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Abstract
This paper presents two high-order exponential time differencing precise integration
methods (PIMs) in combination with a spatially global sixth-order compact finite
difference scheme (CFDS) for solving parabolic equations with high accuracy. One
scheme is a modification of the compact finite difference scheme of precise
integration method (CFDS-PIM) based on the fourth-order Taylor approximation and
the other is a modification of the CFDS-PIM based on a (4, 4)-Padé approximation.
Moreover, on coupling with the Strang splitting method, these schemes are extended
to multi-dimensional problems, which also have fast computational efficiency and
high computational accuracy. Several numerical examples are carried out in order to
demonstrate the performance and ability of the proposed schemes. Numerical results
indicate that the proposed schemes improve remarkably the computational accuracy
rather than the empirical finite difference scheme. Moreover, these examples show
that the CFDS-PIM based on the fourth-order Taylor approximation yields more
accurate results than the CFDS-PIM based on the (4, 4)-Padé approximation.

Keywords: Compact finite difference scheme; Precise integration method; Padé
approximation; Taylor approximation; Strang splitting method

1 Introduction
Many physical and mathematical models can be described by the partial differential equa-
tions (PDEs) in many work and technical problems, and the basic equations of many nat-
ural science problems are also PDEs, which play a very important role in these fields [1].
The parabolic equation, as a kind of PDE, is often used to study diffusion and heat conduc-
tion problems. Due to the complexity of practical problems, many solutions of the PDEs
are numerical. Currently, there are many numerical methods for heat transfer problems
[2, 3], such as the finite-difference method (FDM), the finite element method (FEM), the
finite volume method (FVM) and the spectrum method. Li [4] presented the useful Crank–
Nicolson Galerkin FEM for the nonlinear parabolic problem. The traditional FDM shows
great limitations in computational accuracy. An important measure to improve the accu-
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racy of the traditional FDM is to refine the mesh, which in turn will increase the amount
of storage and calculation, especially in high-dimensional cases. Therefore, it is of great
theoretical significance and practical value to construct a high accuracy and good stability
scheme in time and space.

The compact finite-difference scheme (CFDS) is one of the most studied FDM at
present. When using CFDS to study complex problems, its high accuracy and stability
have also attracted much attention from many scholars. Experience shows that the com-
pact scheme is much more accurate than the corresponding explicit scheme of the same
order [5]. Over the past three decades, the methods for developing high-order CFDS
have made great progress. Dennis et al. proposed the fourth-order CFDS for convection–
diffusion problems [6]; this scheme can get more accurate results with a thicker grid. Lele
[7] developed CFDS with pseudo spectral resolution on the basis of summarizing the pre-
vious work and proposed a linear sixth-order central CFDS, which can achieve the ac-
curacy of the spectral method. Adams [8] gave a compact ENO scheme. Gaitonde [9]
constructed a finite volume scheme based on a compact difference scheme, which had
played a certain role in promoting the development of high-precision compact differ-
ence schemes. Subsequently, many scholars constructed different schemes of CFDS and
solved many types of partial differential equations [10–13], such as integro-differential
equations, three-dimensional Poisson equations, the shallow water equations, and the
Helmholtz equations, they all achieved better numerical results. Sengupta et al. devel-
oped a class of upwind compact difference schemes, and such schemes could be applied
to different fields [14]. In the same year, Kumar [15] discussed a high-order compact dif-
ference scheme for singularly perturbed reaction–diffusion problems on a new Shishkin
mesh. Shukla et al. [16, 17] proposed to use polynomial interpolations also to derive ar-
bitrary high-order compact finite-difference methods of first and second derivatives on
non-uniform meshes. However, these compact finite-difference schemes are not asymp-
totically stable on uniform grids. The fourth-order exact compact difference scheme for
mixed derivative parabolic problems with variable coefficients discussed by Sen [18, 19]
provides a viable scheme for this paper. Gordin [20] applied the Richardson extrapolation
method to improve a fourth-order CFDS to sixth order in 1D parabolic equations and
Schrödinger-type equations.

CFDS is a widely used method for spatial discretization of parabolic equations to obtain
the ordinary differential equations (ODEs), and then other methods of time discretization
are used for discretizing the ODEs, such as the Euler method, multistep methods, and the
Runge–Kutta method. Bhatt et al. [21] proposed two fourth-order exponential time dif-
ference Runge–Kutta (ETDRK) schemes combined with the spatial fourth-order CFDS to
solve Burgers’ equation. In their research, the calculation of the exponential matrices is
involved. How to accurately calculate the exponential matrices is an important problem
in solving PDEs. Moler et al. [22] summarized 19 schemes for calculating the exponential
matrices, including Padé approximations of different orders. These 19 schemes are aimed
at different practical problems, and their numerical solutions also have corresponding ad-
vantages and disadvantages. In 1994, Zhong [23] proposed the precise integration method
(PIM) of exponential matrices to solve the initial value problem of linear ODEs. PIM is an
approximation method to calculate the exponential matrices, which contains the Taylor
approximation and the Padé approximation. PIM avoided the computer error caused by
fine division and improved the numerical solution of exponential matrices by the accuracy
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of the computation. In the paper, we focus on applying PIM to obtain numerical solutions
of high accuracy.

The Alternating Direction Implicit (ADI) method is an empirical method for solving
multi-dimensional parabolic equations. ADI, such as the Peacemen–Rachford scheme, the
Dyakonov scheme, and the Douglas scheme, are only second-order accuracy schemes [24–
26]. ADI often fails to meet the accuracy requirements of practical problems. Li et al. [27]
proposed a novel compact ADI scheme for solving two-dimensional nonlinear reaction–
diffusion equations. The Strang splitting method (SSM) is a numerical method for solving
differential equations that are decomposable into a sum of differential operators, which is
to solve multi-dimensional PDEs by reducing them to a sum of one-dimensional problems
[28]. This is a scheme of operator splitting method. If the differential operators of the
SSM commute, then it will lead to no loss of accuracy. To the best of our knowledge, no
high accuracy numerical schemes of CFDS combined with PIM has been developed so far.
Hence, the main goal of this paper is to develop high-order PIM schemes in combination
with a global sixth-order CFDS for simulating the parabolic equations without using any
transformations or linearization techniques. Meanwhile, the proposed schemes extend to
multi-dimensional parabolic problems with SSM.

The remainder of the paper is organized as follows. Two high-order exponential time
differencing PIMs in combination with a spatially global sixth-order CFDS for solving
parabolic equations are presented in Sect. 2. The stability of the proposed schemes is dis-
cussed in Sect. 3. In Sect. 4, the Strang splitting method is described, and the proposed
schemes are extended to multi-dimensional problems. In Sect. 5, numerical examples are
carried out to test the accuracy and adaptability of the proposed schemes. The conclusions
are drawn in Sect. 6.

