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Abstract
This paper presents the periodic averaging principle for impulsive stochastic
dynamical systems driven by fractional Brownian motion (fBm). Under non-Lipschitz
condition, we prove that the solutions to impulsive stochastic differential equations
(ISDEs) with fBm can be approximated by the solutions to averaged SDEs without
impulses both in the sense of mean square and probability. Finally, an example is
provided to illustrate the theoretical results.
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1 Introduction
In the past years, stochastic dynamical systems driven by fBm have became an active area
of investigation due to their applications in telecommunications networks, finance mar-
kets, biology, and other fields [1–6]. The impulsive effects exist widely in many evolu-
tion processes in which states are changed abruptly at certain moments of time. Conse-
quently, the impulsive differential equations have a wide range of applications in numer-
ous branches of sciences such as finance, economics, medicine, biology, electronics, and
telecommunications (see [7–10]).

On the other hand, it is well known that the averaging technique represents a good
mathematical tool that approximates complicated time varying differential equations to
autonomous differential equations. Since Krylov and Bogolyubov [11] put forward the
cornerstone of the averaging principles for deterministic dynamical systems, averaging
method has received considerable attention, and it has been found available and useful
for exploring dynamical systems in many fields [12–16]. Up to now, there have been some
works about stochastic averaging for dynamic problems with Gaussian random perturba-
tion [17–19], Poisson noise [20, 21], Lévy motion [22–25], G-Brownian motion [26, 27],
and fBm [28–31]. So far, no previous study has employed the periodic averaging technique
to impulsive stochastic dynamical systems with fBm. Therefore, we make an attempt to
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establish the periodic averaging principle to ISDEs with fBm, which allows the averaged
systems without impulses to replace the original ISDEs both in mean square sense and
probability.

We consider a class of ISDEs with fBm of the form

dx(t) = a
(
t, x(t)

)
dt + b

(
t, x(t)

)
dW H (t), t �= tj,

�x(tj) = Ij
(
x
(
t–
j
))

, t = tj, j ∈N, (1)

x(0) = x0,

where �x(tj) denotes the jump of x at t = tj, for 0 ≤ t ≤ T < ∞, and �x(tj) = x(t+
j ) – x(t–

j ),
such that x(t+

j ) = limt→t+
j

x(t) and x(t–
j ) = limt→t–

j
x(t). x0 represents the initial data of the

system with E|x0|2 < ∞. The process W H(t) is fBm with Hurst index H ∈ ( 1
2 , 1) defined on

the filtered probability space (Ω ,F , {Ft}t≥0, P). The coefficients a(t, x(t)) : [0, T]×Rn → Rn

and b(t, x(t)) : [0, T] × Rn → Rn×m are measurable functions.
The outline of this manuscript is as follows. In Sect. 2, we provide some background

about stochastic integral with respect to fBm. Section 3 is devoted to establishing the
stochastic periodic averaging approach to Eq. (1) under non-Lipschitz condition. Finally,
an example is presented to demonstrate the theoretical results in Sect. 4.

2 Framework
In this section, we introduce some basic notions and preliminaries on path-wise integrals
with respect to fBm, and for more detailed discussion, we refer the reader to [6, 32–35].

Let (Ω ,F , {Ft}t≥0, P) be a complete probability space equipped with a natural filtration
{Ft}t≥0, where Ft is the σ -algebra generated by {W H (t), t ∈ [0, T]} and F0 contains all
P-null sets.

Definition 2.1 The process {W H (t), 1/2 < H < 1} is said to be a centered self-similar fBm
if the following properties are satisfied:

• W H (0) = 0,
• E[W H(t)] = 0, t ∈ [0, T],
• E[W H(t)W H(s)] = 1

2 (|t|2H + |s|2H – |t – s|2H), t, s ∈ [0, T].

Next, for the convenience of readers, we provide some basic properties on path-wise
integrals. Firstly, we introduce the function ϕ : R+ ×R+ →R+ defined as

ϕ(t, s) = H(2H – 1)|t – s|2H–2, t, s ∈ R+,

where H ∈ ( 1
2 , 1). Let f : R+ →R+ be a Borel measurable function and define the space

L2
ϕ(R+) =

{
f : ‖f ‖2

ϕ =
∫

R+

∫

R+

f (t)f (s)ϕ(t, s) ds dt < ∞
}

,

which becomes a separable Hilbert space under the inner product

〈f1, f2〉ϕ =
∫

R+

∫

R+

f1(t)f2(s)ϕ(t, s) ds dt, f1, f2 ∈ L2
ϕ(R+).
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Now, consider the set E of smooth and cylindrical random variables of the form

