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Abstract
In this paper, the synchronization control of a non-autonomous Lotka–Volterra system
with time delay and stochastic effects is studied. The purpose is to firstly establish
sufficient conditions for the existence of global positive solution by constructing a
suitable Lyapunov function. Some synchronization criteria are then derived by
designing an appropriate full controller and a pinning controller, respectively. Finally,
an example is presented to illustrate the feasibility and validity of the main theoretical
results based on the Field-Programmable Gate Array hardware simulation tool.
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1 Introduction
The Lotka–Voltera (LV) system is one of the famous biological models which describe the
interaction of a predator–prey model and consist of nonlinear ordinary differential equa-
tions, developed by Lotka and Volterra [1]. Over the past 20 years, the LV system has been
extensively investigated from different aspects such as stability, control, evolutionary dy-
namics [2–7]. Reference [2] investigated the existence of a spatially steady state solution
by applying a Lyapunov–Schmidt reduction. Based on many natural predator–prey inter-
actions which sometimes exhibit stability, Ref. [3] checked the effect of small immigration
and the inclusion of a nonlinear interaction term to the stability of the LV system. Lya-
punov stability theory has been used to investigate the attractivity and synchronization of
the LV system with mutual interference and with unknown parameters [4, 5]. The global
dynamics of a classical LV system was investigated with the effects of competition ability
and impulsive periodic disturbance in Refs. [6, 7]. Besides, time delays are ubiquitous in
the processing of information transmission because of the limited resource and environ-
mental disturbance, which may cause undesired dynamics like oscillation, bifurcation and
instability. Until now, the dynamical problem of a hybrid system with time delays has be-
come a significant issue [8–11]. Moreover, a classical stochastic delayed LV model can be
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described as follows [11]:

dxi(t) = xi(t)

[
ri –

n∑
j=1

aijxj(t) +
n∑

j=1

bijxj(t – τ )

]
dt + σi(t)xi(t) dωi(t), (1)

where xi(t)(> 0) denotes the density of the ith species at time t, ωi(t), 1 ≤ i ≤ n are inde-
pendent standard Brownian motions, and ri, aij, bij, σi are nonnegative. In mathematical
ecology, Eq. (1) describes an n-species predator–prey system in which individuals com-
pete with each other.

Some related work on the dynamical of predator–prey system has been presented based
on the model (1). In Ref. [11], a global positive solution, stochastic permanence and ex-
tinction were discussed. In Ref. [12], the sufficient conditions for the existence of global
positive solutions were obtained based on the LV model with random perturbation. Suffi-
cient and necessary conditions were established for persistence and extinction of the sys-
tems under the condition of Lévy noise [13]. Reference [14] studied the positivity and the
global stability of nontrivial solutions based on the Euler–Maruyama scheme for a two-
dimensional model of stochastic predator–prey interactions. Reference [15] discussed a
novel LV system with infinite delay and feedback control through Lyapunov functionals
and a new analysis technique.

Up till now, a great deal of research effort has focused on the LV model (such as Refs. [16–
19]). To the best of our knowledge, the synchronization control problems for the stochastic
LV system have not yet been studied much. In fact, synchronization control problems can
be found in almost everywhere in the real world. For example, in order to protect endan-
gered species, we can design a reasonable optimal control strategy and adopt synchronous
control to achieve effective animal protection. As is well known, a linear feedback control
technique was used to control the LV model, and the Lyapunov direct method is used to
synchronize two models [20]. In Ref. [21], a predator–prey model was established with
Allee effect and seasonally forcing, and was controlled to follow a reference model by a
synchronization approach.

However, it still remains a big challenge to deal with the LV system with delay and
stochasticity. In the past few years, the synchronization control problems for complex net-
works have drawn much attention of researchers on the neural network, genetic regulatory
networks and social networks [22–25]. This helps us to study the synchronization control
problem for population systems based on LV models. At the same time, we will present a
calculation example based on the Field-Programmable Gate Array (FPGA) hardware tool,
which can work with the data faster and more efficiently.