2 One-dimensional case
For the one-dimensional parabolic problem, we consider the following initial and bound-
ary value problem:

∂u
∂t

– μ
∂2u
∂x2 = 0, x ∈ [a, b], t ∈ [0, T] (1)

with the initial condition

u(x, 0) = g0(x), x ∈ [0, T] (2)

and the boundary condition

u(0, t) = h1(t), t ∈ [0, Tl], (3)

u(l, t) = h2(t), t ∈ [0, Tl], (4)

where μ is a real positive constant, g0(x), h1(t) and h2(t) are given enough smooth func-
tions. There is an additional assumption: the analytical solution of Eq. (1) is a function
smooth enough.
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2.1 Sixth-order compact finite-difference scheme formulas
High-order finite-difference scheme can be classified into two main categories: explicit
schemes and Padé-type or compact schemes. Explicit schemes compute the numerical
derivatives directly at each grid by using large stencils, while compact schemes obtain
all the numerical derivatives along a grid line using smaller stencils and solving a linear
system of equations. Next, we will give a sixth-order compact finite-difference scheme for
second derivatives.

We firstly apply a sixth-order finite-difference scheme to the discretization in spatial
dimension. For simplicity, we only consider the uniform one-dimensional mesh with mesh
size h = xi+1 – xi, in which xi = ih, i = 1, 2, . . . , N , where h is spatial step size.

There are many methods used to generate compact finite-difference formulas to approx-
imate the second-order spatial derivatives. The reader is referred to Refs. [5, 7] for more
details on how to generate compact finite-difference formulas. In this study, the spatial
derivatives are approximated with the formulas introduced by Li in Ref. [5]. Below the
formulas in Ref. [5] are stated without change.

2.1.1 Sixth-order CFDS for interior nodes
At interior points xi, 3 ≤ i ≤ N – 2, the second-order derivative uxx (u′′ for simplicity) in
Eq. (1) is approximated by a sixth-order implicit compact difference scheme

αu′′
i–1 + u′′

i + αu′′
i+1 =

b
4h2 (ui+2 – ui + ui–2) +

a
h2 (ui+1 – 2ui + ui–1), (5)

where α, a and b are constants to be determined by matching the Taylor expansion. When
α = 2

11 , a = 12
11 and b = 3

11 , Eq. (5) becomes a sixth-order compact scheme.

2.1.2 Sixth-order CFDS for boundary nodes of Dirichlet boundary conditions
To make those near-boundary points have the same order accuracy as interior points xi,
3 ≤ i ≤ N – 2, they should be obtained by matching Taylor series expansions to the order
of O(h6) at boundary points x1, x2, xN–1 and xN .

At boundary point x1, the sixth-order compact formula is

u′′
1 +

126
11

u′′
2

=
1
h2

(
2077
157

u1 –
2943
110

u2 +
573
44

u3 +
167
99

u4 –
18
11

u5 +
57

110
u6 –

131
1980

u7

)
. (6)

At boundary point x2, the sixth-order compact formula is

11
128

u′′
1 + u′′

2 +
11

128
u′′

3

=
1
h2

(
585
512

u1 –
141
64

u2 +
459
512

u3 +
9

32
u4 –

81
512

u5 +
3

64
u6 –

3
512

u7

)
. (7)

At boundary points xN–1 and xN , their formulas are symmetrical with those of x1 and x2.
The CFDS can be written in matrix form,

AU′′ = BU (8)
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where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 126
11

11
128 1 11

128
2

11 1 2
11

. . . . . . . . .
2

11 1 2
11

11
128 1 11

128
126
11 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×N

, (9)

B =
1
h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2077
157

–2943
110

574
44

167
99

–18
11

57
110

–131
1980

585
512

–141
64

459
512

9
32

–81
512

3
64

–3
512

3
44

12
11

–51
22

12
11

3
44

. . . . . . . . . . . . . . .
3

44
12
11

–51
22

12
11

3
44

–3
512

3
64

–81
512

9
32

459
512

–141
64

585
512

–131
1980

57
110

–18
11

167
99

574
44

–2943
110

2077
157

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×N

, (10)

U = (u1, u2, . . . , uN–1, uN )T . (11)

Hence the sixth-order compact finite-difference approximation of second derivatives U′′

is given by

U′′ = A–1BU = HU. (12)

Note: the matrix A is not invertible at arbitrary N . When N > 7, the matrix A is invertible.

2.2 Precise integration method
After the spatial discretization, the governing PDEs become the following ODEs:

dU
dt

= HU. (13)

Given τ = tk+1 – tk as the temporal step size, then integrating Eq. (13) directly, the fol-
lowing recurrence formula is obtained:

Uk+1 = eHτ Uk = T(τ )Uk , (14)

where T(τ ) = eHτ is an exponential matrix.
The present work will focus on how to compute the exponential matrix T very precisely.

Moler et al. [22] had discussed 19 dubious ways to compute the exponential matrix. Be-
sides, they pointed out that the calculation of the exponential matrix had not been fully
solved. In this paper, we apply the PIM to calculate the exponential matrix, which was pro-
posed by Zhong et al. [23]. PIM is a high-precision algorithm of an exponential computing
matrix, which avoids the computer truncation error caused by the fine division and im-
proves the numerical solution of the exponential matrix by the accuracy of the computer.
In a word, PIM is a series of matrix or vector multiplication calculations. Therefore, the
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main problem is how to calculate the exponential matrix eHτ . The precise computation of
the exponential matrix has two key points [29]:

(1) The additional theorem of exponential function is used, whose execution needs the
2n algorithm.

(2) Keeping track of the incremental part of the exponential matrix, rather than the
total value.

Using the exponential additional theorem, the exponential matrix can be rewritten as
follows:

eHτ =
(
eH�t)m, (15)

where m is an arbitrary integer. Usually, in order to ensure computational accuracy, Ref.
[23] suggested

m = 2n, n = 20, m = 1,048,576, (16)

where �t = τ
m is much smaller than τ , and n is defined as a bisection order. Thus, the

calculation of eHτ becomes m times multiplication of eH�t . Thus, we select two approx-
imation methods for the exponential matrix eH�t , that is, the Taylor approximation and
the Padé approximation.

2.2.1 Taylor approximation
The Taylor expansion formula of the exponential matrix eH�t is

eH�t =
∞∑
j=0

(H�t)j

j!
, (17)

where �t = τ
m is an extremely small-time interval because τ is usually small. Thus, the

fourth-order Taylor expansion can obtain high precision. Hence

T(�t) = eH�t ∼=
4∑

j=0

(H�t)j

j!
= I + H�t +

(H�t)2

2!
+

(H�t)3

3!
+

(H�t)4

4!
. (18)

Because τ is very small, the series expansion of the first five terms should be enough. The
exponential matrix T(�t) departs from the unit matrix I to a very small extent. Hence it
should be distinguished as

eH�t ∼= I + To = I + H�t +
(H�t)2

2!
+

(H�t)3

3!
+

(H�t)4

4!
, (19)

where To is the incremental matrix, To = H�t + (H�t)2

2! + (H�t)3

3! + (H�t)4

4! . And o is the variable
of the bisection order n, o ∈ [1, n].