F(ω) = g
(∫ T

0
ψ1(t) dW H (t), . . . ,

∫ T

0
ψn(t) dW H(t)

)
,

where n ≥ 1 and g ∈ C∞
b (Rn) (i.e., g and its partial derivatives are bounded). Moreover, let

H be the family of measurable functions such that, for ψi ∈H, i = 1, . . . , n, n ∈N, we have
〈ψi,ψj〉ϕ = δij and ‖ψ‖2

ϕ < ∞. The elements of H may not be functions but distributions
of negative order. Thanks to this reason, it is convenient to introduce the space |H| of
measurable functions h on [0, T] satisfying

‖h‖2
|H| =

∫ T

0

∫ T

0

∣
∣h(t)

∣
∣
∣
∣h(s)

∣
∣ϕ(t, s) ds dt < ∞,

and it is easy to show that |H| is a Banach space under the norm ‖ · ‖|H|.

Definition 2.2 The Malliavin derivative DH
t of a smooth and cylindrical random variable

F is defined as an H-valued random variable such that

DH
t F =

n∑

i=1

∂g
∂xi

(∫ T

0
ψ1(t) dW H(t), . . . ,

∫ T

0
ψn(t) dW H (t)

)
ψi(t),

hence, DH
t represents a closable operator, so that DH

t : Lp(Ω) �→ Lp(Ω ,H), p ≥ 1. The it-
eration of Malliavin derivative is denoted by DH,k

t , k ≥ 1. For any p ≥ 1, the Sobolev space
D

k,p represents the closer of E with respect to the norm

‖F‖p
k,p = E|F|p + E

k∑

i=1

∥
∥DH,i

t F
∥
∥p
H⊗i,

where ⊗ denotes the tensor product.

Similarly, for a Hilbert space U , we denote by D
k,p(U) the corresponding Sobolev space

of U-valued random variables, and for p > 0, we denote by D
1,p(|H|) the subspace of

D
1,p(H) formed by the elements h of |H|. According to [6], we introduce ϕ-derivative of F

as follows:

Dϕ
t F =

∫

R+

ϕ(t, s)DH
s F ds.

Definition 2.3 The space Lϕ[0, T] of integrals is defined as the family of stochastic pro-
cesses V (t) on [0, T] such that E‖V (t)‖2

ϕ < ∞, V (t) is ϕ-differentiable, the trace of the
derivative Dϕ

s V (t) exists, and for t, s ∈ [0, T],

E
[∫ T

0

∫ T

0

∣∣Dϕ
t V (s)

∣∣2 ds dt
]

< ∞.

In addition, for each sequence of partitions (πn, n ∈ N) with |πn| → 0 as n → ∞, the fol-
lowing are satisfied:

n–1∑

i=0

E
[∫ t(n)

i+1

t(n)
i

∫ t(n)
j+1

t(n)
j

∣∣Dϕ
s V π

(
t(n)
i

)
Dϕ

t V π
(
t(n)
j

)
– Dϕ

s V (t)Dϕ
t V (s)

∣∣2 ds dt
]

→ 0



Khalaf et al. Advances in Difference Equations        (2019) 2019:526 Page 4 of 15

and

E
∥
∥V π – V

∥
∥2

ϕ
→ 0,

as n tends to infinity, where πn = t(n)
0 < t(n)

1 < · · · < t(n)
n–1 < t(n)

n = T , |π | := maxi (ti+1 – ti) and
V π = Vti .

Now, define the space H1,2
ϕ , which represents the intersection of the spaces D1,2(|H|) and

Lϕ[0, T], such that H1,2
ϕ = D

1,2(|H|) ∩Lϕ[0, T].

Definition 2.4 Let V (t) be a stochastic process with integrable trajectories.
• The symmetric integral of V (t) with respect to W H(t) is defined as follows:

lim
ε→0

1
2ε

∫ T

0
V (s)

[
W H(s + ε) – W H (s – ε)

]
ds,

provided that the limit exists in probability, the symmetric integral is denoted by

∫ T

0
V (s) d◦W H (s).

• The forward integral of V (t) with respect to W H(t) is defined as follows:

lim
ε→0

1
ε

∫ T

0
V (s)

[
W H(s + ε) – W H(s)

ε

]
ds,

provided that the limit exists in probability, the forward integral is denoted by

∫ T

0
V (s) d–W H (s).

• The backward integral of V (t) with respect to W H (t) is defined as follows:

lim
ε→0

1
ε

∫ T

0
V (s)

[
W H(s – ε) – W H(s)

ε

]
ds,

provided that the limit exists in probability, the backward integral is denoted by

∫ T

0
V (s) d+W H(s).

In order to establish our results, we need to introduce some lemmas. The next lemma
follows (Remark 1 in [35]) and (Proposition 6.2.3 in [6]).