In this paper, we study a stochastic delayed LV system with a control term. The structure
of this paper is as follows. The model description and preliminaries are formally presented
in Sect. 2. Some synchronization criteria are derived by the full controller and pinning
controller, respectively, in Sect. 3. An example is presented to demonstrate the validity of
the proposed methods based on the FPGA hardware tool which can deal with the data
faster and more efficiently in Sect. 4. Finally, the conclusion is drawn in Sect. 5.

Notations: Throughout this letter, let (Ω ,F , {Ft}t≥0, P) be a complete probability space
with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is increasing and right con-
tinuous while F0 contains all P-null sets); ωi(t) stands for the independent standard Brow-
nian motions defined on this probability space; Rn

+ is the positive cone in Rn, where has
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Rn
+ = {x ∈ Rn : xi > 0 for all 1 ≤ i ≤ n}; τ > 0 and C([–τ , 0]; Rn

+) denotes the family of contin-
uous functions from [–τ , 0] to Rn

+.

2 Model formulation and preliminaries
The stochastic LV model with time delay studied in this paper can be given by

dxi(t) = xi(t)

[
ri(t) –

n∑
j=1

aij(t)xj(t) +
n∑

j=1

bij(t)xj(t – τ ) + ui(t)

]
dt

+ σi(t)xi(t) dωi(t), (2)

where ui(t), 1 ≤ i ≤ n denote the control input, ri(t), aij(t), bij(t), σi(t) are continuous
bounded nonnegative functions on [0,∞).

Let the target model and the designed control law be

dyi(t) = yi(t)

[
ri(t) –

n∑
j=1

aij(t)yj(t)

]
dt + σi(t)yi(t) dωi(t), i = 1, 2, . . . , n, (3)

and

ui(t) = ki
(
xi(t) – yi(t)

)
–

n∑
j=1

bijxj(t – τ ), (4)

where ki is a constant.
Substituting (4) into (2), Eq. (3) becomes

dxi(t) = xi(t)

[
ri(t) + ki

(
xi(t) – yi(t)

)
–

n∑
j=1

aij(t)xj(t)

]
dt

+ σi(t)xi(t) dωi(t). (5)

The aim of this paper is to show that synchronization between model (2) and the tar-
get model (3) in Sect. 2 by designing effective controllers. Different from some existing
results, we discuss the synchronization problem. When model (3) gets stochastic persis-
tence, model (2) will also reach stochastic permanence. These results may certainly help to
protect endangered animals and plants. As another innovation, we give a control variable,
which precisely provides optimal control strategies.

With the help of Itô’s formula, calculating the stochastic derivative of d(log xi(t)) to (5),
one has

d
(
log xi(t)

)
=

[
ri(t) –

1
2
σ 2

i (t) + ki
(
xi(t) – yi(t)

)
–

n∑
j=1

aij(t)xj(t)

]
dt

+ σi(t) dωi(t). (6)
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Similarly, apply Itô’s formula to (3)

d
(
log yi(t)

)
=

[
ri(t) –

1
2
σ 2

i (t) –
n∑

j=1

aij(t)yj(t)

]
dt

+ σi(t) dωi(t), i = 1, 2, . . . , n. (7)

Then

d
(
log xi(t) – log yi(t)

)
=

[
ki
(
xi(t) – yi(t)

)
–

n∑
j=1

aij(t)
(
xj(t) – yj(t)

)]
dt. (8)

Throughout this paper, the following assumptions and lemmas will be used.

Assumption 2.1 For i, j = 1, 2, . . . , n, inft∈[0,+∞) aii(t) > 0, inft∈[0,+∞) aij(t) ≥ 0.