2.3 Padé approximation
Based on the PIM of Padé approximation, we have the same idea as PIM of the Taylor
approximation. The difference is the series expansion of the exponential matrix T(�t).
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At the same time, their approaches depend on the additional theorem of exponents. The
(r + s)th-order rational Padé approximation [30, 31] for eH�t is defined as

eH�t =
Nr(H�t)
Ds(H�t)

, (20)

where

Nr(H�t) =
r∑

j=0

(2r – j)!r!
(2r)!j!(r – j)!

(H�t)j, (21)

Ds(H�t) =
s∑

j=0

(2s – j)!s!
(2s)!j!(s – j)!

(–H�t)j. (22)

Equations (21)–(22) were described by Perron [32]. Similar to the Taylor approximation,
we also rewrite the Padé approximation as follows:

eH�t =
Nr(H�t)
Ds(H�t)

=
I + N̄r

I + D̄s
= I +

N̄s – D̄r

I + D̄r
= I + To, (23)

where

N̄r =
r∑

j=1

(2r – j)!r!
(2r)!j!(r – j)!

(H�t)j, D̄s =
s∑

j=1

(2s – j)!s!
(2s)!j!(s – j)!

(–H�t)j. (24)

In this paper, we select the (4, 4)-Padé approximation for N4(H�t) and D4(H�t),

N4(H�t) = I + N̄4, N̄4 =
H�t

2
+

3(H�t)2

28
+

(H�t)3

84
+

(H�t)4

1680
, (25)

D4(H�t) = I + D̄4, D̄4 = –
H�t

2
+

3(H�t)2

28
–

(H�t)3

84
+

(H�t)4

1680
. (26)

Substituting Eqs. (25) and (26) into Eq. (23), we obtain

eH�t ∼= I + To = I +
N̄4 – D̄4

I + D̄4
. (27)

So far, we have introduced two approximation methods of the exponential matrix T(�t).
In order to obtain the exponential matrix T(τ ), we need to use a 2n algorithm for the matrix
T(�t).

2.4 2n algorithm of the exponential matrix
Whether we have the Taylor approximation or the Padé approximation, they all have
the problem of complete loss of precision in the exponential additional theorem [33]. In
Eqs. (19) and (27), the identity matrix I cannot be directly added to the incremental matrix
To. To is a tiny matrix (this is a matrix whose elements all approach zero). When they add
up directly, To become the mantissa of I + To. Thus, To will become an appended part and
its precision will be seriously dropped in the round-off operation in computer arithmetic.
As a matter of fact, To is an incremental part, which is the second key point mentioned
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Table 1 Algorithm: How to calculate exponential matrix with PIM

1. Initial calculation
Choose time step τ and bisection order n.
2. Choose two approximation methods of T(τ )
a. Fourth-order Taylor approximation
b. (4, 4)-Padé approximation
3. For each discretized point, compute
for (o = 1 : n) To = 2To + To × To end
4. Calculate the matrix exponential function
T(τ ) = I + To = eHτ

above. If we want to get high-precision solutions, we must separately calculate and store
the incremental matrix To. Therefore, we will apply a 2n algorithm to calculate To. A 2n

algorithm is a kind of calculation method and is based on the addition theorem of the
exponential matrix. Next, we will show how a 2n algorithm is calculated on the computer.

For computing the matrix T(τ ) = eHτ , Eq. (17) should be factored as

T(τ ) = (I + To)2n
= (I + To)2n–1 × (I + To)2n–1

. (28)

Such a factorization should be iterated n times. Next, for the arbitrary matrices Tb and
Tc, the identity

(I + Tb) × (I + Tc) = I + (Tb + Tc + Tb × Tc) (29)

holds if Tb and Tc are very small, the multiplication should not be executed after the ad-
dition of the unit matrix I as given on the left-hand side. Treating the matrices Tb and Tc

as To, thus To ⇒ 2To + To × To is replaced by in each factorization of Eq. (28). Then, To no
longer has a small value after such an iteration circulated times according to the following
computer cycle language:

for (o = 1 : n) To = 2To + To × To. (30)

At the end of the n cycles, the computer stores To. Eq. (30) is the code of 2n algorithm.
At this point, To can be directly added to identity matrix I to obtain the exponential matrix
T(τ ),

T(τ ) = I + To = eHτ . (31)

Therefore, both of the Taylor approximation and the Padé approximation can be, re-
spectively, combined with a 2n algorithm to calculate the exponential matrix to obtain a
high-precision numerical solution.

According to the equations above, the computing procedure for the exponential matrix
T(τ ) can be summarized and listed in Table 1.

3 Stability analysis
3.1 Stability for periodic boundary condition
In this section the linear stability of the scheme CFDS-PIM of Taylor and Padé approx-
imation is investigated by utilizing an approach suggested and discussed in [34, 35] for
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the parabolic equations. Although the boundary condition of Dirichlet is adopted in our
scheme, we only can prove the stability under the periodic boundary condition for sim-
plicity.

In Eq. (16), if λi (i = 1, 2, . . . , N – 1) is the eigenvalue of matrix H∗, then eλiτ is the
eigenvalue of exponential matrix eH∗τ with the same corresponding eigenvector x =
(x1, x2, . . . , xN–1). In order to show that CFDS-PIM is unconditionally stable, we need to
prove that the spectral radius of matrix eH∗τ is less than 1. To this end, the following two
lemmas are needed.

Lemma 1 If λi is an eigenvalue of matrix H∗ = A∗–1B∗ with its corresponding eigenvector
x, then the eigenvalue λi is a real number and λi ≤ 0.

Proof By the definitions of eigenvalue and eigenvector, we may write [34]

xT B∗x = λixT A∗x. (32)

Here, the matrices A∗ and B∗ of the periodic boundary condition are as follows:

A∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 2
11

2
11

2
11 1 2

11
. . . . . . . . .

2
11 1 2

11
2

11
2

11 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (33)

B∗ =
1
h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

–51
22

12
11

3
44

3
44

12
11

12
11

–51
22

12
11

3
44

3
44

3
44

12
11

–51
22

12
11

3
44

. . . . . . . . . . . . . . .
3

44
12
11

–51
22

12
11

3
44

3
44

3
44

12
11

–51
22

12
11

12
11

3
44

3
44

12
11

–51
22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (34)

Note: H, A, B are the matrices of the Dirichlet boundary condition; H∗, A∗, B∗ are the
matrices of the periodic boundary condition.

