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1 Introduction
In this paper, we investigate the Hilfer fractional evolution system:

{
Dν,μ

0+ x(t) = Ax(t) + f (t, x(t)) + Bu(t), t ∈ J ′ = (0, b],
I(1–ν)(1–μ)

0+ x(0) = x0,
(1.1)

where Dν,μ
0+ represents the Hilfer fractional derivative, 0 ≤ ν ≤ 1, 1

2 < μ < 1, x(·) is assumed
to be in a Hilbert space H , I(1–ν)(1–μ)

0+ is the Riemann–Liouville fractional integral of order
(1 – ν)(1 – μ), A : D(A) ⊆ H → H is the infinitesimal generator of a compact, uniformly
bounded and C0-semigroup {T(t), t ≥ 0} on a separable Hilbert space H . Now f : J ′ ×H →
H is a given function that will be specified later. The control function u is taken in L2(J ′, U)
and the admissible controls set U is a Hilbert space, B is a bounded linear operator from
U into H , and finally, x0 is an element of H .

Fractional calculus and fractional dynamic equations [1, 2] arise naturally in phenom-
ena in engineering, physics, science and controllability. For recent work on the existence
of mild solutions, controllability and optimal control for some fractional evolution sys-
tems we refer the reader to [3, 4], and for approximate controllability of some linear and
nonlinear systems see [5–7] and the references therein. Hilfer [8] consider a generalized
Riemann–Liouville fractional derivative called the Hilfer fractional derivative and in [9]
the approximate controllability of Hilfer fractional differential inclusions with nonlocal
conditions was investigated. Existence, nonexistence, uniqueness involving Hilfer frac-
tional derivatives was discussed in [10–12] and in [13] the approximate controllability
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of fractional evolution equations involving Hilfer fractional derivatives was considered
and in [14], we study the approximate controllability of Hilfer fractional evolution hemi-
variational inequalities by two resolvent operators and fixed point theorem. Compared
with approximate controllability, finite approximate controllability is a stronger concept,
and it is the consequence of approximate controllability in some linear heat equations.
There are a number of papers on finite approximate controllability of differential systems.
In [15], semilinear variational inequalities with distributed controls were studied, in [16]
the author presented a finite-dimensional version of null controllability for the semilin-
ear heat equation in bounded domains with Dirichlet boundary conditions, the author in
[17] investigated finite approximate controllability for a nonlocal parabolic problem, and
in [18, 19] the author considered approximate controllability and finite approximate con-
trollability of some semilinear abstract equation, and finite approximate controllability for
Sobolev-type nonlocal fractional semilinear evolution equations in Hilbert spaces.

There are only a few papers on finite approximate controllability of fractional evolu-
tion systems and motivated from the above (in particular [18, 19]), we will study the fi-
nite approximate controllability of some Hilfer fractional evolution systems. In Sect. 2, we
present some preliminaries on fractional calculus and the definition of finite approximate
controllability. In Sect. 3, sufficient conditions are given for the existence of mild solutions
of system (1.1). In Sect. 4, by using the treatment in [14] and the variational method, the fi-
nite approximate controllability of system (1.1) is discussed. In Sect. 5, an example is given
to illustrate the theory.

2 Preliminaries
Let J = [0, b] and E be a Banach space with norm ‖ · ‖E (we usually write it as ‖ · ‖). Now E∗

denotes its dual and 〈·, ·〉E denotes the duality pairing between E∗ and E. We use Lb(E, E)
to denote the space of bounded linear operators with the norm ‖ · ‖Lb(E,E). Let C(J , E) be
the Banach space of all continuous functions from J into E. Set γ = ν + μ – νμ, 0 < γ < 1,
and then 1 – γ = (1 – ν)(1 – μ). Define

Y := C1–γ

(
J ′, H

)
=
{

x ∈ C
(
J ′, H

)
: lim

t→0+
t1–γ x(t) exist and finite

}

endowed with the norm ‖x‖Y = supt∈J ′ ‖t1–γ x(t)‖H . Clearly, (Y ,‖ · ‖Y ) is a Banach space.
For brevity, let Lp

H = Lp(J , H), Lp
R+ = Lp(J , R+) and Lp

U = Lp(J , U) for 1 ≤ p < ∞.
We collect some definitions on fractional calculus of Riemann–Liouville type, Caputo

type and Hilfer type; For more details, see [10, 12, 20–22].

Definition 2.1 For a given integral function f : [a,∞) → E, the integral

Iα
a+ f (t) =

1
Γ (α)

∫ t

a
(t – s)α–1f (s) ds, t > a,α > 0,

is called the right-side Riemann–Liouville fractional integral of order α, where Γ is the
gamma function.
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Definition 2.2 The right-side Riemann–Liouville fractional derivative of order α ∈
(n – 1, n), n ∈ Z+ for a function f : [a,∞) → E is defined by

RLDα
a+ f (t) =

1
Γ (n – α)

(
d
dt

)(n) ∫ t

a
(t – s)n–α–1f (s) dt, t > a.

