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Following this bias in this paper, we establish new oscillation criteria for all solutions of
nonlinear second order difference equations with mixed neutral terms of the form

�
(
a(t)

(
�y(t)

)α)
+ q(t)xγ (t – m + 1) + c(t)xμ

(
t + m∗ + 1

)
= 0 (1)

and

�
(
a(t)

(
�y(t)

)α)
= q(t)xγ (t – m + 1) + c(t)xμ

(
t + m∗ + 1

)
, (2)

where y(t) = x(t) + p1(t)xβ(t – k) – p2xδ(t – k) and under the conditions:
(i) α, β , γ , μ and δ are the ratios of positive odd integers, α ≥ 1,

(ii) {p1(t)}, {p2(t)}, {q(t)} and {c(t)} are sequences of positive real numbers,
(iii) k, m, m∗ are positive real numbers with h(t) = t – m + k + 1 and

h∗(t) = t + m∗ + k + 1.
Let θ = max{k,m – 1,m∗ + 1}. By a solution of Eq. (1) (respectively, (2)), we mean a real
sequence {x(t)} defined for all t ≥ t0 – θ and satisfies Eq. (1) (respectively, (2)) for all t ≥ t0.
A solution of Eq. (1) (respectively, (2)) is called oscillatory if its terms are neither eventu-

ally positive nor eventually negative. Otherwise, it is called nonoscillatory. If all solutions
of the equation are oscillatory, then we say the equation itself is called oscillatory.
The objective of the present paper is to provide sufficient conditions for the oscillation

of Eqs. (1) and (2) whenever β < 1 and δ > 1 and subject to the assumption

A(v,u) =
v–1∑

s=u

1

a 1
α (s)

and A(t, t1) =
t–1∑

s=t1

1

a 1
α (s)

→ ∞ as t → ∞ for t ≥ t1 ≥ t0. (3)

The key idea of our approach is to conduct a comparison with first order equations whose
oscillatory behaviors are already known. In view of the theorems established in the litera-
ture, the results of this paper are new and have merit in the sense that no existing results
can provide criteria which ensure the oscillation of all solutions of Eq. (1) or (2). Thus,
we claim that the obtained results not only improve and extend existing results reported
in the literature but also provide a new platform for the investigation of a wide class of
nonlinear second order difference equations.
The rest of the paper is organized as follows: Sect. 2 is devoted to the main results of

the paper. We present our investigations in two folds for Eqs. (1) and (2). Meanwhile, a
relevant result on the existence of positive solutions for first order difference equations is
stated. The proofs rely on some mathematical inequalities which are given for the sake of
completeness. In Sect. 3, we provide two examples with specific parameters to illustrate
the applicability of our theorems. We end the paper by a concluding remark.

2 Main results
For the sake of convenience, we use the notations

g1(t) := (1 – β)β
β

1–β p
β

β–1 (t)p
1

1–β

1 (t), g2(t) := (δ – 1)δ
δ

1–δ p
1

1–δ
2 (t)p

δ
δ–1 (t),

C(t) :=
c(t)

(p2(h∗(t)))
μ
δ

, Q(t) :=
q(t)

(p2(h(t)))
γ
δ

,

for t ≥ t1 for some t1 ≥ t0 where {p(t)} is a sequence of positive real numbers.
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Prior to proceeding to the main results, we start by stating two fundamental lemmas.

Lemma 1 Let {q(t)} be a sequence of positive real numbers, m and m∗ are positive real
numbers and f : R → R is a continuous nondecreasing function such that xf (x) > 0 for
x �= 0.

(I) The first order delay difference inequality

�y(t) + q(t)f
(
y(t – m + 1)

) ≤ 0

has an eventually positive solution, so does the delay difference equation

�y(t) + q(t)f
(
y(t – m + 1)

)
= 0.

(II) The first order advanced difference inequality

�y(t) – q(t)f
(
y
(
t + m∗ + 1

)) ≥ 0

has an eventually positive solution, and so does the advanced difference equation

�y(t) – q(t)f
(
y
(
t + m∗ + 1

))
= 0.