Lemma 2.5 If the stochastic process V (t) satisfies

∫ T

0

∫ T

0

∣∣DH
s V (t)

∣∣|t – s|2H–2 ds dt < ∞, V ∈D
1,2(|H|),

then the symmetric integral coincides with the forward and backward integrals.
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Since fBm is neither semi-martingale nor Markov process, we definitely lost the use of
Burkholder–Davis–Gundy inequality and Ito-isometry. Therefore, there is a pressing need
to use the following two lemmas from [6] and [28].

Lemma 2.6 If V (t) is a stochastic process on H
1,2
ϕ , then the symmetric integral is well de-

fined and

∫ T

0
V (s) d◦W H(s) =

∫ T

0
V (s)�dW H (s) +

∫ T

0
Dϕ

s V (s) ds,

where � denotes the Wick product.

We note that the forward and backward integrals are also well defined. Hence, by
Lemma 2.5, the forward and backward integrals coincide with the symmetric integral un-
der the condition of Lemma 2.6.

Lemma 2.7 Let W H (t) be fBm with Hurst index H ∈ ( 1
2 , 1) and V (t) be a stochastic process

in H
1,2
ϕ , then, for 0 ≤ T < ∞, there exists a constant C > 0 such that

E
∣∣
∣∣

∫ T

0
V (s) d◦W H (s)

∣∣
∣∣

2

≤ 2HT2H–1E
∫ T

0

∣
∣V (s)

∣
∣2 ds + 4CT2.

The following requisite lemma is taken from [36].

Lemma 2.8 Let T > 0, x0 ≥ 0, and x(t), y(t) be two continuous functions on [0, T]. Assume
that κ : R+ → R+ is a concave continuous nondecreasing function such that κ(v) > 0 for
v > 0. If we have

x(t) ≤ x0 +
∫ t

0
y(s)κ

(
x(s)

)
ds ∀t ∈ [0, T],

then

x(t) ≤ G–1
(

G(x0) +
∫ t

0
y(s) ds

)
∀t ∈ [0, T],

where (G(x0) +
∫ t

0 y(s) ds) ∈ Dom(G–1), G(v) =
∫ v

0
ds

κ(s) ds, v > 0. Moreover, if x0 = 0 and
∫

0+
ds

κ(s) ds = ∞, then x(t) = 0 for all t ∈ [0, T].

Throughout this paper, the following assumptions are imposed.

Assumption A For all x, y ∈ R
n, t ∈ [0, T], and a(t, ·), b(t, ·) ∈ H

1,2
ϕ , there exists a function

κ(·) such that

∣∣a(t, x) – a(t, y)
∣∣2 +

∣∣b(t, x) – b(t, y)
∣∣2 +

∣∣Dϕ
t
(
b(t, x) – b(t, y)

)∣∣2 ≤ κ
(|x – y|2),

where κ(·) is a concave continuous nondecreasing function such that κ(0) = 0 and

∫

0+

1
κ(x)

dx = ∞.
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Moreover, since κ(·) is a concave continuous nondecreasing function, then there must
exist two constants λ1 > 0 and λ2 > 0 such that

κ(x) ≤ λ1x + λ2.

Remark 2.9 In view of Assumption A, we can see clearly, for a special case, if κ(|x|) = K |x|,
then the Lipschitz condition is recovered. Therefore, Assumption A is much weaker than
the usual Lipschitz condition.

Next, according to Lemma 3.1 in [37], the solution of impulsive stochastic dynamical
system (1) can be given by the following integral equation:

x(t) = x0 +
∫ t

0
a
(
s, x(s)

)
ds +

∫ t

0
b
(
s, x(s)

)
d◦W H (s) +

∑

0<tj<t

Ij
(
x(tj)

)
. (2)

Now, consider the standard ISDE with fBm

xε(t) = x0 + ε2H
∫ t

0
a
(
s, xε(s)

)
ds + εH

∫ t

0
b
(
s, xε(s)

)
d◦W H(s) + εH

∑

0<tj<t

Ij
(
xε(tj)

)
, (3)

where ε ∈ (0, ε0] is a positive small parameter and ε0 is a fixed number. Moreover, the
averaged SDE of the standard ISDE (3) is

zε(t) = x0 + ε2H
∫ t

0

[
ā
(
zε(s)

)
+ Ī

(
zε(s)

)]
ds + εH

∫ t

0
b̄
(
zε(s)

)
d◦W H(s), (4)

where the functions ā(x) : Rn → R
n, b̄(x) : Rn → R

n and Ī(x) : Rn → R
n are measurable

functions satisfying

ā(x) =
1
T

∫ T

0
a(t, x) dt,

b̄(x) =
1
T

∫ T

0
b(t, x) dt,

Ī(x) =
1
T

k∑

j=1

Ij(x).