Definition 2.3 The right-side Hilfer fractional derivative of order ν , μ (0 ≤ ν ≤ 1,
0 < μ < 1) for a function f : [a,∞) → E is defined by

Dν,μ
a+ f (t) = Iν(1–μ)

a+

(
d
dt

I(1–ν)(1–μ)
a+ f (t)

)
, t > a.

Definition 2.4 The right-side Caputo’s fractional derivative of order α ∈ (n – 1, n), n ∈ Z+

for a function f : [a,∞) → E is defined by

CDα
a+ f (t) =

1
Γ (n – α)

∫ t

a
(t – s)n–α–1f (n)(s) dt, t > a.

Remark 2.5
(i) When ν = 0, 0 < μ < 1, and a = 0, the right-side Hilfer fractional derivative

corresponds to the classical right-side Riemann–Liouville fractional derivative:

D0,μ
0+ f (t) =

d
dt

I(1–μ)
a+ f (t) = RLDμ

0+ f (t).

(ii) When ν = 1, 0 < μ < 1, and a = 0, the right-side Hilfer fractional derivative
corresponds to the classical right-side Caputo’s fractional derivative:

D1,μ
0+ f (t) = I(1–μ)

0+
d
dt

f (t) = CDμ

0+ f (t).

Next we recall the definition of finite approximate controllability; see [15, 16]:

Definition 2.6 The system (1.1) is finite approximate controllable on J ′, if xb ∈ H and
ε > 0, there exists a control uε ∈ L2

U , such that the solution xε of system (1.1) satisfies the
conditions:

∥∥xε(b) – xb
∥∥ < ε (2.1)

and

ΠE xε(b) = ΠE xb, (2.2)

where E is a finite-dimensional subspace of H and ΠE is the orthogonal projection from
H to E .

The following definition is based on [12, Definition 2.3] and [13, Definition 5].
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Definition 2.7 For each u ∈ L2
U , a function x ∈ Y is a mild solution of (1.1) if

I(1–ν)(1–μ)
0+ x(0) = x0 and

x(t) = Lν,μ(t)x0 +
∫ t

0
Tμ(t – s)

[
f
(
s, x(s)

)
+ Bu(s)

]
ds, t ∈ J ′, (2.3)

where

Pμ(t) :=
∫ ∞

0
μθMμ(θ )T

(
tμθ
)

dθ , Tμ(t) := tμ–1Pμ(t), Lν,μ(t) := Iν(1–μ)
0+ Tμ(t),

and Mμ(θ ) is the M-Wright function defined by

Mμ(θ ) =
∞∑

n=1

(–θ )n–1

(n – 1)!Γ (1 – μn)
, 0 < μ < 1, θ ∈ C,

and it satisfies Mμ(θ ) > 0,
∫∞

0 Mμ(θ ) dθ = 1 and
∫∞

0 θδMμ(θ ) dθ = Γ (1+δ)
Γ (1+μδ) , δ ∈ (–1,∞).

We assume T(t) (t ≥ 0) is uniformly bounded, so there exists M > 1 with
supt∈[0,∞) ‖T(t)‖ ≤ M.

Lemma 2.8 The operators Tμ(·) and Lν,μ(·) have the following properties:
(i) ([12, Proposition 2.16]) For any fixed t > 0, Tμ(t) and Lν,μ(t) are linear and bounded

operators, i.e., for any x ∈ H ,

∥∥Tμ(t)x
∥∥

H ≤ Mtμ–1

Γ (μ)
‖x‖H and

∥∥Lν,μ(t)x
∥∥

H ≤ Mtγ –1

Γ (γ )
‖x‖H , γ = ν + μ – νμ.

(ii) {Tμ(t), t > 0} and {Lν,μ(t), t > 0} are compact if T(t) is compact, t > 0.

Remark 2.9 From Lemma 2.8(ii), we see that Tμ(·) and Lν,μ(·) are continuous in the uni-
form operator topology for t > 0, i.e.,

∥∥Tμ(t2) – Tμ(t1)
∥∥

Lb(H,H) → 0,
∥∥Lν,μ(t2) – Lν,μ(t1)

∥∥
Lb(H,H) → 0

as t2 → t1.

3 Existence of mild solutions
Consider the following assumptions:

H(f ): f : J ′ × H → H is a function such that:
(i) the function t 
→ f (t, x) is measurable for all x ∈ H ;

(ii) the function x 
→ f (t, x) is continuous for t ∈ J ′;
(iii) for each r > 0, there exists a positive integrable function

Φr(t) : J ′ → (0, +∞) such that

sup
‖x‖Y ≤r

∥∥f
(
t, x(t)

)∥∥≤ Φr(t) for a.e. t ∈ J ′ (here x ∈ Y )
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and

lim
r→+∞ inf

‖Φr‖L2
R+

r
= ρ < +∞;

(iv) the inequality

Mb 1
2 +μ–γ

√
2μ – 1Γ (μ)

ρ < 1

holds.
H(B): the linear fractional control system

{
Dν,μ

0+ x(t) = Ax(t) + Bu(t),
I(1–ν)(1–μ)

0+ x(0) = x0,

is approximately controllable on J ′.
Next, take into account two relevant operators:

Γ b
0 =

∫ b

0
Tμ(b – s)BB∗T ∗

μ (b – s) ds,

and

Rb
ε =
(
εI + Γ b

0
)–1, ε > 0,

where I denotes the identity operator, B∗ denotes the adjoint of B and T ∗
μ (·) is the adjoint

of Tμ(·).
Let ε > 0, y ∈ Y and xb ∈ H . We consider the functional Jε(·; y) : H → R defined by

Jε(Ψ ; y) = ε
∥∥(I – ΠE )Rb

εΨ
∥∥

H +
1
2

∫ b

0

∥∥B∗T ∗
μ (b – t)Rb

εΨ
∥∥2

H dt –
〈
H (y), Rb

εΨ
〉
, (3.1)

where

H (y) = xb – Lν,μ(b)x0 –
∫ b

0
Tμ(b – s)f

(
s, y(s)

)
ds.

We claim (and we will prove it after Lemma 3.3) that, for any y ∈ Y , the functional Jε(·; y)
admits a unique minimum Ψ̂ε which defines a map Fε : Y → H given by Fε : y → Ψ̂ε . Now
let (here x ∈ Y )

uε(s, x) = B∗T ∗
μ (b – s)Rb

εFε(x)

and

(�εx)(t) = Lν,μ(t)x0 +
∫ t

0
Tμ(t – s)

[
f
(
s, x(s)

)
+ Buε(s, x)

]
ds.

For r > 0, let B(1–γ )
r (J ′) = {x ∈ Y : ‖x‖Y ≤ r} and Br(J) = {x ∈ C(J , H) : ‖x‖C ≤ r}.
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Lemma 3.1 The set H = {H (y) : y ∈ B(1–γ )
r (J ′)} is relatively compact in Y

Proof The proof is similar to that in step 4 in the proof of Theorem 3.6. �

Lemma 3.2 H : B(1–γ )
r (J ′) → H is a continuous function.

Proof The proof is similar to step 2 in the proof of Theorem 3.6. �

Lemma 3.3 Let ε > 0 and r > 0. Then with ε1 = Rb
εε, we have

lim
‖Ψ ‖H→+∞

inf
y∈B(1–γ )

r (J ′)

Jε(Ψ ; y)
‖Ψ ‖H

≥ ε1.

Proof We follow the argument in [16, 18]. Suppose it is false. Then there exist sequences
{Ψn} ⊂ H , {yn} ⊂ B(1–γ )

r (J ′) with ‖Ψn‖ → +∞ and

lim
n→+∞

Jε(Ψn; yn)
‖Ψn‖H

< ε1. (3.2)

Normalize with Ψ̂n = Ψn
‖Ψn‖ (note ‖Ψ̂n‖ = 1). The set {H (y) : y ∈ B(1–γ )

r (J ′)} is relatively com-
pact in H (see the argument later in Theorem 3.6), so without loss of generality assume
H (yn)

strongly−−−−→ h in H for some h ∈ H . Choose a subsequence which we will still denote by
Ψ̂n with Ψ̂n

weakly−−−→ Ψ̂ for Ψ̂ ∈ H . From the compactness of Tμ(t) one has

B∗T ∗
μ (b – t)Rb

ε Ψ̂n
strongly−−−−→ B∗T ∗

μ (b – t)Rb
ε Ψ̂ .

From (3.1) we get

Jε(Ψn; yn)
‖Ψn‖2

H
=

ε

‖Ψn‖H

∥∥(I – ΠE )Rb
ε Ψ̂n
∥∥

H +
1
2

∫ b

0

∥∥B∗T ∗
μ (b – t)Rb

ε Ψ̂n
∥∥2

H dt

–
1

‖Ψn‖H

〈
H (yn), Rb

ε Ψ̂n
〉
,

and from Fatou’s lemma, as ‖Ψn‖ → +∞, we have

∫ b

0

∥∥B∗T ∗
μ (b – t)Rb

ε Ψ̂
∥∥2

H dt ≤ lim
n→+∞

inf
∫ b

0

∥∥B∗T ∗
μ (b – t)Rb

ε Ψ̂n
∥∥2

H dt = 0,

which implies Ψ̂n
weakly−−−→ 0 in H . Since E is finite dimensional and we obtain ΠE Rb

ε Ψ̂n
strongly−−−−→

0 in H and so

∥∥(I – ΠE )Rb
ε Ψ̂n
∥∥

H =
√∥∥Rb

ε Ψ̂n
∥∥2

H +
∥∥ΠE Rb

ε Ψ̂n
∥∥2

H → ∥∥Rb
ε Ψ̂
∥∥

H ,

Jε(Ψn; yn)
‖Ψn‖H

= ε
∥∥(I – ΠE )Rb

ε Ψ̂n
∥∥

H +
‖Ψn‖H

2

∫ b

0

∥∥B∗T ∗
μ (b – t)Rb

ε Ψ̂n
∥∥2

H dt

–
〈
H (yn), Rb

ε Ψ̂n
〉
,
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and as a result

lim
n→+∞

Jε(Ψn; yn)
‖Ψn‖H

≥ lim
n→+∞

(
ε
∥∥(I – ΠE )Rb

ε Ψ̂n
∥∥

H –
〈
H (yn), Rb

ε Ψ̂n
〉)

= Rb
εε = ε1,

which contradicts (3.2). �

For y ∈ B(1–γ )
r (J ′) we have

lim
‖ψ‖H →+∞

Jε(Ψ ; y)
‖Ψ ‖H

≥ ε1.