The above statement is the discrete analog of Lemma 6.2.2 in [21] and Corollary 1 in
[35, 36, 43]. The proof is straightforward and hence is omitted.

Lemma 2 ([44]) If X and Y are nonnegative, then

Xλ + (λ – 1)Y λ – λXY λ–1 ≥ 0, for λ > 1, (4)

Xλ – (1 – λ)Y λ – λXY λ–1 ≤ 0, for 0 < λ < 1, (5)

where equalities hold if and only if X = Y .

2.1 Oscillation of Eq. (1) when β < 1 and δ > 1
In what follows, we present our first oscillation result.

Theorem 1 Let β < 1, δ > 1, conditions (i)–(iv) and (3) hold. Assume that there exist a
positive sequence {p(t)} and positive real numbers k1 and k2 such that k1 < m – k – 1 and
k2 < m∗ + k + 1 where

lim
t→∞

[
g1(t) + g2(t)

]
= 0. (6)

If the first order advanced equation

�z(t) –

(
1

a(t)

t–1∑

s=t–k2

C(s)

) 1
α

z
μ
αδ

(
ρ(t)

)
= 0, (7)
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where ρ(t) = t + m∗ + k + 1 – k2, is oscillatory and and we may assume that there exists a
number θ ∈ (0, 1) such that the two delay equations

�Z(t) + θq(t)Aγ (t – m + 1, t1)Z
γ
α (t – m + 1) = 0, for some t1 ≥ t0, (8)

and

�W (t) + Q(t)A
γ
δ
(
ξ (t),h(t)

)
W

γ
αδ

(
ξ (t)

)
= 0, where ξ (t) = t – m + k1 + 1, (9)

are oscillatory, then Eq. (1) is oscillatory.

Proof Let {x(t)} be a nonoscillatory solution of Eq. (1) say x(t) > 0, x(t–k) > 0, x(t–m+1) >
0 and x(t + m∗ + 1) > 0, for t ≥ t1 for some t1 ≥ t0. It follows from Eq. (1) that

�
(
a(t)

(
�y(t)

)α)
= –q(t)xγ (t – m + 1) ≤ 0. (10)

Hence a(t)(�y(t))α is nonincreasing and of one sign. That is, there exists t2 ≥ t1 such that
�y(t) > 0 or �y(t) < 0 for t ≥ t2. From this, we shall consider the following four cases:

(I) y(t) > 0 and �y(t) < 0, (II) y(t) > 0 and �y(t) > 0,

(III) y(t) < 0 and �y(t) > 0, (IV) y(t) < 0 and �y(t) < 0.

Case (I): Since �y(t) < 0 for t ≥ t2,

a(t)
(
�y(t)

)α ≤ –c < 0, or �y(t) ≤
(

–c
a(t)

) 1
α

, for t ≥ t2.

By condition (3), we conclude that limt→∞ y(t) = –∞. This is a contradiction to the fact
that y is eventually positive.

Case (II): From the definition of y, we get

y(t) = x(t) +
(
p(t)x(t – k) – p2(t)xδ(t – k)

)
+

(
p1(t)xβ(t – k) – p(t)x(t – k)

)
,

or

x(t) = y(t) –
(
p(t)x(t – k) – p2(t)xδ(t – k)

)
–

(
p1(t)xβ(t – k) – p(t)x(t – k)

)
.

If we apply (4) with λ = δ > 1, X = p
1
δ
2 (t)x(t) and Y = ( 1

δ
p(t)p

–1
δ
2 (t))

1
δ–1 , we have

(
p(t)x(t – k) – p2(t)xδ(t – k)

) ≤ (δ – 1)δ
δ

1–δ p
1

1–δ
2 (t)p

δ
δ–1 (t) := g2(t).

