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1 Introduction

In this paper, we investigate the Hilfer fractional evolution system:

Dyl'x(t) = Ax(¢) + f(t, x(t)) + Bu(t), t€] =(0,b], (L1)
I x(0) = 0, '

where Dg’f‘ represents the Hilfer fractional derivative, 0 <v <1, % < u < 1,x(-) is assumed

Iéi_‘))(l_”) is the Riemann-Liouville fractional integral of order

to be in a Hilbert space H,
(I1-v)(1-pu), A:D(A) € H— H is the infinitesimal generator of a compact, uniformly
bounded and Cy-semigroup {T'(¢), ¢ > 0} on a separable Hilbert space H. Now f : ]’ x H —
H is a given function that will be specified later. The control function « is taken in L2(J’, U)
and the admissible controls set U is a Hilbert space, B is a bounded linear operator from
U into H, and finally, x, is an element of H.

Fractional calculus and fractional dynamic equations [1, 2] arise naturally in phenom-
ena in engineering, physics, science and controllability. For recent work on the existence
of mild solutions, controllability and optimal control for some fractional evolution sys-
tems we refer the reader to [3, 4], and for approximate controllability of some linear and
nonlinear systems see [5-7] and the references therein. Hilfer [8] consider a generalized
Riemann-Liouville fractional derivative called the Hilfer fractional derivative and in [9]
the approximate controllability of Hilfer fractional differential inclusions with nonlocal
conditions was investigated. Existence, nonexistence, uniqueness involving Hilfer frac-

tional derivatives was discussed in [10-12] and in [13] the approximate controllability
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of fractional evolution equations involving Hilfer fractional derivatives was considered
and in [14], we study the approximate controllability of Hilfer fractional evolution hemi-
variational inequalities by two resolvent operators and fixed point theorem. Compared
with approximate controllability, finite approximate controllability is a stronger concept,
and it is the consequence of approximate controllability in some linear heat equations.
There are a number of papers on finite approximate controllability of differential systems.
In [15], semilinear variational inequalities with distributed controls were studied, in [16]
the author presented a finite-dimensional version of null controllability for the semilin-
ear heat equation in bounded domains with Dirichlet boundary conditions, the author in
[17] investigated finite approximate controllability for a nonlocal parabolic problem, and
in [18, 19] the author considered approximate controllability and finite approximate con-
trollability of some semilinear abstract equation, and finite approximate controllability for
Sobolev-type nonlocal fractional semilinear evolution equations in Hilbert spaces.

There are only a few papers on finite approximate controllability of fractional evolu-
tion systems and motivated from the above (in particular [18, 19]), we will study the fi-
nite approximate controllability of some Hilfer fractional evolution systems. In Sect. 2, we
present some preliminaries on fractional calculus and the definition of finite approximate
controllability. In Sect. 3, sufficient conditions are given for the existence of mild solutions
of system (1.1). In Sect. 4, by using the treatment in [14] and the variational method, the fi-
nite approximate controllability of system (1.1) is discussed. In Sect. 5, an example is given

to illustrate the theory.

2 Preliminaries

LetJ = [0,b] and E be a Banach space with norm || - ||z (we usually write it as || - ||). Now E*
denotes its dual and (-, ) denotes the duality pairing between E* and E. We use L,(E,E)
to denote the space of bounded linear operators with the norm | - ||, (). Let C(J,E) be
the Banach space of all continuous functions from J into E. Set y =v + u —vu, 0< y < 1,
and then 1 —y = (1 - v)(1 — ). Define

Y:=C, (]’,H) = {x € C(]’,H) :tl_i)r(r)l+ £ x(¢) exist and ﬁnite}

endowed with the norm ||x[|y = sup,.; [1£27 x(¢) || . Clearly, (Y, || - ||y) is a Banach space.
For brevity, let LY, = L7 (], H), L§+ =IP(J,R*) and L, = LP(J, U) for 1 < p < cc.
We collect some definitions on fractional calculus of Riemann—Liouville type, Caputo
type and Hilfer type; For more details, see [10, 12, 20-22].