Obviously, the matrix, A∗ and B∗ are really symmetrical, so the eigenvalue λi is a real
number. Meanwhile, for arbitrary x 	= 0, the right-hand side of Eq. (32) is

xT A∗x = x2
1 +

4
11

x1x2 +
4

11
x1xN–1 + x2

2 +
4

11
x2x3 + · · ·

+
4

11
xN–1xN–2 + x2

N–1 +
4

11
xN–1x1. (35)
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Using the inequality 2xy < x2 + y2, we obtain

xT A∗x > x2
1 –

2
11

(
x2

1 + x2
2
)

–
2

11
(
x2

1 + x2
N–1

)
+ x2

2 –
2

11
(
x2

2 + x2
3
)

+ · · ·

–
2

11
(
x2

N–2 + x2
N–1

)
+ x2

N–1 –
2

11
(
x2

N–1 + x2
1
)

>
5

11
x2

1 +
7

11

N–2∑
i=2

x2
i +

5
11

x2
N–1 > 0, (36)

and the left-hand side of Eq. (32) is

xT B∗x = +
3

44
x1xN–2 +

12
11

x1xN–1 –
51
22

x2
1 +

12
11

x1x2 +
3

44
x1x3

+
3

44
x2xN–1 +

12
11

x2x1 –
51
22

x2
2 +

12
11

x2x3 +
3

44
x2x4

+
3

44
x3x1 +

12
11

x3x2 –
51
22

x2
3 +

12
11

x3x4 +
3

44
x4x5 + · · ·

+
3

44
xN–3xN–1 +

12
11

xN–3xN–2 –
51
22

x2
N–3 +

12
11

xN–3xN–4 +
3

44
xN–3xN–5

+
3

44
xN–2x1 +

12
11

xN–2xN–1 –
51
22

x2
N–2 +

12
11

xN–2xN–3 +
3

44
xN–2xN–4

+
3

44
xN–1x2 +

12
11

xN–1x1 –
51
22

x2
N–1 +

12
11

xN–1xN–2 +
3

44
xN–1xN–3. (37)

Similarly, using the inequality 2xy < x2 + y2, we obtain

xT B∗x < –
12
11

(
x2

1 + x2
N–1

)
–

3
44

(
x2

1 + x2
2 + x2

N–2 + x2
N–1

)

+
6

44
x1xN–2 +

2
44

x2xN–1 +
24
11

xN–1x1

< 0. (38)

From Eqs. (36) and (38), we can see that the right-hand side of Eq. (32) is xT A∗x > 0 and
the left-hand side of Eq. (32) is xT B∗x < 0. Thus, λi < 0. �

Lemma 2 Let W be an arbitrary square matrix. Then, for any operator matrix norm ‖ · ‖,
we obtain λρ(W) ≤ ‖W‖, where λρ(W) is the spectral radius of matrix W (λρ = max |λi|,
1 ≤ i ≤ N – 1).

Theorem 1 The Taylor approximation of CFDS-PIM is unconditionally stable.

Proof The Taylor series approximation of e–λρτ is defined as

e–λρτ =
∞∑
j=0

(–λρτ )j

j!
. (39)

Using Lemma 1, we obtain –λρτ < 0, thus e–λρτ < 1. For the fourth-order Taylor series
approximation of the PIM, e–λρτ < 1. We use Lemma 2 to see that the spectral radius of
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Figure 1 The behavior of the Taylor approximation with the real number field z ∈ [0, 2.5] and Padé
approximation with the real number field z ∈ [0, 100]

matrix eHτ is less than 1 in a fourth-order Taylor approximation of the PIM. Thus, the
Taylor approximation of CFDS-PIM is unconditionally stable. �

Theorem 2 The Padé approximation of the CFDS-PIM is unconditionally stable.

Proof The (4, 4)-Padé approximation to e–λρτ is defined as

e–λρτ =
1680 + 840(–λρ)τ + 180(–λρτ )2 + 30(–λρτ )3 + (–λρτ )4

1680 – 840(–λρ)τ + 180(–λρτ )2 – 30(–λρτ )3 + (–λρτ )4 . (40)

Using Lemma 1, –λρ ≤ 0 and τ > 0, we see that the numerator of Eq. (41) is smaller than
the denominator, thus e–λρτ < 1 and the spectral radius of matrix eHτ is less than 1. Ac-
cording to Lemma 2, ‖eHτ‖ ≤ 1 in the (4, 4)-Padé approximation of the PIM. Thus, the
Padé approximation of the CFDS-PIM is unconditionally stable. �

3.2 Amplification symbol
Definition 1 The rational approximation Rr,s(z) to the exponential e–z is called
A-acceptable when |Rr,s(–z)| < 1 holds for all –z with negative real part. The approxi-
mation is called L-acceptable when it is A-acceptable and it also satisfies |Rr,s(–z)| → 0 as
�(–z) → –∞.

In Fig. 1, we compare the behavior of e–z and two approximations (Taylor approxima-
tion (17) and Padé approximation (20)). It can be observed from the traces that the two
approximations are A-acceptable. It can also be seen from Fig. 1 that A-acceptable real
number field of a Padé approximation is wider than that of a Taylor approximation.

Figs. 2 and 3 illustrate the traces of e–z and two approximations for the different com-
plex planes. Since the results of the functions are complex, we plot their real parts. It can
be seen from the plots that the Padé approximation better conforms to A-acceptability
Definition 1.

3.3 Stability regions
The stability of the CFDS-PIM can be observed from the plots of their stability regions
[21, 36]. The linear ordinary differential equation (13) can be rewritten as

ut = cu. (41)
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Figure 2 The behavior of the Taylor approximation with the complex plane z = x + iy ∈ [0, 2.5]× [–1, 1]

Figure 3 The behavior of Padé approximation with the complex plane z = x + iy ∈ [0, 100]× [–50, 50]

We assume that a fixed point u0 satisfying cu0 = 0 exists, and u is the perturbation of
u0. If Re(c) < 0, then we can say the fixed point u0 is stable. We denote x = cτ , with τ

being a single time step, and then apply two approximations (the Taylor approximation
(17) and the Padé approximation (20)) to Eq. (41). The amplification factors r(x) of the
two approximations can be calculated in the following way:

(1) Taylor approximation of precise integration method

un+1

un
= r(x, y) = 1 + x +

1
2

x2 +
1
6

x3 +
1

24
x4. (42)

(2) Padé approximation of precise integration method

un+1

un
= r(x, y) =

1 + 1
2 x + 3

28 x2 + 1
84 x3 + 1

1680 x4

1 – 1
2 x + 3

28 x2 – 1
84 x3 + 1

1680 x4
. (43)

Notice that we assumed r(x) < 1 to obtain the stability regions. Suppose that x is com-
plex. As can be seen in Fig. 4, the stability regions of the two schemes are plotted. The axes
of the plots are real and imaginary parts of x. It can be observed from Fig. 4 that the stabil-
ity regions of the two approximations are the same in shape, but the Padé approximation
is more in line with the stability boundary of exponential approximation.