If we apply (5) with λ = β < 1, X = p
1
β

1 (t)x(t) and Y = ( 1
β

p(t)p
–1
β

1 (t))
1

β–1 , we have

(
p1(t)xβ (t – k) – p(t)x(t – k)

) ≤ (1 – β)β
β

1–β p
β

β–1 (t)p
1

1–β

1 (t) := g1(t).
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Thus, we see that

x(t)≥
[
1 –

g1(t) + g2(t)
y(t)

]
y(t). (11)

Since y is nondecreasing, there exists a constant C > 0 such that y(t) ≥ C. Thus, we have

x(t)≥
[
1 –

g1(t) + g2(t)
C

]
y(t).

Now, there exists a constant c1 ∈ (0, 1) such that

x(t)≥ c1y(t). (12)

Thus, we have

�
(
a(t)

(
�y(t)

)α)
+ cγ

1 q(t)yγ (t – m + 1) ≤ 0. (13)

Clearly, we see that

y(t) ≥
t–1∑

s=t1

a– 1
α (s)

(
a

1
α (s)�y(s)

) ≥ A(t, t1)
(
a

1
α (t)�y(t)

)
.

If we let w(t) = a(t)(�y(t))α , then �y(t) = (w(t)
a(t) )

1
α . The above inequality becomes

y(t) ≥ A(t, t1)w
1
α (t). (14)

Using (14) in (13), we get

�w(t) + cγ
1 q(t)Aγ (t – m + 1, t1)w

γ
α (t – m + 1) ≤ 0.

It follows from Lemma 1(I) that the corresponding difference equation (8) has a positive
solution. This is a contradiction.
Let

z(t) = –y(t) = –x(t) – p1(t)xβ (t – k) + p2(t)xδ(t – k)≤ p2(t)xδ(t – k),

or

x(t – k) ≥
(

z(t)
p2(t)

) 1
δ

, or x(t)≥
(

z(t + k)
p2(t + k)

) 1
δ

.

Case (III): From the above arguments, we have �z(t) = –�y(t) < 0 for t ≥ t1. We have

�
(
a(t)

(
�z(t)

)α)
= q(t)xγ (t – m + 1) + c(t)xμ

(
w(t)

)

≥ q(t)

p
γ
δ
2 (h(t))

z
γ
δ
(
h(t)

)
+

c(t)

p
μ
δ
2 (h∗(t))

z
μ
δ
(
h∗(t)

)
. (15)
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In this case, we consider

�
(
a(t)

(
�z(t)

)α) ≥ Q(t)z
γ
δ
(
h(t)

)
. (16)

For t1 ≤ u ≤ v, we may write

z(u) – z(v) = –
v–1∑

s=u
a– 1

α (s)
(
a(s)

(
�z(s)

)α) 1
α ≥ A(v,u)

(
–a

1
α (v)

(
�z(v)

))
.

If we let u = h(t) and v = ξ (t) in the above inequality, we obtain

z
(
h(t)

) ≥ A
(
ξ (t),h(t)

)(
–a

1
α
(
ξ (t)

))(
�z

(
ξ (t)

))
. (17)

Using (17) in (16), we have

�
(
a(t)

(
�z(t)

)α) ≥ Q(t)A
(
ξ (t),h(t)

)(
–a

1
α
(
ξ (t)

))(
�z

(
ξ (t)

)) γ
δ .

Setting W (t) = a(t)(–�z(t))α , we get

�W (t) + Q(t)A
γ
δ
(
ξ (t),h(t)

)
W

γ
αδ

(
ξ (t)

) ≤ 0.

