined. Now we show that T2 is well
defined. Let ε > 0 be arbitrary and let u ∈ C(I, X) be given and fixed and let η1,η2 ∈ I
(without loss of generality assume that η2 ≥ η1) and |η2 – η1| ≤ ε and r0 = ‖u‖. Then we
get

Γ (γ )
∣
∣(Fu)(η2) – (Fu)(η1)

∣
∣

=
∣∣
∣∣

∫ η2

0

g ′(s)
(g(η2) – g(s))1–γ

k
(
η2, s, u(s)

)
ds –

∫ t1

0

g ′(s)
(g(t1) – g(s))1–γ

k
(
t1, s, u(s)

)
ds

∣∣
∣∣

≤
∣
∣∣∣

∫ η2

0

g ′(s)
(g(η2) – g(s))1–γ

k
(
η2, s, u(s)

)
ds –

∫ η2

0

g ′(s)
(g(η2) – f (s))1–γ

k
(
η1, s, u(s)

)
ds

∣
∣∣∣

+
∣∣
∣∣

∫ η2

0

g ′(s)
(g(η2) – g(s))1–γ

k
(
η1, s, u(s)

)
ds –

∫ t1

0

g ′(s)
(fg(t2) – g(s))1–γ

k
(
t1, s, u(s)

)
ds

∣∣
∣∣
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+
∣
∣∣
∣

∫ η1

0

g ′(s)
(g(η2) – g(s))1–γ

k
(
η1, s, u(s)

)
ds –

∫ t1

0

g ′(s)
(g(t1) – g(s))1–γ

k
(
t1, s, u(s)

)
ds

∣
∣∣
∣

≤
∫ η2

0

g ′(s)
(g(η2) – g(s))1–γ

∣
∣k

(
η2, s, u(s)

)
– k

(
η1, s, u(s)

)∣∣ds

+
∫ η2

η1

g ′(s)
(g(η2) – g(s))1–γ

∣∣k
(
η1, s, u(s)

)∣∣ds

+
∫ η1

0

∣
∣∣
∣

g ′(s)
(g(η2) – g(s))1–γ

–
g ′(s)

(g(t1) – g(s))1–γ

∣
∣∣
∣
∣∣k

(
η1, s, u(s)

)∣∣ds.

Denote

ω(k, ε) = sup
{∣∣k(t, s, u) – k

(
t′, s, u

)∣∣ : t, t′, s ∈ I,
∣∣t – t′∣∣ ≤ ε, u ∈ [–r0, r0]

}
.

Then

Γ (γ )
∣
∣(Fu)(η2) – (Fu)(η1)

∣
∣

≤ ω(k, ε)
γ

(
g(η2) – g(0)

)γ +
K0

γ

(
g(η2) – g(η1)

)γ

+
K0

γ

[(
g(η2) – g(t0)

)γ –
(
g(η2) – g(η1)

)γ –
(
g(η1) – g(t0)

)γ ]

≤ ω(k, ε)
γ

(
g(η2) – g(0)

)γ +
2K0

γ

(
g(η2) – g(η1)

)γ

≤ ω(k, ε)
γ

(
g(1) – g(0)

)γ +
2K0

γ
ω(g, ε)γ ,

that is,

∥
∥(Fu)(η2) – (Fu)(η1)

∥
∥ ≤ ω(k, ε)

Γ (γ + 1)
(
g(1) – g(0)

)γ +
2K0

Γ (γ + 1)
ω(g, ε)γ .

Using the notion of uniform continuity of the function k on the set I2 × [–r0, r0] and g on
the set I , we have ω(k, ε) → 0 and ω(g, ε) → 0 as ε → 0, consequently Fu ∈ C(I, X), and
thus T2u ∈ C(I, X).