4 Multi-dimensional case
The section introduces sixth-order CFDS based on PIM coupled with SMM (CFDS-PIM-
SSM), and applies it to solving multi-dimensional parabolic problems.
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Figure 4 The stability regions of the Taylor approximation and Padé approximation

4.1 Extensions to two-dimensional case
SSM is a numerical method for solving differential equations that are decomposed multi-
dimensional problems into a sum of differential operators. This method is named after
Gilbert Strang. It is used to speed up the calculation for problems involving operators
on very different time scales, and to solve the multi-dimensional PDEs by reducing them
to a sum of one-dimensional problems. For simplicity, the following two-dimensional
parabolic equation is given:

∂u
∂t

=
∂2u
∂x2 +

∂2u
∂y2 , (x, y, t) ∈ Ω × [0, T]. (44)

As a precursor to Strang splitting, we rewrite Eq. (44) as follows:

dU
dt

= HxU + HyU (45)

where Hx and Hy are difference operators in the x-direction and the y-direction. The right
side of Eq. (45) is already split, in a natural way, into a sum a + b of relatively simple ex-
pressions. Due to one of the properties of difference operator is the distributive law of
multiplication, we obtain the following equations:

dU
dt

= (Hx + Hy)U. (46)

For Eq. (45), the exact solution to the associated initial value problem would be

Uk+1(t) = e(Hx+Hy)tUk . (47)

This section focuses on how to calculate the exponential matrix e(Hx+Hy)t , and the calcu-
lation of e(Hx+Hy)t is too complicated. Thus, we convert it into calculating the product of
eHx t and eHyt , but eHxt and eHyt must satisfy the commutativity of the addition theorem

e(Hx+Hy)t = eHxteHyt ⇔ HxHy = HyHx. (48)

Nevertheless, the exponentials of Hx and Hy are related to that of Hx + Hy by the Trotter
product formula

eHx+Hy = lim
m→∞

(
eHx/meHy/m)m. (49)
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Gottleib et al. [22] suggested that the Trotter result can be used to approximate eH by
splitting H into Hx + Hy, because m = 220 in Eq. (16) is already very large. Thus, we use the
following approximation:

eH =
(
eHx/meHy/m)m. (50)

This approach to calculating eH is of potential interest when the exponentials of Hx and
Hy can be accurately and efficiently computed. If Hx and Hy commute, we rewrite Eq. (45)
as follows:

Uk+1(t) = eHtUk = eHxteHytUk . (51)

Thus, the two-dimensional problem becomes two one-dimensional problems. For each
one-dimensional problem, it can be solved by the PIM, which was introduced in Sect. 2.

4.2 Extensions to three-dimensional case
For the three-dimensional parabolic equation, we can also use SSM to decompose it into
the sum of differential operators of three one-dimensional problems. The CFDS-PIM
scheme can be extended to the following three-dimensional case:

∂u
∂t

=
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 , (x, y, z, t) ∈ Γ × [0, T]. (52)

As a precursor to Strang splitting, we rewrite Eq. (52) as follows:

dU
dt

= HxU + HyU + HzU, (53)

where Hx, Hy and Hz are difference operators in the x-direction, y-direction, and z-
direction, respectively. The right side of Eq. (53) is already split, which becomes a sum
a + b + c of relatively simple expressions. We obtain the following equations:

dU
dt

= (Hx + Hy + Hz)U. (54)

If Hx, Hy and Hz commute for Eq. (54), the exact solution to the associated initial value
problem would be

Uk+1(t) = eHtUk = eHxteHyteHztUk . (55)

Because we apply SSM to the three-dimensional case, we obtain a sum of difference
operators of three one-dimensional parabolic problems, and the scheme has the same ac-
curacy as the one-dimensional cases.

5 Numerical examples and discussion
In this section, we give the five numerical examples to validate the adaptability of the pro-
posed schemes and compare their accuracy with those which are already available in the
literature for solving parabolic equations. The accuracy of the schemes is measured in
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Figure 5 The numerical solutions of the Taylor approximation and Padé approximation of CFDS-PIM for
case 1 of Example 1

terms of the absolute errors, computing time and the order of convergence of the scheme.
In our tables, the error is the maximum error between the exact solutions and CFDS-PIM,
and CPU(s) is the computing time. The order of the spatial convergence of the schemes is
defined as

log2(E2h/Eh), (56)

where Eh = |uh – u| and E2h = |u2h – u| are discrete maximum absolute errors at 2h and h.
All the numerical experiments are conducted on MATLAB R2016a platforms based on an
Intel Core i5-6300HQ 2.30 GHz processor.

Example 1 Consider a one-dimensional parabolic problem with constant coefficients,

∂u
∂t

=
∂2u
∂x2 , x ∈ [0, 1], t ≥ 0,

u(x, 0) = γ (sinαx + sinβx), x ∈ [0, 1],

u(0, t) = u(1, t) = 0, t ≥ 0.

(57)

The exact solution is u(x, t) = e–α2t sinαx + e–β2t sinβx. Two sets of different parameters
are set up for the parabolic problem in this example.

Case 1. In the first case, we consider the sample test with α = π , β = 0, γ = 108.
In this case, we choose a spatial step size h = 2.5 × 10–2 and a time step size τ = 4 × 10–5.

Figure 5 presents numerical results of the Taylor and Padé approximation methods of the
CFDS-PIM scheme at t = 1.8, 1.85, 1.9, 1.95, 2, respectively. It is obvious that numerical
solutions of two schemes are seemingly alike. In order to further compare the Taylor ap-
proximation with the Padé approximation, the errors between the exact solutions and two
schemes are presented in Fig. 6. It can be seen that the Padé approximation has slightly
better accuracy than the Taylor approximation. Moreover, we compare the two approxi-
mation methods of CFDS-PIM with the empirical Crank–Nicolson (C-N) scheme in terms
of the computational accuracy in Table 2. The number of grid points of CFDS-PIM is much
smaller than that of the C-N scheme, but its accuracy is far higher than that of the C-N
scheme.
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Figure 6 The errors between the exact solutions and CFDS-PIM approximated solutions of the Taylor
approximation (on left-hand side figure) and the errors between the exact solutions and CFDS-PIM
approximated solutions of Padé approximation (on right-hand side figure) at t = 2 for case 1 of Example 1

Table 2 The error comparison between CFDS-PIM and the other method at t = 2. N is the number of
points of the one-dimensional mesh in case 1 of Example 1

CFDS-PIM Ref. [1]
Taylor Padé

xi 0.2 3.002× 10–10 1.799× 10–10 2.251× 10–3

0.4 4.821× 10–10 2.874× 10–10 3.364× 10–3

0.6 4.821× 10–10 2.874× 10–10 3.364× 10–3

0.8 3.002× 10–10 1.799× 10–10 2.251× 10–3

N 41 41 101

Case 2. For the second case we consider the test with α = π , β = 3π , γ = 1 to illustrate the
difference of the two approximation methods of sixth-order CFDS based on fourth-order
PIM and sixth-order CFDS based on the Runge–Kutta fourth-order (RK4) method.