Also note for any y ∈ Y the map Ψ → Jε(Ψ ; y) is continuous and strictly convex. Now for
y ∈ B(1–γ )

r (J ′) let {Ψε,n} be a minimizing sequence of Jε(·; y) and we suppose without loss
of generality (note from the above this sequence is bounded) Ψε,n converges weakly to Ψ̂ε

in H . Now

Jε(Ψ̂ε ; y) ≤ lim
n→+∞

Jε(Ψε,n; y) = inf
Ψ ∈H

Jε(Ψ : y).

Thus Ψ̂ε is a minimum and from the convexity of Jε(·; y) the minimum is unique. Now we
define a map Fε : y → Ψ̂ε (which is the proof of the claim after (3.1)).

Lemma 3.4 For all y ∈ B(1–γ )
r (J ′), there exists Rε(r) > 0, such that ‖Fε(y)‖ ≤ Rε(r).

Proof From Lemma 3.3, we see that there exists Rε(r) > 0 such that

‖Ψ ‖H > Rε(r), inf
y∈B(1–γ )

r (J ′)

Jε(Ψ ; y)
‖Ψ ‖H

≥ ε.

If Fε is not bounded, we may as well suppose ‖Fε‖H ≥ Rε(r), such that

inf
y∈B(1–γ )

r (J ′)

Jε(Fε ; y)
‖Fε‖H

≥ ε. (3.3)

But from the definition of the map Fε , we know

Jε

(
Fε(y); y

)≤ Jε

(
0+; y

)
= 0,

which contradicts (3.3), thus, for all y ∈ B(1–γ )
r (J ′), we have ‖Fε(y)‖ ≤ Rε(r). �

Lemma 3.5 Suppose for any y, yn ∈ B(1–γ )
r (J ′), yn → y in Y . Then

Fε(yn)
strongly−−−−→ Fε(y).

Proof Assume that yn ∈ B(1–γ )
r (J ′) be a subsequence and yn → y as n → +∞. By the bound-

edness of Fε(yn) denoted by Ψ̂ε,n, one can suppose Ψ̂ε,n converges weakly to Ψ̂ε , then

Jε

(
Ψ̃ε(y); y

)≤ Jε(Ψ̂ε ; yn) ≤ lim
n→+∞

Jε

(
Ψ̂ε,n(y); yn

)≤ lim
n→+∞Jε

(
Ψ̂ε,n(y); yn

)
≤ lim

x→+∞Jε

(
Ψ̃ε(y); yn

)
= Jε

(
Ψ̃ε(y); y

)
.
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From the above section, we know that Ψ̃ε(y) is the unique minimum point, thus Ψ̃ε(y) =
Ψ̂ε(y). Combining the compactness of B∗T ∗

μ (b – t)Rb
ε , the continuity of function H(y) and

Ψ̂ε,n
w−→ Ψ̂ε , we have

lim
n→+∞Jε(Ψ̂ε,n; yn) = Jε(Ψ̂ε ; y) = Jε(Ψ̃ε ; y),

lim
n→+∞

∫ b

0

∥∥B∗T ∗
μ (b – t)Rb

ε Ψ̂ε,n
∥∥2

H dt =
∫ b

0

∥∥B∗T ∗
μ (b – t)Rb

ε Ψ̂ε

∥∥2
H dt,

lim
n→+∞

〈
H(yn), Rb

ε Ψ̂ε,n,
〉

=
〈
H(y), Rb

ε Ψ̂ε

〉
,

thus, it follows that

lim
n→+∞ε

∥∥(I – ΠE )Rb
ε Ψ̂ε,n

∥∥
H = ε

∥∥(I – ΠE )Rb
ε Ψ̂ε

∥∥
H .

Using the compactness of ΠE , we infer that

lim
n→+∞‖Ψ̂ε,n‖H = ‖Ψ̂ε‖H ,

which implies that Fε(yn)
strongly−−−−→ Fε(y). �

For any x ∈ Y ⊂ L2(J ′, H), we consider the map � : Y → Y

�(x) =
{

g ∈ Y :

g(t) = Lν,μ(t)x0 +
∫ t

0
Tμ(t – s)f

(
s, x(s)

)
ds +

∫ t

0
Tμ(t – s)Bu(s) ds, t ∈ J ′

}
.

Clearly, limt→0+ t1–γ g(t) = x0
Γ (γ ) .

We will work with the operator P := ·1–γ
�·γ –1 from Br(J) to Br(J) (i.e. for y ∈ Br(J), Py(t) =

t1–γ
�(tγ –1y(t))). If we prove that P has a fixed point y∗, then � has a fixed point x∗ = ·γ –1y∗.