Definition 2.1 For a given integral function f : [a, 00) — E, the integral

o ft) = ﬁ /ut(t—s)“lf(s)ds, t>a,a>0,

is called the right-side Riemann-Liouville fractional integral of order «, where I" is the

gamma function.



Liu et al. Advances in Difference Equations (2020) 2020:22 Page 3 of 16

Definition 2.2 The right-side Riemann-Liouville fractional derivative of order « €

(n—1,n), n € Z* for a function f : [a, 00) — E is defined by

RL 1o _ 1 d & ! n-o—1
Dﬂ+f(t)— m(i) /; (t—S) f(S)dt, t>a.

Definition 2.3 The right-side Hilfer fractional derivative of order v, © (0 < v < 1,
0 < < 1) for a function f : [a,00) — E is defined by

d
DS (t) = I”““( I““"f(t) t>a.

dr

Definition 2.4 The right-side Caputo’s fractional derivative of order @ € (n—1,n),n € Z*
for a function f : [a, 00) — E is defined by

o 1 ' n-a-1rg(n
Dif0)= s [ -G s, e
Remark 2.5

(i) Whenv=0,0<pu<1,and a =0, the right-side Hilfer fractional derivative

corresponds to the classical right-side Riemann—Liouville fractional derivative:

DY) = —I7F(2) = DLf ().

(i) Whenv=1,0<pu<1,and a =0, the right-side Hilfer fractional derivative

corresponds to the classical right-side Caputo’s fractional derivative:
na
Dylf (@) =1~ f(6) = “Dgf 1),
Next we recall the definition of finite approximate controllability; see [15, 16]:

Definition 2.6 The system (1.1) is finite approximate controllable on J', if x, € H and

€ > 0, there exists a control u, € L?;, such that the solution x, of system (1.1) satisfies the

conditions:

[ ®) — ] < € (2.1)
and

ITgxe(b) = Mexy, (2.2)

where € is a finite-dimensional subspace of H and IT¢ is the orthogonal projection from
Htoé&.

The following definition is based on [12, Definition 2.3] and [13, Definition 5].
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Definition 2.7 For each u € L?, a function x € Y is a mild solution of (1.1) if

Iéi_”)u_“ )%(0) = xo and

x(t) = Ly, (E)xo + /t Tt - s)[f(s,x(s)) + Bu(s)] ds, te], (2.3)

0

where
[o¢]
Pu(t) = / POM,O)T(20)d0,  Tu(t):=t" "' Pu(t), L) =L T(0),
0

and M, (6) is the M-Wright function defined by

0 (_e)n—l
M = - 1, ,
1 (0) ;(n—l)!f'(l—;m) O<u<l,feC

and it satisfies M,,(0) >0, [;° M, (0)d6 =1 and [;°6°M,,(0)d6 = [(gjfg), 8§ € (~1,00).

We assume T(t) (¢ > 0) is uniformly bounded, so there exists M > 1 with
SUP;c[0,00) 1 T(B)] < M.

Lemma 2.8 The operators T,(-) and L, ,(-) have the following properties:
(i) ([12, Proposition 2.16]) For any fixed t > 0, T,,(t) and L, ,(t) are linear and bounded
operators, i.e., for any x € H,

M1

d £ i
lxlly an Lyl < lxlly, y=v+u-vu.
r'(w e

720, < o

(ii) {T.(¢),t >0} and {L,, (), t >0} are compact if T(t) is compact, t > 0.

Remark 2.9 From Lemma 2.8(ii), we see that 7,,(-) and £, ,(-) are continuous in the uni-

form operator topology for ¢ > 0, i.e.,
||Tu(t2) - TM(tl) ||L1,(H,H) - O) ||°CU,/J.(t2) - °Cl),,u(t1) ||Lh(H,H) g 0
asty — Ig.