Assumption 2.2 For i, j = 1, 2, . . . , n, there exist some constants ci, di,λij,ρij ≥ 0, λii > 0,
and ρii > 0 such that

di –
n∑

j=1

ρijxj(t) ≤ ri(t) –
n∑

j=1

aij(t)xj(t) +
n∑

j=1

bij(t)xj(t – τ ) + ui(t) ≤ ci –
n∑

j=1

λijxj(t).

Assumption 2.3 inft∈[0,+∞)(aii(t) – ki –
∑n

j=1,j �=i aji(t)) > 0 for all 1 ≤ i ≤ n.

Lemma 2.1 Under Assumptions 2.1 and 2.2, for any given initial value {x(t) : –τ ≤ t ≤
0} ∈ C([–τ , 0]; Rn

+), there is a unique solution x(t) to model (2), which will remain in Rn
+

with probability 1, namely x(t) ∈ Rn
+ for all t ≥ –τ almost surely (a.s.).

Proof Since the coefficients of the equation are locally Lipschitz continuous, for any given
initial value {x(t) : –τ ≤ t ≤ 0} ∈ C([–τ , 0]; Rn

+) there is a unique maximal local solution
x(t) on t ∈ [–τ , τe], where τe is the explosion time. To show this solution is global, we need
to show that τe = ∞. Let k0 > 0 be sufficiently large for

1
k0

< min
–τ≤t≤0

∣∣x(t)
∣∣≤ max

–τ≤t≤0

∣∣x(t)
∣∣ < k0.

For each integer k ≥ k0, define the stopping time τk = inf{t ∈ [0, τe) : xi(t) /∈ ( 1
k , k) for some

i. For simplicity, let infφ = ∞ (φ denotes the empty set), the sequence τk is monotonically
increasing. Let τ∞ := limk→∞ τk , τ∞ ≤ τe. It suffices to show that τ∞ = ∞ a.s. If this were
false, there would exist T > 0 and ε > 0 such that P{τ∞ ≤ T} > ε. Therefore we could find
some k1 ≥ k0 such that P{τk ≤ T} > ε for all k ≥ k1. Consider the Lyapunov function

V
(
x(t)
)

=
n∑

i=1

(
xi(t) – 1 – log xi(t)

)
.
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Then V (x(t)) ≥ 0 for every x(t) ∈ Rn
+. Apply the Itô formula to V (x(t)) to obtain

LV
(
x(t)
)

=
n∑

i=1

(
xi(t) – 1

)[
ri(t) –

n∑
j=1

aij(t)xj(t) +
n∑

j=1,j �=i

bij(t)xj(t – τ )

+ ui(t)

]
+

1
2

n∑
i=1

σ 2
i (t)

≤
n∑

i=1

xi(t)

[
ci –

n∑
j=1

λijxj(t)

]
–

n∑
i=1

[
di –

n∑
j=1

ρijxj(t)

]
+

1
2

n∑
i=1

σ 2
i (t)

≤
n∑

i=1

[
–λiix2

i (t) +

(
ci +

n∑
j=1

ρij

)
xj(t) +

1
2

max
{
σ 2

i (t)
}

– di

]

≤ K , (9)

where K is a positive constant.
Based on the above analysis, note that, since λii > 0 for each i, the function –λiix2

i (t) +
(ci +

∑n
j=1 ρij)xj(t) + 1

2 max{σ 2
i (t)} – di is continuous for xi(t) ∈ [0,∞) and goes to –∞ as

xi → ∞. Therefore, we can obtain

∫ τk∧T

0
dV
(
x(t)
)≤ ∫ τk∧T

0
K dt +

∫ τk∧T

0

n∑
i=1

(
xi(t) – 1

)
σi(t) dωi(t). (10)

Taking the mathematical expectation of both sides of (10) yields

EV
(
x(τk ∧ T)

)≤ V
(
x(0)

)
+ KE(τk ∧ T) ≤ V

(
x(0)

)
+ KT .