In our next result let r > 0 be such that

M
Γ (γ )

‖x0‖H +
Mb 1

2 +μ–γ

√
2μ – 1Γ (μ)

(‖Φr‖L2
R+

+ ‖B‖Lb(U ,H)‖u‖L2
U

)≤ r.

Theorem 3.6 Assume that condition H(f ) holds. Then (1.1) has a mild solution in
B(1–γ )

r (J ′).

Proof We prove � has a fixed point in B(1–γ )
r (J ′) (i.e. P has a fixed point in Br(J)). We divide

the proof into four steps.
Step 1: P : Br(J) → Br(J).
Let z ∈ Br(J) (and x = ·γ –1z so x ∈ B(1–γ )

r (J ′)). Now

Pz(t) = t1–γ Lν,μ(t)x0 + t1–γ

∫ t

0
Tμ(t – s)

[
f
(
s, sγ –1z(s)

)
+ Bu(s)

]
ds, t ∈ J ,

so

Pz(t) = t1–γ Lν,μ(t)x0 + t1–γ

∫ t

0
Tμ(t – s)

[
f
(
s, x(s)

)
+ Bu(s)

]
ds, t ∈ J . (3.4)
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From H(f )(iii), Lemma 2.8(i) and Hölder’s inequality we have for t ∈ J

∥∥Pz(t)
∥∥ ≤ M

Γ (γ )
‖x0‖H +

Mt1–γ

Γ (μ)

∫ t

0
(t – s)μ–1[Φr(s) + ‖B‖Lb(U ,H)

∥∥u(s)
∥∥

U

]
ds

≤ M
Γ (γ )

‖x0‖H +
Mb 1

2 +μ–γ

√
2μ – 1Γ (μ)

(‖Φr‖L2
R+

+ ‖B‖Lb(U ,H)‖u‖L2
U

)≤ r.

Thus P : Br(J) → Br(J).
Step 2: P : Br(J) → Br(J) is continuous.
Let {zn} be the sequence in Br(J) with zn → z in Br(J) as n → +∞ (note {xn := ·γ –1zn} is

a sequence in B(1–γ )
r (J ′) and xn → x as n → +∞; here x = ·γ –1z). Now

∥∥Pzn(t) – Pz(t)
∥∥ ≤ t1–γ

∫ t

0
Tμ(t – s)

∥∥f
(
s, xn(s)

)
– f
(
s, x(s)

)∥∥ds,

and a standard argument using the Lebesgue dominated convergence theorem guarantees
that P : Br(J) → Br(J) is continuous.

Step 3: {P(z) : z ∈ Br(J)} is equicontinuous.
Let z ∈ Br(J) (so x = ·γ –1z), 0 ≤ τ1 < τ2 ≤ b and δ := τ2 – τ1 > 0. Then

∥∥Pz(τ1) – Pz(τ2)
∥∥≤ Q1 + Q2 + Q3 + Q4,

where

Q1 =
∥∥τ 1–γ

1 Lν,μ(τ1)x0 – τ
1–γ
2 Lν,μ(τ2)x0

∥∥
H ,

Q2 = (τ2 – τ1)1–γ

∫ τ1

0

∥∥Tμ(τ1 – s)
∥∥(∥∥f

(
s, x(s)

)∥∥
H + ‖B‖Lb(U ,H)

∥∥u(s)
∥∥

U

)
ds,

Q3 = τ
1–γ
2 sup

s∈[0,τ1]

∥∥Tμ(τ1 – s) – Tμ(τ2 – s)
∥∥

Lb(H,H)

×
∫ τ1

0

(∥∥f
(
s, x(s)

)∥∥
H + ‖B‖Lb(U ,H)

∥∥u(s)
∥∥

U

)
ds,

Q4 = τ
1–γ
2

∫ τ2

τ1

∥∥Tμ(τ2 – s)
∥∥(∥∥f

(
s, x(s)

)∥∥
H + ‖B‖Lb(U ,H)

∥∥u(s)
∥∥

U

)
ds.

Clearly,

Q1 ≤ ∥∥τ 1–γ
1 Lν,μ(τ1)x0 – τ

1–γ
2 Lν,μ(τ1)x0

∥∥
H +

∥∥τ 1–γ
2 Lν,μ(τ1)x0 – τ

1–γ
2 Lν,μ(τ2)x0

∥∥
H

≤ (τ2 – τ1)1–γ Mbγ –1

Γ (γ )
‖x0‖H + τ

1–γ
2
∥∥Lν,μ(τ1)x0 – Lν,μ(τ2)x0

∥∥
Lb(H,H)

:= Q11 + Q12,

Q11 tends to zero as δ → 0 and Q12 tends to zero as δ → 0 from Lemma 2.8(ii) and Re-
mark 2.9. Thus, Q1 tends to zero as δ → 0.
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Next,

Q2 ≤ (τ2 – τ1)1–γ

∫ τ1

0

∥∥Tμ(τ1 – s)
∥∥Φr(s) + ‖B‖Lb(U ,H)

∥∥u(s)
∥∥

U ) ds

≤ δ1–γ

∫ τ1

0

M(τ1 – s)μ–1

Γ (μ)
(
Φr(s) + ‖B‖Lb(U ,H)