3 Existence of mild solutions
Consider the following assumptions:
H(f): f:]' x H— H is a function such that:
(i) the function ¢+ f(¢,x) is measurable for all x € H;
(ii) the function x — f(t,x) is continuous for ¢ € J';
(iii) for each r > 0, there exists a positive integrable function
@,(t): ] — (0, +00) such that

sup Hf(t,x(t)) ” <@, (t) forae te] (herexecY)

llxlly <r
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and

|Drl 2
lim inf RY
r—+00

= p < +00;
(iv) the inequality

Mb1+-Y

V2 - 1F(u)p )

holds.
H(B): the linear fractional control system

1

Dy!l'x(t) = Ax(t) + Bu(t),
L1570 5(0) = xo,

is approximately controllable on J'.

Next, take into account two relevant operators:
b
ry-= / T.(b - $)BB*T (b - 5)ds,
0
and
Rl = (el + Fob)fl, €>0,
where I denotes the identity operator, B* denotes the adjoint of B and 7/(:) is the adjoint

of 7, (-).
Lete >0,y € Y and x;, € H. We consider the functional J(-;y) : H — R defined by

1 b k 7=k 2
T (W5y) =€|(I - Te)RW |, + 5 /0 |B*T7 (b - OROW || dt — (3 (), REW),  (3.1)
where
b
H(y) =xp — Ly, (D)xo — / Tu(b- s)f(s,y(s)) ds.
0
We claim (and we will prove it after Lemma 3.3) that, for any y € Y, the functional J.(-;y)

admits a unique minimum ¥, which defines a map ¥, : Y — H givenby ¥, : y — ¥,. Now
let (here x € Y)

te(5,x) = BT, (b= 5)RL Fe (x)
and

(Fex)(t) = &Ly, (E)xo + /0 Tt —s)[f(s,x(s)) + Bu, (S,x)] ds.

For r >0, let B(,H’)(]/) ={xeY:|xlly <rland B,(J) ={x € C(J,H) : ||x|lc <r}.

Page 5 of 16
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Lemma 3.1 Theset H ={H(y):ye€ Bﬁl‘”(]’)} is relatively compact in Y

Proof The proof is similar to that in step 4 in the proof of Theorem 3.6. d
Lemma 3.2 # :Bﬁl‘”(]/) — H is a continuous function.

Proof The proof is similar to step 2 in the proof of Theorem 3.6. d

Lemma 3.3 Let € >0 and r > 0. Then with €, = Rb¢, we have

NAUZE)) -

lim inf > €.

Wlig—+o0yes' Mgy ¥ llH

Proof We follow the argument in [16, 18]. Suppose it is false. Then there exist sequences
(W) CH, () C B/ (") with ||| — +o0 and

e (Ys
lim VAU,

lim <€;. (3.2)
n—+00 ” lpn ”H

Normalize with &, = H;’jﬁ (note [|&,|| = 1). The set {H(y) : y € B (J")} is relatively com-

pact in H (see the argument later in Theorem 3.6), so without loss of generality assume
1

H(yn) m h in H for some & € H. Choose a subsequence which we will still denote by

~  weakly ~

@, with ¥, % @ for ¥ € H. From the compactness of 7,(t) one has

B*T}j(b—t)Rf strongly B*,‘.*(b t)Rb
From (3.1) we get
‘76( nryn) € b1, 1 b * ek b |12
12 ¥l IRl 5 [ 1870~ 0R
1 e
" i OO R

and from Fatou’s lemma, as ||, || — +00, we have
fo |57~ OB dr < tim 1nff |87 (b~ ORYD, |, de = 0,

1
which implies v, Jweakdy, 0in H. Since & is finite dimensional and we obtain /7, gRb

0in H and so

strongly
—

- TORT, |, = IR, [, + | 1eReD, |2, — [T

NACZA)
W5l

|, b =
R L I LA A
0

—(#(), RYW,),
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and as a result

lim J(Pniyn) > lim (e( - )R W, I, —(Jf(yn),Rf@n)) = Rbe = ¢,

H—>+00 ”lpn ”H - n—+00
which contradicts (3.2). O
For y € B (J) we have

J(¥sy)

1
1Y | g — +o0 ”l’p“H

Also note for any y € Y the map ¥ — J.(¥;y) is continuous and strictly convex. Now for
y€ Bﬁlf’/)(]/ ) let {¥, ,,} be a minimizing sequence of J.(-;y) and we suppose without loss
of generality (note from the above this sequence is bounded) ¥, , converges weakly to E’l/:
in H. Now

JWy) < lim T (Pey) = inf T (& :9).

n—+00

Thus %, is a minimum and from the convexity of 7¢(-;¥) the minimum is unique. Now we
define a map ¥, : y — v, (which is the proof of the claim after (3.1)).