It follows that

V
(
x(0)

)
+ KT ≥ EV

(
x(τk ∧ T)

)≥ EV
[
x(τk)1{τk≤T}

]
. (11)

Note that ν ∈ {τk ≤ T}. There are some i such that xi(τk(ν)) ≥ k or xi(τk(ν)) ≤ 1
k , and

hence V (x(τk ,ν)) is less than k – 1 – log(k) or 1
k – 1 – log( 1

k ) = 1
k – 1 + log(k). Consequently,

V
(
x(τk ,ν)

)≥ [k – 1 – log(k)
]∧ [1

k
– 1 + log(k)

]
. (12)

Combining (11) with (12), the following inequality holds:

V
(
x(0)

)
+ KT ≥ ε

([
k – 1 – log(k)

]∧ [1
k

– 1 + log(k)
])

.

This leads to a contradiction as k → ∞. Therefore, τ∞ = ∞ a.s. �

Lemma 2.2 ([12]) For any given initial value y(0) ∈ Rn
+, there is a unique solution y(t) to

model (3) on t ≥ 0 and the solution will remain in Rn
+ with probability 1, namely y(t) ∈ Rn

+

for all t ≥ 0 a.s.
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Definition 2.1 The systems (2) and (3) are said to reach synchronization if, for any given
initial conditions, the solutions of Eqs. (2) and (3) satisfy limt→∞ |xi(t) – yi(t)| = 0, for all
1 ≤ i ≤ n.

Definition 2.2 The systems (2) and (3) are said to reach partial synchronization if, for any
given initial conditions, the solutions of systems (2) and (3) satisfy limt→∞ |xi(t)–yi(t)| = 0,
for all 1 ≤ i ≤ l < n.

Consider the n-dimensional stochastic differential equation

dx(t) = f
(
x(t), t

)
dt + g

(
x(t), t

)
dB(t), (13)

where B(t) = (B1(t), B2(t), . . . , Bn(t)), f : Rn × R̄+ → Rn, g : Rn × R̄+ → Rn×m and R̄+ = {x(t) ∈
R : xi(t) ≥ 0 for 1 ≤ i ≤ n}.

To proceed with the analysis, the nonlinear functions are assumed to satisfy the condi-
tion given below, which is presented in [9]:

(A) For any initial value, Eq. (13) has a unique solution. Moreover, for every h > 0, there
is a Kh > 0 such that |f (x(t), t)| ∨ |g(x(t), t)| ≤ Kh, for all t ≥ 0 and x ∈ Rn with |x(t)| ≤ h.

Lemma 2.3 ([12]) Let condition (A) hold. Assume that there exist three functions V (t) ∈
C2,1(Rn × R̄+; R̄+), γ (t) ∈ L1(R̄+; R̄+), and ϕ(t) ∈ C(Rn; R̄+) such that

LV
(
x(t), t

)≤ γ (t) – ϕ
(
x(t)
)
,
(
x(t), t

) ∈ Rn × R̄+,

and

lim
|x(t)|→∞

inf
t∈[0,+∞)

V
(
x(t), t

)
= ∞.

Then Ker(ϕ) �= φ and limt→∞ d(x(t, x(0)), Ker(ϕ)) = 0 a.s. for every x(0) ∈ Rn.

3 Main results
In this section, we derive some synchronization schemes by using the full controller and
pinning controller, respectively.

Theorem 3.1 Under Assumption 2.3 and control law (4), for any given initial conditions,
system (2) synchronizes with the target model (3).