The rest of the proof is similar to that of Case (I) and hence is omitted.
Case (IV): From (15), we have the inequality

�
(
a(t)

(
�z(t)

)α) ≥ C(t)z
μ
δ
(
h∗(t)

)
. (18)

Summing (18) from t – k2 to t – 1, one can easily get

�z(t) ≥
(

1
a(t)

t–1∑

s=t–k2

C(s)

) 1
α

Z
μ
δα

(
ρ(t)

)
. (19)

It follows from Lemma 1(II) that the corresponding differential equation (7) also has a
positive solution. This contradiction completes the proof. �

Corollary 1 Let β < 1, δ > 1, conditions (i)–(iv) and (3) hold. Assume that there exist a
positive sequence {p(t)} and positive real numbers k1 and k2 such that k1 < m – k – 1 and
k2 < m∗ + k + 1 and (7) hold. If

lim inf
t→∞

ρ(t)–1∑

u=t

(
1

a(u)

u–1∑

s=u–k2

C(s)

) 1
α

{
= ∞, when μ > αδ,
> (ρ(t)–1)ρ(t)

ρρ(t)(t) , when μ = αδ,
(20)

lim inf
t→∞

t–1∑

u=ξ (t)

Q(s)A
γ
δ
(
ξ (s),h(s)

)
{
= ∞, when γ < αδ,
> ξξ (t)(t)

(ξ (t)+1)ξ (t)+1 , when γ = αδ,
(21)

and

lim inf
t→∞

t–1∑

s=t–m+1

q(s)Aγ (s – m + 1, t1) = ∞, when γ ≤ α, (22)

for some t1 ≥ t0, then Eq. (1) is oscillatory.



Grace and Alzabut Advances in Difference Equations          (2020) 2020:8 Page 7 of 12

Corollary 2 Let β < 1, δ > 1, conditions (i)–(iv) and (3) hold. Assume that there exist a
positive sequence {p(t)} and positive real numbers k1 and k2 such that k1 < m – k – 1 and
k2 < m∗ + k + 1, (7) hold and conditions (20) and (22) are satisfied. If

lim sup
t→∞

(

A(t – m + 1, t1)
∞∑

s=t
q(s)

)

= ∞, when γ = 1, (23)

and

lim sup
t→∞

∞∑

u=t1

q(u)

(

A(u – m + 1, t1)
∞∑

s=u
q(s)

) γ
1–γ

= ∞, when γ = ±1, (24)

for some t1 ≥ t0, then Eq. (1) is oscillatory.

Proof Let {x(t)} be a nonoscillatory solution of Eq. (1), say x(t) > 0, x(t – k) > 0 and y(t) > 0
for t ≥ t1 for some t1 ≥ t0. It is easy to see that �y(t) > 0, t ≥ t1. Proceeding as in the proof
of Theorem 1, one conclude that Cases (I), (III) and (IV) are invalid.
For Case (II), we refer to (13) and (14). Summing (13) from t to u and letting u → ∞, we

have

a(t – m + 1)
(
�y(t – m + 1)

)α ≥ a(t)
(
�y(t)

)α ≥ cγ yγ (t – m + 1)
∞∑

s=t
q(s).

Using (14) in the above inequality, we get

y(t – m + 1) ≥ A(t – m + 1, t1)
(
a

1
α (t – m + 1)�y(t – m + 1)

)

≥ cγ

(

A(t – m + 1, t1)
∞∑

s=t
q(s)

)

yγ (t – m + 1)

or

y1–γ (t – m + 1) ≥ cγ A(t – m + 1, t1)
∞∑

s=t
q(s),

or

y(t – m + 1) ≥
(

cγ A(t – m + 1, t1)
∞∑

s=t
q(s)

) 1
1–γ

.

Using this inequality in (13), we have

�
(
a(t)

(
�y(t)

)α)
+ q(t)cγ

(

cγ A(t – m + 1, t1)
∞∑

s=t
q(s)

) γ
1–γ

≤ 0.

The remaining part of the proof follows by adopting similar arguments as in the proof of
Theorem 1. �
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2.2 Oscillation of Eq. (2) when β < 1 and δ > 1
Unlike the previous subsection, the main theorem herein provides a criterion for the os-
cillation as well as the oscillatory behavior of Eq. (2).