Lemma 3.4 Forallye Bﬁlfy)(]/), there exists Re(r) > 0, such that || Fc ()| < Re(r).

Proof From Lemma 3.3, we see that there exists R (r) > 0 such that

NAUZE))

%111 > Re(r),
‘ B3y 1k

>

If #. is not bounded, we may as well suppose || F¢||z > R.(r), such that

Je(Fe9) s e (3.3)

AT
But from the definition of the map ¥, we know

Te(F0)sy) < Te(0%y) =0,
which contradicts (3.3), thus, for all y € Bil_y)(]’), we have || F.(y)|| < R(r). O

Lemma 3.5 Suppose for any y,y, € Bﬁl_y)(]’), yp—>yinY. Then

o~ strongly
J"e(yn) E— j‘e(y)-

Proof Assume thaty, € Bgl_y)(] ") be a subsequence and y, — y as n — +00. By the bound-
edness of #.(y,) denoted by lﬁ;,, one can suppose @:, converges weakly to 7., then

T (W 0)y) = T@aya) = lim T(Teuhiyn) < Tim To(Pen0)in)

n—+00
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From the above section, we know that lI//\G is the unique minimum point, thus ll//:(;) =
7 (y) Comblmng the compactness of B*7 (b - )R, the continuity of function H(y) and
l,l/E = llfé, we have

lim T (Peniyn) = Te(Weiy) = Te(Fesy),

n—+00

lim f |B*T, (b — ORCP ||, dt = / |B*7,: (b - )RW. |, dt,
n—+00 Jq 0

lim (H(y,), R0V, ) = (H(y), REW,),
thus, it follows that
lim |- MORT |, = | 0 - MR,

Using the compactness of I1g, we infer that

lim [|¥e i = 1¥elln
n—>+00

strongl
which implies that %, (y,) —— SNy, F). 0

For any x € Y C L%(J', H), we consider themap f : Y — Y
F(x) = {g eyY:

g(t):c,Cu,M(t)xo+/0 M(t—s)f( ())ds+/0 Tu(t—s)Bu(s)ds,te]’}.

Clearly, lim,_, o+ t177g(t) = F(y
We will work with the operator P := -1=7 ¥~ from B, (J) to B.(J) (i.e. for y € B,(J), Py(t) =
1Y F (£7719(¢))). If we prove that P has a fixed point y*, then f has a fixed point x* = -7 ~1y*,
In our next result let > 0 be such that

M FHu-y
|| Xollm +
r(y 2m =1 ()

Theorem 3.6 Assume that condition H(f) holds. Then (1.1) has a mild solution in
a=v) iy
B ().

(Ilﬁbrllqe+ + 1Bl llulz ) <r.

Proof We prove [ has a fixed point in Bﬁlf’/)(]/) (i.e. P has a fixed point in B,(J)). We divide
the proof into four steps.

Step 1: P: B,(J) — B.(J).

Letze B,(J) (and x = "~z so x € BY(J')). Now

Pz(t) = 77 £, (D)o + £ / Tt - s)[f(s,s”‘lz(s)) + Bu(s)] ds, te]j,
0

SO

Pz(t) = 7V £, (D)xo + £ /t Tou(t = 5)[f (s,x(s)) + Bu(s)]ds, te]. (3.4)
0

Page 8 of 16
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From H(f)(iii), Lemma 2.8(i) and Holder’s inequality we have for t € ]

1-y

M Mt ¢ _
Fos ol + s fo (= )1 [@05) + 1By usim | )], ] ds

3HH-Y

[Pz

— 5 Ixollm +

I'(y) V2 =11 ()

(12l +1Bllzyrmllul 2 ) <.