Proof The proof is divided into two steps.
Step 1. According to Eq. (7), we can obtain

d
(
log xi(t) – log yi(t)

)
=

[
ki
(
xi(t) – yi(t)

)
–

n∑
j=1

aij(t)
(
xj(t) – yj(t)

)]
dt. (14)

Consider the Lyapunov function V̄ (t) defined by

V̄ (t) =
n∑

i=1

∣∣log xi(t) – log yi(t)
∣∣. (15)
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A direct differential of V̄ (t) along the ordinary differential equation (8) leads to

dV̄ (t) =
n∑

i=1

sgn
(
xi(t) – yi(t)

)
d
(
log xi(t) – log yi(t)

)

= –
n∑

i=1

sgn
(
xi(t) – yi(t)

)[ n∑
j=1

aij(t)
(
xj(t) – yj(t)

)
– ki
(
xi(t) – yi(t)

)]
dt

≤ –
n∑

i=1

(
aii(t) – ki

)∣∣xi(t) – yi(t)
∣∣dt +

n∑
i=1

n∑
j=1,j �=i

aij(t)
∣∣xi(t) – yi(t)

∣∣dt

= –
n∑

i=1

(
aii(t) – ki

)∣∣xi(t) – yi(t)
∣∣dt +

n∑
i=1

n∑
j=1,j �=i

aji(t)
∣∣xi(t) – yi(t)

∣∣dt

≤ – min
1≤i≤n

inf
t∈[0,+∞)

(
aii(t) – ki –

n∑
j=1,j �=i

aji(t)

)∣∣xi(t) – yi(t)
∣∣dt

= –


n∑
i=1

∣∣xi(t) – yi(t)
∣∣dt, (16)

where 
 = min1≤i≤n inft∈[0,+∞)(aii(t) – ki –
∑n

j=1,j �=i aji(t)) > 0.
Integrating from 0 to t on both sides of (16), we have

V̄ (t) + 


∫ t

0

n∑
i=1

∣∣xi(s) – yi(s)
∣∣ds ≤ V̄ (0) < ∞.

Let t → ∞, the following inequality is obtained:

∫ t

0

∣∣x(s) – y(s)
∣∣ds ≤

∫ t

0

n∑
i=1

∣∣xi(s) – yi(s)
∣∣ds ≤ V̄ (0)



< ∞. (17)

Moreover, we also have

E
∫ t

0

∣∣x(s) – y(s)
∣∣ds < ∞. (18)

Step 2. Define e(t) = x(t) – y(t). Clearly, e(t) ∈ C(R+, R). It is straightforward to obtain from
(16)

lim
t→∞ inf

∣∣e(t)
∣∣ = 0, a.s. (19)

Now we claim that limt→∞ |e(t)| = 0 a.s.
The following proof is similar to Theorem 6.2 in [12], so it is omitted. �

Remark 1 Generally speaking, stochastic permanence of the population system has cer-
tainly significance for the endangered treasure species, which has stirred great research
attention [26–30]. However, this is the first time to present some theoretical results on
the asymptotically synchronization for the stochastic LV model. Moreover, in addition,
the proposed results can be viewed as an extension of those in [31–35].
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To study the synchronization problem of extinction, let us impose one more hypothesis.

Assumption 3.1
∑n

i=1
∫∞

0 [ri(t) – 1
2 (1 – ki)σ 2

i (t)]+ dt < ∞ for all 0 < ki 
 1, i = 1, 2, . . . , n.

Corollary 3.1 Under Assumptions 2.3 and 3.1, for any given initial value, if the population
becomes extinct in the target model (3), then the solution xi(t) of model (5) has the property

lim
t→∞

∣∣xi(t)
∣∣ = 0 a.s. (20)

Proof It is obvious that model (5) satisfies (A). By the Itô formula, one has

dxki
i (t) = kix

ki
i (t)

[
ri(t) + kixi(t) –

n∑
j=1

aij(t)xj(t) +
(ki – 1)σ 2

i (t)
2

]
dt

+ kix
ki
i (t)σi(t) dBi(t)

= kix
ki
i (t)

(
ri(t) –

(1 – ki)σ 2
i (t)

2

)
dt + k2

i xki+1
i (t) dt

– kix
ki
i (t)

n∑
j=1

aij(t)xj(t) dt + kix
ki
i (t)σi(t) dωi(t)

≤ kix
ki
i (t)