∥∥u(s)
∥∥

U

)
ds

≤ δ1–γ

(
Mτ

μ– 1
2

1√
2μ – 1Γ (μ)

(‖Φr‖L2
R+

+ ‖B‖Lb(U ,H)‖u‖L2
U

))
,

which tends to zero as δ → 0.
In addition,

Q3 ≤ τ
1–γ
2 sup

s∈[0,τ1]

∥∥Tμ(τ1 – s) – Tμ(τ2 – s)
∥∥

Lb(H,H)

∫ τ1

0

(
Φr(s) + ‖B‖Lb(U ,H)

∥∥u(s)
∥∥

U

)
ds

≤ τ
1–γ
2 sup

s∈[0,τ1]

∥∥Tμ(τ1 – s) – Tμ(τ2 – s)
∥∥

Lb(H,H)

×
(

1√
τ1

‖Φr‖L2
R+

+
1√
τ1

‖B‖Lb(U ,H)‖u‖L2
U

)
,

which tends to zero as δ → 0 via Lemma 2.8(ii) and Remark 2.9 (so sups∈[0,τ1] ‖Tμ(τ1 – s) –
Tμ(τ2 – s)‖Lb(H,H) → 0 as δ → 0).

Finally,

Q4 ≤ τ
1–γ
2

∫ τ2

τ1

M(τ2 – s)μ–1

Γ (μ)
(
Φr(s) + ‖B‖Lb(U ,H)

∥∥u(s)
∥∥

U

)
ds

≤ τ
1–γ
2

(
Mδμ– 1

2√
2μ – 1Γ (μ)

(‖Φr‖L2
R+

+ ‖B‖Lb(U ,H)‖u‖L2
U

))
,

which tends to zero as δ → 0.
Thus {P(z) : z ∈ Br(J)} is an equicontinuous family of functions.
Step 4: ∀t ∈ J , the set Π (t) = {Pz(t) : z ∈ Br(J)} is relatively compact in H .
For each ε ∈ (0, t), t ∈ J , z ∈ Br (and x = ·γ –1z) and any δ > 0, we let

Pz(t) = J1(t) + J2(t), Pzε,δ(t) = J̃1(t) + J̃2(t),

where

J1(t) := t1–γ x0

Γ (ν(1 – μ))

∫ t

0

∫ ∞

0
(t – s)ν(1–μ)–1sμ–1μθMμ(θ )T

(
sμθ
)

dθ ds,

J2(t) := t1–γ

∫ t

0

∫ ∞

0
(t – s)μ–1μθMμ(θ )T

(
(t – s)μθ

)[
f
(
s, x(s)

)
+ Bu(s)

]
dθ ds,

J̃1(t) := t1–γ x0

Γ (ν(1 – μ))

∫ t–ε

0

∫ ∞

δ

(t – s)ν(1–μ)–1sμ–1μθMμ(θ )T
(
sμθ
)

dθ ds,

J̃2(t) := t1–γ

∫ t–ε

0

∫ ∞

δ

(t – s)μ–1μθMμ(θ )T
(
(t – s)μθ

)[
f
(
s, x(s)

)
+ Bu(s)

]
dθ ds.
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From Lemma 2.8(ii) we see that the set

Πε,δ(t) =
{

Pzε,δ(t) : z ∈ Br(J)
}

is relatively compact in H for each ε ∈ (0, t) and δ > 0.
Moreover, we have

∥∥J1(t) – J̃1(t)
∥∥

H

= t1–γ x0

Γ (ν(1 – μ))

∥∥∥∥
∫ t

0

∫ ∞

0
(t – s)ν(1–μ)–1sμ–1μθMμ(θ )T

(
sμθ
)

dθ ds

–
∫ t

0

∫ ∞

δ

(t – s)ν(1–μ)–1sμ–1μθMμ(θ )T
(
sμθ
)

dθ ds

+
∫ t

t–ε

∫ ∞

δ

(t – s)ν(1–μ)–1sμ–1μθMμ(θ )T
(
sμθ
)

dθ ds
∥∥∥∥

H

≤ sup
t∈[0,b]

t1–γ x0Mμ

Γ (ν(1 – μ))

{∥∥∥∥
∫ t

0
(t – s)ν(1–μ)–1sμ–1 ds

∫ δ

0
θMμ(θ ) dθ

∥∥∥∥
H

+
∥∥∥∥
∫ t

t–ε

(t – s)ν(1–μ)–1sμ–1 ds
(

1
Γ (1 + μ)

–
∫ δ

0
θMμ(θ ) dθ

)∥∥∥∥
H

}

≤ x0MΓ (μ + 1)
Γ (ν(1 – μ) + μ)

∫ δ

0
θMμ(θ ) dθ

+
x0Mμb1–γ

Γ (ν(1 – μ) + μ)

[
εν(1–μ)– 1

2√
2ν(1 – μ) – 1

–
εμ– 1

2√
2μ – 1

][
1

Γ (1 + μ)
–
∫ δ

0
θMμ(θ ) dθ

]

(3.5)

and

∥∥J2(t) – J̃2(t)
∥∥

H

= t1–γ

∥∥∥∥
∫ t

0

∫ ∞

0
(t – s)μ–1μθMμ(θ )T

(
(t – s)μθ

)[
f
(
s, x(s)