We prove that T2 is a continuous operator. Fix v ∈ C(I, X) and let ε > 0 be given. Since H
is some operator acting continuously from the space C(I, X) into itself, there exists δ1 > 0,
such that

∀u ∈ C(I, X),
(‖u – v‖ < δ1 ⇒ ‖Hu – Hv‖ < ε1(ε)

)
,

for each t ∈ I , we have

Γ (γ )
∣
∣(Fu)(t) – (Fv)(t)

∣
∣

=
∣∣
∣∣

∫ t

0

g ′(s)
(g(t) – g(s))1–γ

k
(
t, s, u(s)

)
ds –

∫ t

0

g ′(s)
(g(t) – g(s))1–γ

k
(
t, s, v(s)

)
ds

∣∣
∣∣

≤
∫ t

0

g ′(s)
(g(t) – g(s))1–γ

∣
∣k

(
t, s, u(s)

)
– k

(
t, s, v(s)

)∣∣ds

≤ (g(1) – g(0))γ

γ
Kε ,
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where

Kδ2 = sup
{∣∣k(t, s, u) – k(t, s, v)

∣∣ : t, s ∈ I,‖u – v‖ ≤ δ2
}

.

Thus

∥
∥(Fu) – (Fv)

∥
∥ ≤ (g(1) – g(0))γ

Γ (γ + 1)
Kδ2 .

Also, we have

∣∣(Fu)(t)
∣∣ ≤ 1

Γ (γ )

∫ t

0

g ′(s)
(g(t) – g(s))1–γ

∣∣k
(
t, s, u(s)

)∣∣ds,

≤ K0

Γ (γ )

∫ t

0

g ′(s)
(g(t) – g(s))1–γ

ds ≤ K0(g(1) – g(0))γ

Γ (γ + 1)
, (3.3)

for all t ∈ I . Now if we put δ = min{δ1, δ2}, then for any u ∈ C(I, X) such that ‖u – v‖ < δ, by
the triangle inequality we obtain

∥∥T2u(t) – T2v(t)
∥∥ =

∥∥Hu(t)Fu(t) – Hv(t)Fv(t)
∥∥

≤ ∥∥Hu(t) – Hv(t)
∥∥∥∥Fu(t)

∥∥ +
∥∥Hv(t)

∥∥∥∥Fu(t) – Fv(t)
∥∥

≤ ε1
K0(g(1) – g(0))γ

Γ (γ + 1)
+ ‖Hy‖ (g(1) – g(0))γ

Γ (γ + 1)
Kδ2

≤ ε1
K0(g(1) – g(0))γ

Γ (γ + 1)
+ ψ1

(‖y‖) (g(1) – g(0))γ

Γ (γ + 1)
Kδ2

≤ ε1
K0(g(1) – g(0))γ

Γ (γ + 1)
+ ψ1

(‖y‖) (g(1) – g(0))γ

Γ (γ + 1)
ε2

≤ ε

2
+

ε

2
= ε,

where

ε1 =
Γ (γ + 1)ε

2[1 + K0(g(1) – g(0))γ ]
,

ε2 =
Γ (γ + 1)ε

2[1 + ψ1(‖y‖)(g(1) – g(0))γ ]
.

To prove T2 is a compact operator. If B = {u ∈ C(I, X) : ‖u‖ < 1} is the open unit ball
of C(I, X), then we claim that T2(B) is a compact subset of C(I, X). To see this, by the
Arzelà–Ascoli theorem, we need only to show that T2(B) is an uniformly bounded and
equi-continuous subset of C(I, X). First we show that T2(B) = {T2u : u ∈ B} is uniformly
bounded. By the conditions (A2) for any u ∈ B,

∥
∥T2u(t)

∥
∥ =

∥
∥Hu(t)Fu(t)

∥
∥ ≤ ∥

∥Hu(t)
∥
∥
∥
∥Fu(t)

∥
∥

≤ ‖Hu‖‖Fu‖ ≤ ψ1
(‖u‖)K0(g(1) – g(0))γ

Γ (γ + 1)

≤ ψ1(1)
K0(g(1) – g(0))γ

Γ (γ + 1)
.
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Hence, putting M := ψ1(1) K0(g(1)–g(0))γ
Γ (γ +1) , we conclude that T2(B) is uniformly bounded. Now

we show that T2(B) is an uniformly equi-continuous subset of C(I, X). To see this, let u ∈ B
be arbitrary, and let ε > 0. Since Hu and Fu are uniformly continuous, there exist some
δ1(ε), δ2(ε) > 0 such that

∀η1,η2 ∈ I,
(|η2 – η1| < δ1(ε) ⇒ ∥

∥Hu(η2) – Hu(η1)
∥
∥ < ε1

)
,

∀η1,η2 ∈ I,
(|η2 – η1| < δ2(ε) ⇒ ∥

∥Fu(η2) – Fu(η1)
∥
∥ < ε2

)
.