(
ri(t) –

(1 – ki)σ 2
i (t)

2

)
dt + ki

(
ki – aii(t)

)
xki+1

i (t) dt

+ kix
ki
i (t)σi(t) dωi(t). (21)

Define Wi(t) = e–ki
∫ t

0 (ri(s)–
(1–ki)σ2

i (s)
2 ) ds and Ṽ (x(t), t) =

∑n
i=1 Wi(t)xki

i (t).
Under Assumption 3.1, Ṽ ∈ C2,1(Rn × R̄+; R̄+) and lim|x|→∞ inft∈[0,+∞) V (x, t) = ∞. There

exists a positive constant Qi such as Wi(t) ≥ Qi. As it follows from Itô’s formula, we have

dṼ
(
x(t), t

)
= –

n∑
i=1

kiWi(t)xki
i (t)

(
ri(t) –

(1 – ki)σ 2
i (t)

2

)
dt +

n∑
i=1

Wi(t) dxki
i (t)

≤ –
n∑

i=1

ki(aii – ki)Wi(t)xki+1
i (t) dt +

n∑
i=1

kiWi(t)xki
i (t)σi(t) dωi(t)

≤ –
n∑

i=1

[
inf

t∈[0,+∞)
(aii – ki)

]
kiQix

ki+1
i (t) dt

+
n∑

i=1

kiWi(t)xki
i (t)σi(t) dωi(t)

= –
n∑

i=1

δikiQix
ki+1
i (t) dt +

n∑
i=1

kiWi(t)xki
i (t)σi(t) dωi(t), (22)

where δi = inft∈[0,+∞)(aii – ki) > 0. Under Assumption 2.3, it is easy to have, therefore,

LṼ
(
x(t), t

)≤ –
n∑

i=1

kiδiQix
ki+1
i (t) =: –ω

(
x(t)
)
.



Wang et al. Advances in Difference Equations          (2020) 2020:7 Page 9 of 13

With the help of Lemma 2.3, (20) is obtained.
To achieve partial synchronization, the control input ui(t) can be designed as

⎧⎨
⎩ui(t) = ki(xi(t) – yi(t)) –

∑n
j=1 bijxj(t – τ ), i = 1, 2, . . . , l,

ui(t) = 0, i = l + 1, l + 2, . . . , n.
(23)

Accordingly, the model (2) can be rewritten in the following form:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d log xi(t) = [ri(t) – 1
2σ 2

i (t) + ki(xi(t) – yi(t)) –
∑n

j=1 aij(t)xj(t)] dt

+ σi(t) dωi(t), i = 1, 2, . . . , l,

d log xi(t) = [ri(t) – 1
2σ 2

i (t) –
∑n

j=1 aij(t)xj(t – τ )] dt

+ σi(t) dωi(t), i = l + 1, l + 2, . . . , n.

(24)

For Eq. (24), it is difficult to achieve synchronous control. At this point, we can only guar-
antee partial synchronization, and Assumption 2.3 is modified as

inf
t∈[0,+∞)

(
aii(t) – ki –

n∑
j=1,j �=i

aji(t)

)
> 0, 1 ≤ i ≤ l. (25)

Then, using the same idea as in Theorem 3.1, we obtain the following theorem. �

Theorem 3.2 Under (25) and control law (23), for any given initial conditions, model (2)
partially synchronizes the target model (3).

Remark 2 It is natural to consider the pinning control method to realize synchronization
of systems (3) and (24) via control of partial species instead of all species, which can ef-
fectively reduce control cost, especially in limited energy systems. In addition, it shows
practical significance.