)
+ Bu(s)

]
dθ ds

–
∫ t

0

∫ ∞

δ

(t – s)μ–1μθMμ(θ )T
(
(t – s)μθ

)[
f
(
s, x(s)

)
+ Bu(s)

]
dθ ds

+
∫ t

t–ε

∫ ∞

δ

(t – s)μ–1μθMμ(θ )T
(
(t – s)μθ

)[
f
(
s, x(s)

)
+ Bu(s)

]
dθ ds

∥∥∥∥
H

≤ sup
t∈[0,b]

t1–γ M
{∥∥∥∥
∫ t

0
(t – s)μ–1μ

[
f
(
s, x(s)

)
+ Bu(s)

]
ds
∫ δ

0
θMμ(θ ) dθ

∥∥∥∥
H

+
∥∥∥∥
∫ t

t–ε

(t – s)μ–1μ
[
f
(
s, x(s)

)
+ Bu(s)

]
ds
(

1
Γ (1 + μ)

–
∫ δ

0
θMμ(θ ) dθ

)∥∥∥∥
H

}

≤ μMb2–2γ

√
2μ – 1

(‖Φr‖L2
R+

+ ‖B‖‖u‖L2
U

)[
bμ– 1

2

∫ δ

0
θMμ(θ ) dθ +

εμ– 1
2

Γ (1 + μ)

]
. (3.6)

Since 0 ≤ ∫ δ

0 θMμ(θ ) dθ ≤ ∫∞
0 θMμ(θ ) dθ = 1

Γ (1+μ) , (3.5) and (3.6) tend to zero when ε → 0
and δ → 0. Therefore the set {Π (t), t > 0} is relatively compact in H .
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Schauder’s fixed point theorem guarantees that P has a fixed point z∗ ∈ Br(J). Let x∗ =
·γ –1z∗ ∈ B(1–γ )

r (J ′) and then �(x) has a fixed point x∗ ∈ B(1–γ )
r (J ′) (i.e. a mild solution of

system (1.1)). The proof of Theorem 3.6 is complete. �

Theorem 3.7 Assume that condition H(f ) holds. Then there exists a fixed point of �ε in Y .

Proof The proof is similar to Theorem 3.6, so we omit it here. �

In fact, for any ε > 0, there exist xε ∈ Y and a map Ψ (x) : Y → H which related to a
unique minimum Ψ ε of the functional Jε such that

xε(t) = Lν,μ(t)x0 +
∫ t

0
Tμ(t – s)

[
f
(
s, xε(s)

)
+ Buε(s, x)

]
ds,

where

uε(s, x) = B∗T ∗
μ (b – s)Rb

εΨ ε(x).

4 Finite approximate controllability for the semilinear case
In this section, we study the finite approximate controllability of system (1.1).

Theorem 4.1 Assume that assumptions H(f ) and H(B) hold. Then system (1.1) is finite
approximately controllable on J ′.

Proof From (3.1) we know that the functional Jε(Ψ ; xε) is strictly convex, so we assume
Ψ̃ε be the unique critical point which minimizes Jε(Ψ ; xε), that is,

Jε(Ψ̃ε ; xε) = min
Ψ ∈H

Jε(Ψ ; xε).

Because Jε(Ψ ; xε) is Gateaux differentiable at Ψ̃ε , then, for any Ψ0 ∈ H and θ > 0, we get

Jε(Ψ̃ε + θΨ0; xε) – Jε(Ψ̃ε ; xε)

= ε
∥∥(I – ΠE )Rb

ε (Ψ̃ε + θΨ0)
∥∥

H +
1
2

∫ b

0

∥∥B∗T ∗
μ (b – t)Rb

ε (Ψ̃ε + θΨ0)
∥∥2

H dt

–
〈
H (xε), Rb

ε (Ψ̃ε + θΨ0)
〉

– ε
∥∥(I – ΠE )Rb

ε Ψ̃ε

∥∥
H –

1
2

∫ b

0

∥∥B∗T ∗
μ (b – t)Rb

ε Ψ̃ε

∥∥2
H dt +

〈
H (xε), Rb

ε Ψ̃ε

〉

= εθ
∥∥(I – ΠE )Rb

εΨ0
∥∥

H + θ

∫ b

0

〈
B∗T ∗

μ (b – t)Rb
ε Ψ̃ε , B∗T ∗

μ (b – t)Rb
εΨ0
〉
dt

+
θ2

2

∫ b

0

∥∥B∗T ∗
μ (b – t)Rb

εΨ0
∥∥2

H dt – θ
〈
H (xε),Ψ0

〉
,
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such that

0 = lim
θ→0+

Jε(Ψ̃ε + θΨ0; xε) – Jε(Ψ̃ε ; xε)
θ

= lim
θ→0+

(
ε
∥∥(I – ΠE )Rb

εΨ0
∥∥

H +
∫ b

0

〈
B∗T ∗

μ (b – t)Rb
ε Ψ̃ε , B∗T ∗

μ (b – t)Rb
εΨ0
〉
dt

+
θ

2

∫ b

0

∥∥B∗T ∗
μ (b – t)Rb

εΨ0
∥∥2

H dt –
〈
H (xε), Rb

εΨ0
〉)