Theorem 2 Let β < 1, δ > 1, conditions (i)–(iv) and (3) hold. Assume that there exist a
positive sequence {p(t)}, a constant θ ∈ (0, 1) and positive real numbers k1 and k2 such that
k1 < m – k – 1 and k2 < m∗ + k + 1 and (7) holds. Further, assume the following condition:

∞∑

s=t
q(s) = ∞, or

∞∑

u=t

(∑∞
s=u q(s)
a(u)

) 1
α

= ∞. (25)

If the first order advanced equation

�z(t) – θ

(
1

a(t)

t–1∑

s=t–k2

C(s)

) 1
α

z
μ
αδ

(
ρ(t)

)
= 0, ρ(t) = t + m∗ + 1 – k2 > t, (26)

and the equation

�Z(t) + Q(t)Aγ
(
h(t), t1

)
Z

γ
α
(
h(t)

)
= 0, for some t1 ≥ t0, (27)

are oscillatory, then either Eq. (2) is oscillatory or all solutions converge to zero.

Proof Let {x(t)} be a nonoscillatory solution of Eq. (2), say x(t) > 0, x(t–k) > 0, x(t–m+1) >
0 for t ≥ t1 for some t1 ≥ t0. It follows from Eq. (2) that

�
(
a(t)

(
�y(t)

)α)
= q(t)xγ (t – m + 1) + p(t)xμ

(
t + m∗ + 1

) ≥ 0. (28)

Hence a(t)(�y(t))α is of one sign. That is, there exists a t2 ≥ t1 such that �y(t) > 0 or
�y(t) < 0 for t ≥ t2. We shall study the following four cases:

(I) y(t) > 0 and �y(t) < 0, (II) y(t) > 0 and �y(t) > 0,

(III) y(t) < 0 and �y(t) > 0, (IV) y(t) < 0 and �y(t) < 0.

Case (I): We claim that limt→∞ x(t) = 0. To prove this, we assume that there exists a
constant b > 0 such that x(t – m + 1) > b. Using this in (28), we get

�
(
a(t)

(
�y(t)

)α) ≥ q(t)bγ .

Summing up the above inequality and using the first part of (25), we reach a contradiction.
On the other hand, if we sum the above inequality from t to u and let u → ∞, we get

–�y(t) ≥
(

bγ 1
a(t)

∞∑

s=t
q(s)

) 1
α

.

Summing up again andusing the secondpart of (25), we arrive at the desired contradiction.
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Case (II): We proceed exactly as in Case (II) in the proof of Theorem 1 to obtain (12)
and from Eq. (28) one can easily see that

�
(
a(t)

(
�y(t)

)α) ≥ cμ
1 c(t)yμ

(
t + m∗ + 1

)
.

The rest of the proof is similar to that of Case (IV) of Theorem 1 and hence is omitted.
Let

z(t) = –y(t) = –x(t) – p1(t)xβ (t – k) + p2(t)xδ(t – k)≤ p2(t)xδ(t – k).

Therefore, we have

x(t – k) ≥
(

z(t)
p2(t)

) 1
δ

, or x(t)≥
(

z(t + k)
p2(t + k)

) 1
δ

.

Thus, we get

–�
(
a(t)

(
�z(t)

)α) ≥ q(t)xγ (t – m + 1) ≥ q(t)
(p2(h(t)))

γ
δ

z
γ
δ
(
h(t)

)
,

or

�
(
a(t)

(
�z(t)

)α)
+ Q(t)z

γ
δ
(
h(t)

) ≤ 0. (29)

Case (III): Clearly, we see that �z(t) = –�y(t) < 0 for t ≥ t1. However, this is impossible
due to condition (3).

Case (IV): It follows that

z(t) ≥
t–1∑

s=t1

a– 1
α (s)

(
a

1
α (s)�(s)

) ≥ A(t, t1)
(
a

1
α (t)�z(t)

)
.

If we let w(t) = a(t)(�z(t))α , then we obtain �z(t) = (w(t)
a(t) )

1
α and thus the above inequality

becomes

z(t) ≥ A(t, t1)w
1
α (t). (30)

Using (30) in (29), we have

�w + Q(t)Aγ
(
h(t), t1

)
w

γ
α
(
h(t)

) ≤ 0.