Thus P: B,(J) — B,(J).
Step 2: P: B,(J) — B,(J) is continuous.
Let {z,} be the sequence in B,(J) with z, — z in B.(J) as n — +00 (note {x,, := -¥"1z,} is

.1 _
a sequence in Bﬁ V)(]’) and x,, — x as 1 — +00; here x = -¥~1z). Now

”Pz,,(t) — Pz(t) H <l /0 Tu(t—s) Hf(s, x,,(s)) —f(s,x(s)) || ds,

and a standard argument using the Lebesgue dominated convergence theorem guarantees
that P: B,(J) — B,(J) is continuous.

Step 3: {P(z) : z € B,(J)} is equicontinuous.

LetzeB,(J) sox=-""12),0< 1<t <band § := 75 — 7; > 0. Then

|P2(t1) = Pz(12) || < Q1+ Q2 + Q3 + Qu,

where

Q= ||r11_y£v,u(t1)xo - tzl_yoc,,,#(l’z)xO‘

w
Q= (0 - fo 17 = N6y + 1Bl 469 ) s,

1- e T
Q =1, sup |Tu(r1—9) - Tulra _S)”Lb(HH)
s€(0,71] '

<[ U680 |+ 1B |19 s

Q= [ 173291650 |y + 1B [0 .

1

Clearly,

Q =< || l'llfy«fu,u(fl)xo - TzlfyoCu,M(Tl)xo ||H + ”1217)/°Cl),ﬂ(r1)x0 - Tzlfyocu,u(l’z)xo”,{

y-1

r'(y)

_ 1-
< (-t %01l £z + Ty {| Lo, (T1)%0 = oL, (T2) %0 ”Lb(H,H)

= Qu + Qo

Q11 tends to zero as § — 0 and Qg tends to zero as § — 0 from Lemma 2.8(ii) and Re-

mark 2.9. Thus, Q; tends to zero as § — 0.



Liu et al. Advances in Difference Equations (2020) 2020:22 Page 10 of 16

Next,

71
Q< (m-n) fo 17,21 = )| 6(5) + 1Blyu0m | 69)] ) ds

rlM _ ¢)r-1
551—;//0 %((by(sﬂ 1Bllzyarn [ u(s)] ;) ds

=3
<8 L(Ilfbrlly + 1Bl mliul2,) ),
- V20 =1T (1) 2 v u

which tends to zero as § — 0.
In addition,

71
Q<1 sup |Tu(t1—s) - Tu(n _S)”Lb(H,H)/ (®4(5) + By | u(9) | ;) ds
0

s€[0,71]
1-
<7, " sup [Tu(t1—9) - Tpu(r —s)HLb(H’H)
s€[0,71]

IPrllz2, + ”B”Lb(u,H)”M”L%I)r

( 1 1

w [ —— —
& T1 A/ T1
which tends to zero as § — 0 via Lemma 2.8(ii) and Remark 2.9 (so sup,(g,,,) | 7. (11— ) -

Tu(t2 = )1,y — 0 as 8 — 0).

Finally,
2 M(ty —s)*
Q=<7 ;( ) (q> (5) + 1Bl win || u(s)] ;) ds
<f217y LMii(ll@rlle + 1Bl (LIH)”M”LZ) )
- V2u=1I (1) ke n u

which tends to zero as § — 0.
Thus {P(z) : z € B,(J)} is an equicontinuous family of functions.
Step 4: Vt € ], the set I1(¢) = {Pz(t) : z € B,(J)} is relatively compact in H.
For each € € (0,¢), t €],z € B, (and x = -”"!2z) and any § > 0, we let

Pz(t) = 1(t) + )2 (1), PzA(t) = J1(t) + a(2),
where
Ji(t) ="~ V 1 ) f f L1 PO M, (0) T (s0) d6 ds,
H(t) =t / / (t- s)“_l,uGMu (G)T((t - s)"@) [f(s,x(s)) + Bu(s)] db ds,
o Jo

r'(v
Ja(t) 1= £ /H /Oo(t — ) uoM, (9)T((t - s)"@) [f(s,x(s)) + Bu(s)] do ds.
0 8

t—e€ 00
Ji(e) = tl-y(xliom) / / (¢ — )" 01551 YoM, (0) T (s"0) db dis,
- 0 )
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From Lemma 2.8(ii) we see that the set
Ms(t) = {Pz°(¢) :z € B,())}