= ε
∥∥(I – ΠE )Rb

εΨ0
∥∥

H +
∫ b

0

〈
B∗T ∗

μ (b – t)Rb
ε Ψ̃ε , B∗T ∗

μ (b – t)Rb
εΨ0
〉
dt

–
〈
H (xε), Rb

εΨ0
〉
dt,

as is well known

∫ b

0

〈
B∗T ∗

μ (b – t)Rb
ε Ψ̃ε , B∗T ∗

μ (b – t)Rb
εΨ0
〉
dt

=
∫ b

0

〈
Tμ(b – t)BB∗T ∗

μ (b – t)Rb
ε Ψ̃ε , Rb

εΨ0
〉
dt

=
∫ b

0

〈
Tμ(b – t)Buε(s, x), Rb

εΨ0
〉
dt,

thus

〈
H (xε), Rb

εΨ0
〉

= ε
∥∥(I – ΠE )Rb

εΨ0
∥∥

H +
∫ b

0

〈
Tμ(b – t)BB∗T ∗

μ (b – t)Rb
ε Ψ̃ε , Rb

εΨ0
〉
dt

= ε
∥∥(I – ΠE )Rb

εΨ0
∥∥

H +
∫ b

0

〈
Tμ(b – t)Buε(s, x), Rb

εΨ0
〉
dt.

From the definition of H (xε), xε(b), one can get

H (xε) = xb – xε(b) +
∫ t

0
Tμ(t – s)Buε(s, x) ds,

then

∣∣〈xb – xε(b),Ψ0
〉∣∣ = ε

∥∥(I – ΠE )Ψ0
∥∥

H ≤ ε‖Ψ0‖H ,

which is equivalent to

∥∥xb – xε(b)
∥∥

H ≤ ε.

On the other hand, if θ < 0, we can get the same argument.
Thus given Ψ0 ∈ H , we conclude that system (1.1) is approximately controllable on J ′,

and if Ψ0 ∈ E , system (1.1) is finite approximately controllable on J ′, that is, ΠE xε(b) =
ΠE xb. �
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5 An example
As an application of our result, consider the Hilfer fractional partial equation:

⎧⎪⎨
⎪⎩

Dν,μ
0+ x(t, y) = xyy(t, y) + Bu(t, y) +

∫ t
0 e–s |x(s,y)|

1+|x(s,y)| ds, 0 < t ≤ 1, 0 ≤ y ≤ π ,
x(t, 0) = x(t,π ) = 0, 0 < t ≤ 1,
I(1–ν)(1–μ)

0+ x(0, y) = x0(y), 0 ≤ y ≤ π ,
(5.1)

where ν = 1/2, μ = 3/4, and x(t, y) represents the temperature function at the point y ∈
[0,π ] and time t ∈ (0, 1]. Now, set H = L2[0,π ] and en(y) =

√
2/π sin(ny), n = 1, 2, . . . . Then

{en(y)} is an orthonormal basis on H . Define A : D(A) ⊂ H → H by Ax = xyy with domain

{
x ∈ H : x, x′ are absolutely continuous, x′′ ∈ H , x(0) = x(π ) = 0

}
.

Then

Ax =
∞∑

n=1

(
–n2)〈x, en〉en, x ∈ D(A),

one can see that A generates a compact semigroup T(t) (t > 0) on H and

T(t)x =
∞∑

n=1

e–n2t〈x, en〉en, x ∈ H .

Hence T(t) is compact and ‖T(t)‖ ≤ 1.
The infinite-dimensional Hilbert space U is

U :=

{
u : u =

∞∑
n=2

unen,
∞∑

n=2

u2
n < ∞

}
,

with the norm ‖u‖U = (
∑∞

n=2 u2
n)1/2. We define a mapping B ∈L(U , H) by

Bu = 4u2e1 + 3u2e2 +
∞∑

n=3

unen for u =
∞∑

n=2

unen ∈ U ,

and for v =
∑∞

n=1 vnen ∈ H , the inner product 〈Bu, v〉 = 〈u, B∗v〉, and thus

B∗v = (4v1 + 3v2)e2 +
∞∑

n=3

vnen

and

B∗T∗(t)x =
(
4x1e–t + 3x2e–4t)e2 +

∞∑
n=3

e–n2txnen.

Assume ‖B∗T∗(t)x‖ = 0 for some t ∈ J ′, and it follows that

∥∥4x1e–t + 3x2e–4t∥∥2 +
∞∑

n=3

∥∥e–n2txn
∥∥2 = 0,
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which implies that x = 0, and thus the linear part of system (5.1) is approximately control-
lable on J ′ (see Theorem 4.1.7 of [23]). Now

f
(
t, x(t, y)

)
=
∫ t

0
e–s |x(s, y)|

1 + |x(s, y)| ds ≤
∫ t

0
e–s ds = 1 – e–t ,

so the conditions of H(f ) hold. Thus system (5.1) is finite approximately controllable on J ′.
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