Let δ(ε) = min{δ1(ε), δ2(ε), ε1, ε2}, where the given ε1 and ε2 depend on ε. Therefore, if
η1,η2 ∈ I satisfies 0 < η2 – η1 < δ(ε) and x ∈ B,

∥∥T2u(η2) – T2u(η1)
∥∥ =

∥∥Hu(η2)Fu(η2) – Hu(η1)Fu(η1)
∥∥

≤ ∥∥Hu(η2) – Hu(η1)
∥∥∥∥Fu(η2)

∥∥

+
∥∥Hu(η1)

∥∥∥∥Fx(η2) – Fx(η1)
∥∥

≤ ε1
K0(g(1) – g(0))γ

Γ (γ + 1)
+ ψ2

(‖u‖)ε2

≤ ε

2
+

ε

2
= ε,

where

ε1 =
Γ (γ + 1)ε

2(1 + K0(g(1) – g(0))γ )
,

ε2 =
ε

2(1 + ψ1(1))
.

Therefore T2 is a compact operator. Next, we show that T1 satisfies (3.2). Let u, v ∈ C(I, X),
and ‖T1u – T1y‖ > 0. By applying the fact that every continuous function attains its maxi-
mum on a compact set, there exists t ∈ I such that 0 < ‖T1u – T1v‖ = ‖f (t, u(t)) – f (t, v(t))‖.
By (A1) and using the fact that F and ϕ are strictly increasing functions we obtain

F
(‖T1u – T1v‖,ϕ

(‖T1u – T1v‖))

= F
(∥∥f

(
t, u(t)

)
– f

(
t, v(t)

)∥∥,ϕ
(∥∥f

(
t, u(t)

)
– f

(
t, v(t)

)∥∥))

≤ F
(‖u – v‖,ϕ

(‖u – v‖)) + G
(
β
((‖u – v‖,ϕ

(‖u – v‖)))).

Hence T1 satisfies (3.2). Now we show that there exists some M1 > 0 such that ‖T1u‖ ≤ M1

holds for each u ∈ C(I, X). By (A1)

∥∥T1u(t)
∥∥ =

∥∥f (t, u)
∥∥ ≤ φ1

(‖u‖) ≤ M0,

Therefore

∃M0 > 0,∀u,
(
u ∈ C(I, X) ⇒ ‖T1u‖ ≤ M0

)
.

Finally, we claim that there exists some r > 0, such that T(Br(θ )) ⊆ Br(θ ) with Br(θ ) =
{u ∈ C(I, X) : ‖u‖ ≤ r}. On the contrary, for any ζ > 0 there exists some uζ ∈ Br(θ ) such
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that ‖T(uζ )‖ > ζ . This implies that lim infζ→∞ 1
ζ
‖T(uζ )‖ ≥ 1. On the other hand, we have

∥
∥Tuζ (t)

∥
∥ ≤ ∥

∥f
(
t, uζ (t)

)∥∥ +
∥
∥Huζ (t)Fuζ (t)

∥
∥

≤ ‖T1uζ‖ +
∥
∥Huζ (t)

∥
∥
∥
∥Fuζ (t)

∥
∥

≤ M0 + ‖Huζ ‖.‖Fuζ‖

≤ M0 + ψ1
(‖uζ ‖

)
.
K0(g(1) – g(0))γ

Γ (γ + 1)

≤ M0 + ψ1(ζ ).
K0(g(1) – g(0))γ

Γ (γ + 1)
.