is relatively compact in H for each € € (0,£) and § > 0.
Moreover, we have

Ih@-1o|,

1

_ X0 t 00 N _
i — // t—5)" =11 oML ()T (s*6) db ds
roa—m | fy 7 HOME)T(56)

t 00
- / / (t—5)" 1L oM, ()T (s0) dO ds
0 Js

t [e%e)
+ f / (t—s)" L LOM, (0)T (s60) d ds
t—€ J§

H

1-y XOM/,L { ! _v(d-pw)-1 -1 ’
St:;%]t 71“(1)(1—”)) /O(t s) s ds/o OM, (0)do )
t 1 §
_ eV(d-p)-1 -1 _
o| [ s ds(F(l i QM"(Q)dG) H}
xoMI (nw+1) [?
= P40 Jy O
xoMub'-r V(-3 ehh 1 8
* F(V(l—ll«)+ll«)[\/2v(l—u)—1 - J2u—1][F(1+u) _/o GM”(Q)dQ}
(3.5)
and
AGEIAGIM
=t /t/Oo(t—s)“_l,uﬂMu(Q)T((t—s)”@)[f(s,x(s)) +Bu(s)] do ds
0 Jo
- /t/oo(t—s)”1M9M,L(9)T((t—s)”@)[f(s,x(s)) + Bu(s)| do ds
0o Js
+ /t fw(t—S)M_I/LQMu(Q)T((t—S)MQ)V(S,JC(S)) +Bu(s)] do ds
t—e J§ H
t 8
< sup tl"’M{ /(t—s)"_l,u[f(s,x(s))+Bu(s)] ds/ OM,,(0)do
te[0,b] 0 0 H
¢ s
+ /t_e(t—s)"1M[_f(s,x(s))+Bu(s)]ds<ﬁ—/o QMM(Q)cw) H}
MMb2—2y ;1.—% 8 G[L—%
=< ﬁ(ﬂ@rﬂge+ + 1Bl ||M||LZZ[) |:b /(; OM,.(0)do + m] (3.6)

Since 0 < f06 oM, (0)do < fooo OM, (0)do = ﬁ, (3.5) and (3.6) tend to zero when € — 0

and § — 0. Therefore the set {I1(¢), ¢ > 0} is relatively compact in H.

Page 11 0of 16
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Schauder’s fixed point theorem guarantees that P has a fixed point z* € B,(J). Let x* =
Yolgk e Bil_y)(]/) and then £ (x) has a fixed point x* € Bﬁl_y)(]’) (i.e. a mild solution of
system (1.1)). The proof of Theorem 3.6 is complete. O
Theorem 3.7 Assume that condition H(f) holds. Then there exists a fixed point of F . in Y.

Proof The proof is similar to Theorem 3.6, so we omit it here. O

In fact, for any € > 0, there exist x. € Y and a map ¥ (x) : Y — H which related to a

unique minimum ¥, of the functional J, such that

xe(t) = Ly, ()% + /t Tt - S)U(s,x6 (s)) + Bu, (s,x)] ds,
0
where
uc(s,x) =BT (b~ s)RflIIE (x).

4 Finite approximate controllability for the semilinear case

In this section, we study the finite approximate controllability of system (1.1).

Theorem 4.1 Assume that assumptions H(f) and H(B) hold. Then system (1.1) is finite

approximately controllable on J'.

Proof From (3.1) we know that the functional J.(¥;x.) is strictly convex, so we assume

i be the unique critical point which minimizes J (¥;x.), that is,
Je(Wesxe) = min T (¥;xc).
YeH
Because J. (¥;x.) is Gateaux differentiable at l’IZ, then, for any ¥, € H and 0 > 0, we get