The solutions and the errors between two approximation methods of CFDS-PIM and
the exact solutions, which are presented in Fig. 7 with time step size τ = 5 × 10–5. In
the left-hand side figure of Fig. 3, it is obvious that the numerical solutions of the Tay-
lor and Padé approximation method of the CFDS-PIM are in very good agreement with
those of the exact solutions. Furthermore, the accuracy of the Taylor approximation is
significantly higher than that of the Padé approximation in Fig. 7 (right-hand side fig-
ure). Table 3 presents the comparison of the errors and computational time between three
approximation methods at t = 0.1 with the different spatial step size. The three numeri-
cal methods have the same high-order precision. Moreover, it is clearly noted that the
sixth-order CFDS based on fourth-order PIM is able to have excellent computational ef-
ficiency.

Case 3. For the third case we consider the test with α = π , β = 0, γ = 1 to compare the
difference between sixth-order CFDS-PIM and the eighth-order CFDS.

The solutions and the errors between two approximation methods of CFDS-PIM and
the exact solutions, which are presented in Fig. 8 with time step size τ = 1 × 10–4. In the
left-hand side figure of Fig. 4, it is obviously noted that the numerical solutions of the Tay-
lor and Padé approximation method of the CFDS-PIM are in very good agreement with
those of the exact solutions. Furthermore, the accuracy of the Taylor approximation is
significantly higher than that of the Padé approximation in Fig. 8 (right-hand side figure).
Table 4 presents the comparison of the errors and computational time between sixth-
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Figure 7 The exact solutions and two numerical solutions (on left-hand side figure) and the errors between
Taylor approximation and Padé approximation (on right-hand side figure) with N = 81 for case 2 of Example 1

Table 3 Numerical results of one-dimensional parabolic problem at t = 0.1 for case 2 of Example 1

N
11 21 41 81

Taylor Max(error) 5.485× 10–4 6.897× 10–6 9.124× 10–9 3.565× 10–11

CPU (s) 0.023 0.022 0.024 0.025
Order – 6.313 9.562 8.000

Padé Max(error) 5.485× 10–4 6.896× 10–6 8.956× 10–9 3.565× 10–11

CPU (s) 0.023 0.023 0.026 0.027
Order – 6.314 9.589 7.973

RK4 Max(error) 5.485× 10–4 6.897× 10–6 9.124× 10–9 3.532× 10–11

CPU (s) 0.452 0.510 0.859 3.506
Order – 6.314 9.562 8.013

Figure 8 The exact solutions and two numerical solutions (on left-hand side figure) and the errors between
Taylor approximation and Padé approximation (on right-hand side figure) with N = 21 for case 3 of Example 1

order CFDS-PIM and the eighth-order CFDS at t = 1 with the different spatial step size.
It is clearly noted that the sixth-order CFDS-PIM is able to maintain high-order accuracy
and excellent computational efficiency.
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Table 4 Numerical results of CFDS-PIM (τ = 1× 10–4) and Ref. [34] (τ = 1× 10–6) at t = 1 for case 3
of Example 1

h
0.2 0.1 0.05

Taylor Max(error) 6.056× 10–8 1.218× 10–9 6.821× 10–12

CPU (s) 0.025 0.027 0.030

Padé Max(error) 6.056× 10–8 1.217× 10–9 3.341× 10–12

CPU (s) 0.030 0.031 0.031

Ref. [34] Max(error) 4.770× 10–6 7.714× 10–9 1.882× 10–11

CPU (s) – – –

Figure 9 Two numerical solutions (on left-hand side figure) and the errors between Taylor approximation
and Padé approximation (on right-hand side figure) with N = 81 for Example 2

Example 2 In order to test the applicability of CFDS-PIM. Consider the following
parabolic equation with variable coefficients:

∂u
∂t

= a(x)
∂2u
∂x2 + b(x)u, x ∈ [0,π ], t ∈ [0, 1],

u(x, t) = sin x, x ∈ [0, 1],

u(0, t) = u(1, t) = 0, t ∈ [0, 1],

(58)

where a(x) = x + 1, b(x) = x. The exact solution is u = e–t sin x.
Numerical results of the two approximation methods are presented in Fig. 9 with time

step size τ = 5 × 10–6. In the left-hand side figure of Fig. 9, it is noted that the numeri-
cal solutions of the two approximation method are in excellent agreement with the exact
solutions. For parabolic equations with variable coefficients, the accuracy of the Padé ap-
proximation is significantly higher than that of the Taylor approximation in Fig. 9 right-
hand side figure. Table 5 presents the comparison of the errors and computational time
between Taylor approximation and Padé approximation at t = 0.1 with the different spa-
tial step size. It is clearly noted that the Padé approximation is able to maintain high-order
accuracy.

Example 3 In order to extend CFDS-PIM to nonlinear systems with variable coeffi-
cients, consider the following nonlinear Shrödinger’s equation(NLSE) with variable co-
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Table 5 Numerical results of one-dimensional parabolic problem with variable coefficients at t = 0.1
for Example 2

N
11 21 41 81

Taylor Max(error) 1.894× 10–6 5.216× 10–9 3.264× 10–11 1.663× 10–12

CPU (s) 0.270 0.278 0.325 0.522
Order – 8.529 7.295 4.295

Padé Max(error) 1.894× 10–6 5.216× 10–9 3.081× 10–11 3.132× 10–13

CPU (s) 0.266 0.283 0.319 0.576
Order – 8.504 7.403 6.620

efficients:

i
∂u
∂t

+ a(t)
∂2u
∂x2 + b(t)|u|2u = 0, x ∈ [–10π , 10π ], t ≥ 0, (59)

where a(t) = 1
2 cos t and b(t) = cos t

sin t+3 .
The exact solution is u(x, t) = 1

(sin t+3)1/2 sech( x
sin t+3 ) exp( i(x2–1)

2(sin t+3) ). We can extract periodic-

initial value conditions from the exact solution: u(x, 0) = 1√
3 sech( x

3 ) exp( i(x2–1)
6 ). Equa-

tion (59) is not only a nonlinear equation but also a parabolic equation with variable
coefficients. Since the proposed CFDS-PIM is aimed at a linear parabolic problem, the
main step in solving NLSE is to convert the nonlinear Schrödinger’s equation into a linear
equation. It is obvious that the periodic-initial value conditions abide by the mass conser-
vation law [37]:

Q(t) :=
∫

Ω

∣∣u(x, 0)
∣∣2 dx =

∫
Ω

∣∣u(x, 0)
∣∣2 dx = Q(0). (60)

In this nonlinear problem, we utilize a simplified linearization technique for the non-
linear term of NLSE with the help of the mass conservation law. This linearization tech-
nique is to convert the nonlinear term into a linear operator: |u(x, t)|2 = |u(x, 0)|2 = M.
Because the linear operators M and H can perform addition, the numerical solution can
be written as u = u0ei(a(t)H+b(t)M)t [38]. The solutions of the Taylor approximation and
the errors are shown in Fig. 10. The spatiotemporal evolution of the numerical solu-
tion is presented in Fig. 11. In Fig. 10, it is obvious that the numerical solutions of the
Taylor approximation method of the CFDS-PIM are in very good agreement with the
exact solutions. The physical behavior of the numerical solutions described in Fig. 6
is coincident with that given in [39, 40]. It can be seen that the Taylor approximation
method of the CFDS-PIM has high accuracy. Thus, the effectiveness of CFDS-PIM, which
can extend to nonlinear systems with variable coefficients, is verified by numerical re-
sults.