4 An illustrative example
In order to verify the effectiveness of the theoretical results, we will present one numerical
example in this section. Consider the stochastic model (2) with three populations (n = 3),
where the system is described by

aij(t) =

⎛
⎜⎝

3t5 4t 4t
4t 4t5 5t
2t 2t 5t5

⎞
⎟⎠ , bij(t) =

⎛
⎜⎝

3t5 2t t
t 2t5 t
t t 3t5

⎞
⎟⎠

with r(t) = (3t5, 4t5, 4t5), σ (t) = (0.3t
1
5 , 0.4t

1
5 , 0.2t

1
5 ), τ = 0.3, and initial state x(t) =

(e–1.5, e–0.6, e–1), y(t) = (e–1, e–0.5, e–0.8).
It can be checked that Assumptions 2.1–2.3 and 3.1 are satisfied with di = –2, ci = 8T5 +

3T (i = 1, 2, 3), k = (0.007, 0.006, 0.017),

ρij =

⎛
⎜⎝

3T5 4T 4T
4T 4T5 5T
2T 2T 5T5

⎞
⎟⎠ , λij =

⎛
⎜⎝

3T5 0 0
0 2T5 0
0 0 3T5

⎞
⎟⎠ .



Wang et al. Advances in Difference Equations          (2020) 2020:7 Page 10 of 13

Figure 1 The system of the LV model-based FPGA

Figure 2 (a) Sample paths of x1(t) in Eq. (2) and y1(t) in Eq. (3) with u1(t) in Eq. (4); (b) the control error of x1(t)
and y1(t); (c) Sample paths of x1(t) in Eq. (2) and y1(t) in Eq. (3) with u1(t) = 0

Based on the current mainstream Xilinx ZYNQ series of FPGA chips, we have built our
system in a hardware way. The hardware system diagram is shown in Fig. 1. The input and
output data signals of the module are named in the format which is compatible with AXI-
Stream Interface specifications. Therefore, this module is capable of being generated and
selected as an IP core in Vivado, and supporting AXI-Stream interface. Besides the data
IOs, all other IOs are in the format of the AXI-Lite interface. As shown in Fig. 1, constant
parameter matrices are transmitted to the LV_core through data in1 module. At the same
time, input data from work spaces are transmitted to the LV_core through AXI FIFO and
LV receive interface block. The LV_core will calculate the result, and then the calculated
result will be outputted through the LV transmit interface block.

Figures 2(a), (b), 3(a), (b), and 4(a), (b) show that the three populations have good syn-
chronization under control. Figures 2(c), 2(c), and 4(c) show that the three populations
cannot synchronize without control. These figures imply that the three populations par-
tially synchronize with pinning control.

The hardware resource consumption of the system is shown in Table 1.
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Figure 3 (a) Sample paths of x2(t) in Eq. (2) and y2(t) in Eq. (3) with u2(t) in Eq. (4); (b) the control error of x2(t)
and y2(t); (c) Sample paths of x2(t) in Eq. (2) and y2(t) in Eq. (3) with u2(t) = 0

Figure 4 (a) Sample paths of x3(t) in Eq. (2) and y3(t) in Eq. (3) with u3(t) in Eq. (4); (b) the control error of x3(t)
and y3(t); (c) Sample paths of x3(t) in Eq. (2) and y3(t) in Eq. (3) with u3(t) = 0

Table 1 Results for resource consumption

Resource Utilization Available Utilization

LUT 1061 53,200 1.994
LUTRAM 65 17,400 0.374
FF 1334 106,400 1.254
BRAM 1.5 140 1.071
BUFG 1 32 3.125

5 Conclusions
In this paper, the synchronization control problem for a non-autonomous LV system with
time delay and stochastic effects was analyzed by the stochastic technique and Lyapunov
stability theory. The full controller and pinning controller have been designed, respec-
tively. Synchronous control of population is meant to achieve the expected extent of the
population. This has certainly significance for the endangered treasure species. The pro-
posed model can achieve stochastically permanent synchronization. Further, the synchro-
nization problem of extinction was studied. Moreover, through the FPGA hardware tool,
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the speed of simulation processing was improved to meet the needs of the real-time world
with massive data in the era of big data. This will be a challenging task in the next work.
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