T (W + 0Wosx.) — T (P55 )
—_ 1 [ ~
=€|(I - Te)RAW, +0%) |, + 5/ |B*T (b — )R (W + G%)Hf{dt
0
— (), R, + 6%p))

b
e MR, - 5 [ 18T 6 ORIy e+ 5, R
b
:e@||(1—ng)wao||H+9/ (B*T.} (b~ t)REW., B* T, (b — )RV W) dit
0

dt — 0(H (x.), W),

92 b )
+ 7/0 |B*75 (b - R W |,

Page 12 of 16
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such that

u7e({17; + 9l1’0;xe) - \-76(@7966)
6—0+ 0

b
= lim (e | - Te)RE |, + /0 (B*T.7 (b — )RV, B* T, (b — )RVWy) dt
0 bB*"*b Rowy |12 dt — (#(x.), REW,
+§ o ” Ju( - R °||H t_( (%), R 0)
b ~
=€| (- )R |, + /0 (B*T.x(b— )RV, B* T, (b — )RVWy) dit
—(H(x.), RoWp) dit,
as is well known
b ~
/ (B*T.¥ (b~ )RVW, B* T, (b — )RV W) dt
0
b ~
- / (7,.(b - )BB* T (b - t)RV W, RO, ) dit
0
b
:/ <‘:’7L(b_t)Bue(&x),RflpO)dt;
0
thus
(7 (xe), R )
b ~
= || - Te)RW ||, + / (7,,(b— )BB* T, (b — )RE W, RV W) dit
0
b
=e|( - )R |, + /0 (7,.(b - £)Buc(s,x), RV Wy ) dit.
From the definition of #(x.), x.(b), one can get
t
FH(x) = xp — x(b) + / T,.(t — s)Buc(s, x) ds,
0
then

(x5 — % (), Wo)| = €| - Te) ||, < €l %ollrs

I

which is equivalent to
s8], <e.

On the other hand, if § < 0, we can get the same argument.

Thus given ¥, € H, we conclude that system (1.1) is approximately controllable on J/,
and if ¥ € &, system (1.1) is finite approximately controllable on [, that is, [Tgx.(b) =
ngb. O
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5 An example

As an application of our result, consider the Hilfer fractional partial equation:
Dyl'x(t,y) = %,,(t,y) + Bu(t,y) + fo e l‘flicsfy‘ ds, 0<t<1,0<y<m,
x(¢,0)=x(t,m)=0, O0<t<I, (5.1)
1870 x(0,9) = x0(y), 0<y<m,

where v = 1/2, i = 3/4, and x(t, y) represents the temperature function at the point y €
[0,77] and time ¢ € (0, 1]. Now, set H = L2[0, 7] and e, (y) = v/2/m sin(ny), n = 1,2,.... Then
{e.(»)} is an orthonormal basis on H. Define A : D(A) C H — H by Ax = x,, with domain

{x € H : x,% are absolutely continuous,x” € H,x(0) = x(r) = 0}.

Then
o0
Ax = Z(—nz) (x,e,)e,, x€D(A),
n=1

one can see that A generates a compact semigroup 7'(¢) (¢ >0) on H and
T(t)x = Ze (x,e.)e,, x€H.

Hence T'(t) is compact and || T(¢)|| < 1.
The infinite-dimensional Hilbert space U is

uiu= Zunen,Zuﬁ <oof,
n=2 n=2
with the norm [|u||;; = (300, u2)!2. We define a mapping B € L(U, H) by

oo o0
Bu = 4duqe; + 3uqey + E uye, foru= E uye, € U,
n=3 n=2

and forv=> " v,e, € H, the inner product (Bu,v) = (1, B*v), and thus

o0
B*v = (4v1 + 3vp)es + Zvnen
n=3

and
s 2
B*T*(t)x = (dx1e™" + 3x0e*)er + E e x,e,.

Assume ||B*T*(t)x|| = 0 for some ¢ € J/, and it follows that

oo
||4xle‘t + 3x26‘4t||2 + Z”e‘”ztxn ||2 =0,
n=3
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which implies that x = 0, and thus the linear part of system (5.1) is approximately control-
lable on J’ (see Theorem 4.1.7 of [23]). Now

t t
s |x(s, ) / _ »
tLxt,y)=[ e*————ds< efds=1-¢e",
f (o) /o T+ sl Jo

so the conditions of H(f) hold. Thus system (5.1) is finite approximately controllable on J'.
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