Example 4 Consider two-dimensional parabolic problem with constant coefficients

∂u
∂t

=
∂2u
∂x2 +

∂2u
∂y2 , (x, y) ∈ Ω = [0, 1] × [0, 1], t ≥ 0,

u(x, 0) = γ sinαx sinβx, (x, y) ∈ Ω = [0, 1] × [0, 1],

u(x, y, t) = 0, (x, y) ∈ ∂Ω , t > 0,

(61)



Chen et al. Advances in Difference Equations         (2020) 2020:15 Page 20 of 28

Figure 10 The exact solutions and numerical solutions (on left-hand side figure) and the errors between
Taylor approximation and exact solutions (on right-hand side figure) with N = 21 and time step size τ = 0.01
at t = 20π for Example 3

Figure 11 Evolution profile of numerical solutions of
the Taylor approximation at time t = [0, 20π ] with
N = 41, time step size τ = 0.01 for Example 3

where ∂Ω denotes the boundary of the region Ω = [0, 1] × [0, 1]. The exact solution is
u(x, t) = γ e–(α2+β2)t sinαx sinβy. Two sets of different parameters are set up for the two-
dimensional parabolic problem in this example.

Case 1. For the first case, we consider the sample test with α = π , β = π , γ = 1017. The
solutions of the Taylor and the Padé approximations of CFDS-PIM-SMM are depicted in
Fig. 12. It is obvious that numerical solutions of the two schemes look very similar. In or-
der to compare the accuracy of the two approximation methods, the errors between the
two schemes and the exact solutions are presented in Fig. 13. It is evident that the nu-
merical results of the Taylor approximation are comparable to the numerical results that
obtained by the Padé approximation. In addition, Table 6 presents the errors comparison
between CFDS-PIM-SSM and D’Yakonov ADI (DADI) schemes [1] in different positions.
Even though CFDS-PIM-SSM has much fewer grid points than the DADI scheme, the nu-
merical results of our schemes are more accurate than the numerical results of the DADI
scheme. Besides, the numerical solutions of the sixth-order CFDS of RK4 method cou-
pled SSM are given in Table 6. All three numerical methods, the Taylor approximation,
the Padé approximation, and the RK4 method, have the same high-order precision. More-
over, it is clearly noted that the sixth-order CFDS based on fourth-order PIM is able to
have excellent computational efficiency.

Case 2. For illustrating the difference of the Taylor and Padé approximation methods of
the CFDS-PIM-SSM, we consider Eq. (61) with α = π , β = π , γ = 1.

Figure 14 presents numerical results of the Taylor and Padé approximated solutions
of the CFDS-PIM-SSM, which are seemingly alike. The errors of the two approximation
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Figure 12 The CFDS-PIM solutions of the Taylor approximation (on left-hand side figure) and Padé
approximation (on right-hand side figure) for two-dimensional problem with N = 41× 41 at t = 2 for case 1 of
Example 4

Figure 13 The errors between the exact solutions and CFDS-PIM solutions of the Taylor approximation (on
left-hand side figure) and the error between the exact solutions and the CFDS-PIM solutions of Padé
approximation (on right-hand side figure) for two-dimensional problem with N = 41× 41 at t = 2 for case 1 of
Example 4

Table 6 The error comparison between CFDS-PIM and other method with spatial step sizes
hx = hy = 2.5× 10–2 and time step size τ = 2× 10–5 at t = 2 for case 1 of Example 4

CFDS-PIM Ref. [1] RK4
Taylor Padé

(xi , yi) (0.2, 0.2) 8.914× 10–10 9.439× 10–10 4.673× 10–3 8.067× 10–10

(0.4, 0.4) 2.319× 10–9 2.486× 10–9 1.223× 10–2 2.103× 10–9

(0.6, 0.6) 2.319× 10–9 2.486× 10–9 1.233× 10–2 2.103× 10–9

(0.8, 0.8) 8.914× 10–10 9.439× 10–10 4.673× 10–3 8.914× 10–10

CPU (s) 0.412 0.425 – 13.869
N 41× 41 41× 41 101× 101 41× 41

methods of the CFDS-PIM-SSM are depicted in Fig. 15. It is evident that the numerical
results of the Taylor approximation are more accurate than that obtained in the Padé ap-
proximation with N = 81 × 81. When the spatial step repeatedly doubled, the numerical
results of the two schemes are presented in Table 7. It can be seen that the Padé approxi-
mation is not able to maintain a high order of convergence with N = 81 × 81. This exam-
ple shows that excellent accuracy and efficiency is got by applying the two approximation
methods of CFDS-PIM-SSM, but the Taylor approximation is more accurate than the Padé
approximation.
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Figure 14 The numerical solutions of the CFDS-PIM of the Taylor approximation (on left-hand side figure)
and the numerical solutions of the CFDS-PIM of Padé approximation (on right-hand side figure) for
two-dimensional problem at t = 0.1 with N = 81× 81 for case 2 of Example 4

Figure 15 The errors between the exact solutions and CFDS-PIM approximated solutions of the Taylor
approximation (on left-hand side figure) and the errors between the exact solutions and CFDS-PIM
approximated solutions of Padé approximation (on right-hand side figure) for two-dimensional problem at
t = 0.1 with N = 81× 81 for case 2 of Example 4

Table 7 Numerical results of two-dimensional parabolic problem with time step size τ = 5× 10–5 at
t = 0.1 for case 2 of Example 4

N
11× 11 21× 21 41× 41 81× 81

Taylor Max(error) 1.213× 10–6 3.481× 10–9 2.183× 10–11 2.574× 10–13

CPU (s) 0.022 0.034 0.036 0.043
Order – 6.313 9.562 8.000

Padé Max(error) 1.213× 10–6 3.352× 10–9 1.072× 10–11 1.286× 10–10

CPU (s) 0.016 0.038 0.042 0.041
Order – 8.500 8.289 –0.263

Example 5 In order to test the applicability of CFDS-PIM. we consider the following
parabolic equation with variable coefficients:

∂u
∂t

= a(x, y)
(

∂2u
∂x2 +

∂2u
∂y2

)
+ b(x, y)u, (x, y) ∈ Ω = [0,π ] × [0,π ], t ≥ 0,

u(x, y, 0) = sin x sin y, (x, y) ∈ Ω ,

u(x, y, t) = 0, (x, y) ∈ ∂Ω , t ≥ 0,

(62)
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Figure 16 The numerical solutions of the CFDS-PIM of the Taylor approximation (on left-hand side figure)
and the numerical solutions of the CFDS-PIM of the Taylor approximation and the Padé approximation (on
right-hand side figure) for two-dimensional problem at t = 1 with N = 81× 81 for Example 5

Figure 17 The errors between the exact solutions and CFDS-PIM approximated solutions of the Taylor
approximation (on left-hand side figure) and the errors between the exact solutions and CFDS-PIM
approximated solutions of Padé approximation (on right-hand side figure) for two-dimensional problem at
t = 1 with N = 81× 81 for Example 5

Table 8 Numerical results of two-dimensional parabolic problem and the spatial step at t = 1 for
Example 5

N
11× 11 21× 21 41× 41 81× 81

Taylor Max(error) 1.246× 10–6 3.826× 10–9 1.927× 10–11 1.757× 10–13

CPU (s) 0.164 0.169 0.187 0.283
Order – 8.347 7.633 6.777

Padé Max(error) 1.213× 10–6 3.821× 10–9 1.246× 10–11 4.896× 10–12

CPU (s) 0.165 0.173 0.195 0.285
Order – 8.310 8.261 4.670

where a(x, y) = xy, b(x, y) = xy and time step size τ = 5 × 10–6. The exact solution is u =
e–2t sin x sin y.