Hence, by the above estimate and condition (A5) we get

lim inf
ζ→∞

1
ζ

∥
∥T(uζ )

∥
∥ ≤ lim inf

ζ→∞
ψ1(ζ )K0(g(1) – g(0))γ

ζΓ (γ + 1)
< 1

which is a contradiction. Thus in view of the above discussions and Corollary 2.7 we con-
clude that Eq. (3.1) has at least one solution in Br(θ ) ⊆ C(I, X). �

Example Consider the functional-integral equation of fractional order

u(t) =
2t2e–λ(t+2)

t4 + 1
cos

(∣∣u(t)
∣∣)

+
3
√|u(t)|

8(1 + |u(t)|2)Γ ( 1
2 )

∫ t

0

2s√
t2 – s2

t
(1 + s2)(1 + u2(s))

ds, λ > 0. (3.4)

Define the continuous operator H : C(I,R) → C(I,R) given by

Hu =
3√|u|

2(1 + |u|2)
.

Define the functions f : [0, 1] ×R → R given by f (t, u(t)) = 2t2e–λ(t+2)

t4+1 cos(u(t)), f is contin-
uous and

∣
∣f

(
t, u(t)

)
– f

(
t, v(t)

)∣∣ ≤ 2t2e–λ(t+2)

t4 + 1
∣
∣cos(u) – cos(v)

∣
∣ ≤ e–2λ|u – v|. (3.5)

Also, φ1 : R+ → R
+ by φ1(t) = cos(t) with M0 = 1 such that

∣∣f
(
t, u(t)

)∣∣ =
2t2e–λ(t+2)

t4 + 1
∣∣cos

(∣∣u(t)
∣∣)∣∣ ≤ ∣∣cos

(∣∣u(t)
∣∣)∣∣ = φ1

(∣∣u(t)
∣∣).

Now, by choosing the function F : R+ ×R
+ → R given by F(t, s) = ln(t + s), G : R+ →R by

G(t) = ln(t), β : R+ × R
+ → [0, 1) by β(t, s) = e–2λ and the function ϕ : R+ → R

+ given by
ϕ(t) = t2, it is easy to see that the inequality (3.5) implies that the condition (3.2) holds.
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Indeed if |f (t, u(t)) – f (t, v(t))| > 0, then we have

F
[∣∣f

(
t, u(t)

)
– f

(
t, v(t)

)∣∣,ϕ
(∣∣f

(
t, u(t)

)
– f

(
t, v(t)

)∣∣)]

= F
[∣∣f

(
t, u(t)

)
– f

(
t, v(t)

)∣∣,
∣
∣f

(
t, u(t)

)
– f

(
t, v(t)

)∣∣2]

= ln
[∣∣f

(
t, u(t)

)
– f

(
t, v(t)

)∣∣ +
∣∣f

(
t, u(t)

)
– f

(
t, v(t)

)∣∣2]

≤ ln
[
e–2λ

(|u – v| + |u – v|2)]

= ln
(|u – v| + |u – v|2) + ln

(
e–2λ

)

= F
(|u – v|,ϕ(|u – v|)) + G

(
β
(|u – v|,ϕ(|u – v|))).

Here g(t) = t2, k(t, s, u) = t
4(1+s2)(1+u2) , with K0 = 1

4 . By choosing the strictly continuous func-

tion ψ1 : R+ →R
+ given by ψ1(t) =

3√t
2 , we have

∥
∥H(u)

∥
∥ ≤ ψ1

(‖u‖),

lim inf
ζ→∞

ψ1(ζ )K0(g(1) – g(0))γ

ζΓ (γ + 1)
= lim inf

ζ→∞

3√ζ

4Γ ( 1
2 )ζ

= 0 < 1,

and this satisfies assumption (A5). Thus from all above results, it is clear that Eq. (3.4)
satisfies all the requirements of Theorem 3.1 and, hence, the functional-integral equation
(3.1) has a solution in C(I,R).

4 Conclusions
In this work, some new generalized Darbo-type fixed point results have been discussed
for the notion of a μ-set contraction operator using some control functions, on an arbi-
trary measure of noncompactness in Banach spaces. The obtained results include related
existing results mentioned in the references. Finally, to justify our work, we have given an
application for the solution of a functional-integral equations of fractional order, followed
by a suitable example.
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