It follows from Lemma 1(I) that the corresponding difference equation (27) also has a
positive solution, which is a contradiction. This completes the proof. �

Corollary 3 Let β < 1, δ > 1, conditions (i)–(iv), (3) and (25) hold. Assume that there exist
a positive sequence {p(t)}, a constant θ ∈ (0, 1) and positive real numbers k1 and k2 such
that k1 < m – k – 1 and k2 < m∗ + k + 1 and (7) hold. If

lim inf
t→∞

ρ(t)–1∑

u=t

(
1

a(u)

u–1∑

s=u–k2

C(s)

) 1
α

= ∞, when μ ≥ αδ, (31)
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and

lim inf
t→∞

t–1∑

s=h(t)

Q(s)Aγ
(
h(s), t1

)
= ∞, when γ ≤ α, for some t1 ≥ t0, (32)

then either Eq. (2) is oscillatory or all solutions converge to zero.

3 Examples and concluding remark
Two numerical examples are illustrated in this section to demonstrate the consistency to
the theoretical findings. We end the paper by a concluding remark.

Example 1 Corresponding to (1), we consider the equation

�2
(

x(t) +
1
t

x
1
3 (t – k) – x3(t – k)

)
+ x3(t – m + 1) + x3

(
t + m∗ + 1

)
= 0, (33)

where a(t) = t, p1(t) = 1
t → 0 as t → ∞ and p2(t) = 1. Let p(t) = 1, α = 1, β = 1

3 and δ = 3 =
γ = μ. Assume that there exist positive real numbers, k1 and k2 such that k1 < m – k – 1
and k2 < m∗ + k + 1 and let ρ(t) and ξ (t) be as in Theorem 1.
It is easy to see that all conditions of Corollary 1 are satisfied if

k1(m – k – k1 – 1) >
ξ ξ (t)(t)

(ξ (t) + 1)ξ (t)+1
and k2

(
m∗ + k – k2 + 1

)
>
(ρ(t) – 1)ρ(t)

ρρ(t)(t)
.

Hence, Eq. (33) is oscillatory.

Example 2 Corresponding to (2), we consider the equation

�2
(

x(t) +
1
t

x
1
3 (t – k) – x3(t – k)

)
= x(t – m + 1) + x3

(
t + m∗ + 1

)
, (34)

where a(t) = t, p1(t) = 1
t → 0 as t → ∞ and p2(t) = 1. Let p(t) = 1, α = 1, β = 1

3 and δ = 3 =
γ = μ. Assume that there exist positive real numbers k1 and k2 such that k1 < m – k – 1
and k2 < m∗ + k + 1 and let ρ(t) and ξ (t) be as in Theorem 2.
It is easy to see that all conditions of Corollary 3 are satisfied if the advanced equation

�z(t) – θ
(
m∗ – k2

)
z
(
t + m∗ + k – k2 + 1

)
= 0

is oscillatory for θ ∈ (0, 1) and hence either Eq. (34) is oscillatory or all solutions converge
to zero.

Remark 1 In this paper, we study the oscillation of two classes of nonlinear second order
difference equations involving nonlinear mixed neutral terms. The investigations are car-
ried on under the canonical form of the equations, that is, when the main equations are
subject to condition (3). Unlike the techniques most used in the literature, we employ a
novel comparison technique that is based on comparing with the oscillatory behavior of
first order delay difference equations.
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The paper is presented under high degree of generality. Thus, it will be of interest to
study its results for higher order nonlinear difference equations with mixed neutral terms
of the form

�
(
a(t)

(
�n–1y(t)

)α)
+ q(t)xγ (t – m + 1) + c(t)xμ

(
t + m∗ + 1

)
= 0 (35)

and

�
(
a(t)

(
�n–1y(t)

)α)
= q(t)xγ (t – m + 1) + c(t)xμ

(
t + m∗ + 1

)
= 0. (36)

In addition, the results of this paper can be easily obtained for a dynamic equation on time
scales. We leave this for interested researchers as future work.
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