Figure 16 presents numerical results of the Taylor and Padé approximated solutions
of the CFDS-PIM-SSM which are seemingly alike. The errors of the two approximation
methods of the CFDS-PIM-SSM are depicted in Fig. 17. It is evident that the numerical
results of the Taylor approximation are more accurate than that obtained in the Padé ap-
proximation with N = 81 × 81. The spatial step is repeatedly doubled, and the numerical
results of the two schemes are presented in Table 8. It can be seen that the Padé approxi-



Chen et al. Advances in Difference Equations         (2020) 2020:15 Page 24 of 28

Figure 18 The slices of the four-dimensional figure
of the solutions of the three-dimensional problem for
the CDF-PIM-SSM with spatial step size
hx = hy = hz = 0.05 and time step size τ = 5× 10–5 at
t = 0.1 for Example 5

Figure 19 The slices of four-dimensional figures of the solution of the three-dimensional problem for x = 0.2
(on left-hand side figure) and x = 0.4 (on right-hand side figure) for Example 6

mation is not able to maintain a high order of convergence with N = 81×81. This example
shows that excellent accuracy and efficiency are realized by applying the two approxima-
tion methods of CFDS-PIM-SSM, but the Taylor approximation is more accurate than the
Padé approximation.

Example 6 Consider the three-dimensional parabolic problem

∂u
∂t

=
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 , (x, y, z) ∈ Γ = [0, 1] × [0, 1] × [0, 1], t > 0,

u(x, y, 0) = sinπx sinπy sinπz, (x, y, z) ∈ Γ ,

u(x, y, z, t) = 0, (x, y, z) ∈ ∂Γ , t > 0,

where ∂Γ denotes the boundary of the square space Γ = [0, 1] × [0, 1] × [0, 1]. The exact
solution is u(x, y, z, t) = e–3π2t sinπx sinπy sinπz.

The slice figures of the four-dimensional images are used for observing a three-
dimensional parabolic problem, and the slice figures are depicted in Figs. 18, 19, 20, 21.
Figure 22 presents the errors of the two approximation methods of the CFDS-PIM-SSM
at t = 0.1 with x = 0.5 and y = 0.5. The results of this example show that Strang split-
ting method is a numerical method with high precision and high efficiency for solving
multi-dimensional problems. The comparison is done with solutions obtained by two ap-
proximation methods of the CFDS-PIM-SSM for the three-dimensional parabolic equa-
tion, which is presented in Table 9. All numerical figures of this example show that the
CFDS-PIM-SSM has excellent accuracy and efficiency, but the Taylor approximation is
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Figure 20 The slices of the four-dimensional figures of the solution of the three-dimensional problem for
x = 0.5 (on left-hand side figure) and y = 0.5 (on right-hand side figure) for Example 6

Figure 21 The slices of the four-dimensional figures of the solution of the three-dimensional problem for
z = 0.5 (on left-hand side figure), and a three-dimensional figures of the solution of the three-dimensional
problem at t = 0.1 with z = 0.5 (on right-hand side figure) for Example 6

Figure 22 The errors between the exact solutions and CFDS-PIM-SSM approximated solutions of the Taylor
approximation (on left-hand side figure), and the errors between the exact solutions and CFDS-PIM-SSM
approximated solutions of Padé approximation (on right-hand side figure) for three-dimensional problem at
t = 0.1 with z = 0.5 for Example 6

more accurate than the Padé approximation. There is the phenomenon in Table 9 that the
convergence order will decrease with the increase of nodes. Zhai et al. [41] gave an expla-
nation for this phenomenon. The convergence order is formally defined when the mesh
size approaches zero; therefore, when the mesh size is relatively large, the discretization
schemes may not achieve the formal convergence order. Besides, because the mesh size is
extremely small, the Padé approximation scheme cannot achieve its formal convergence
order.



Chen et al. Advances in Difference Equations         (2020) 2020:15 Page 26 of 28

Table 9 Numerical results of three-dimensional parabolic problem at t = 0.1 with x = 0.5 and y = 0.5
for Example 6

N
11× 11× 11 21× 21× 21 41× 41× 41 81× 81× 81

Taylor Max(error) 6.781× 10–7 1.946× 10–9 1.220× 10–11 1.439× 10–13

CPU (s) 0.265 0.280 0.272 0.308
Order – 8.445 7.332 6.406

Padé Max(error) 6.781× 10–7 1.874× 10–9 5.995× 10–11 7.191× 10–11

CPU (s) 0.270 0.276 0.278 0.288
Order – 8.500 4.966 –0.262

6 Conclusion
This paper presents two high-order exponential time differencing precise integration
method schemes in combination with a spatially global sixth-order compact finite-
difference scheme, which have been developed for the numerical solutions of one-
dimensional and multi-dimensional parabolic equations. A sixth-order CFDS is used for
converting the parabolic equations into the ODEs, and then the Taylor approximation and
the Padé approximation of the PIM is used for solving the resulting system of ODEs. For
multi-dimensional problems, the Strang splitting method reduces them to a sum of one-
dimensional problems. The five examples considered have been studied to confirm the
accuracy and utility of the proposed scheme. The findings can be summarized as follows.

(1) It is found that the proposed results are in good agreement with the exact solutions.
The two schemes of CFDS-PIM have very high excellence in computational
accuracy and efficiency.

(2) In the one-dimensional example, the computational accuracy of CFDS-PIM is much
higher than that of the empirical C-N scheme.

(3) In the two-dimensional example, the computational accuracy of CFDS-PIM is much
higher than that of the empirical DADI scheme. Taylor approximation has better
accuracy than Padé approximation. Besides, Taylor approximation is well combined
with Strang splitting method.

(4) The Strang splitting method shows the advantage of no precision loss in
multi-dimensional calculation. SSM is far superior to DADI schemes in accuracy
and efficiency.

(5) Compared with the compact schemes of the same type, CFDS-PIM-SMM has better
computational efficiency;

(6) CFDS-PIM-SMM can easily extend to nonlinear multi-dimensional parabolic
systems with variable coefficients.
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