Assumption B For any x, y ∈R
n, there exist positive constants N1 and N2 such that

∣
∣Ij(x)

∣
∣2 ≤ N1,

∣
∣Ij(x) – Ij(y)

∣
∣2 ≤ N2|x – y|2.

Assumption C For all t ∈ [0, T], x ∈R
n, the coefficients of Eq. (3) and Eq. (4) are bounded.

Then there exists a positive constant M such that

∣∣a(t, x)
∣∣2 ≤ M,

∣∣b(t, x)
∣∣2 ≤ M,

∣∣ā(x)
∣∣2 ≤ M,

∣∣b̄(x)
∣∣2 ≤ M.

Now, the existence and uniqueness result for Eq. (2) is given by the following theorem.

Theorem 2.10 Assume that Assumptions A–C are satisfied. Then, for every initial value
x0 ∈R

n, there exists a unique solution x(t) to Eq. (2) on [0, T].
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Proof The proof is a special case of the proof of Theorem 3.1 in Abouagwa et al. [38] and
easy to be derived. So, we omit the proof here. �

3 Periodic averaging principle
In this section, we study the periodic averaging principle of ISDEs driven by fBm under
non-Lipschitz condition.

In order to provide the periodic averaging results, we assume that the functions a and b
are T-periodic in the first argument and the impulses Ij are periodic in the sense that there
exist k ∈ N such that 0 ≤ t1 < t2 < · · · < tk < T , and for every j > k, we have tj = tj–k + T ,
Ij = Ij–k .

Following Theorem 3.6 in Mao et al. [39], we now establish our main result which is
used for revealing the relationship between the processes xε(t) and zε(t).

Theorem 3.1 Consider standard ISDE (3) and averaging SDE (4) if Assumptions A–C
hold. Then, for T > 0, the following equality is satisfied:

lim
ε→0

E
∣
∣xε(t) – zε(t)

∣
∣2 = 0. (5)

Proof From Eqs. (3) and (4), taking expectation and employing the basic inequality |a +
b + c|2 ≤ 3|a|2 + 3|b|2 + 3|c|2, we obtain

E
∣∣xε(t) – zε(t)

∣∣2 ≤ 3ε4HE
∣
∣∣∣

∫ t

0
a
(
s, xε(s)

)
– ā

(
zε(s)

)
ds

∣
∣∣∣

2

+ 3ε2HE
∣∣
∣∣

∫ t

0
b
(
s, xε(s)

)
– b̄

(
zε(s)

)
d◦W H (s)

∣∣
∣∣

2

+ 3ε2HE

∣∣
∣∣
∣

∞∑

j=1

Ij
(
xε(tj)

)
–

∫ t

0
Ī
(
zε(s)

)
ds

∣∣
∣∣
∣

2

=
3∑

l=1

Ql.

Starting with the first term Q1, we have

Q1 ≤ 6ε4HE
∣
∣∣
∣

∫ t

0
a
(
s, xε(s)

)
– a

(
s, zε(s)

)
ds

∣
∣∣
∣

2

+ 6ε4HE
∣
∣∣
∣

∫ t

0
a
(
s, zε(s)

)
– ā

(
zε(s)

)
ds

∣
∣∣
∣

2

= Q11 + Q12.

For Q11, by applying the Cauchy–Schwarz inequality, Jensen’s inequality, and Assump-
tion A, one can get

Q11 ≤ 6ε4HE
(

t
∫ t

0

∣∣a
(
s, xε(s)

)
– a

(
s, zε(s)

)∣∣2 ds
)

≤ 6ε4H sup
0≤t≤u

t
(

E
∫ t

0
κ
(∣∣xε(s) – zε(s)

∣
∣2)ds

)

≤ 6ε4Hu
∫ t

0
κ
(
E
∣
∣xε(s) – zε(s)

∣
∣2)ds.
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Now, to deal with Q12, let m be the largest positive integer such that mT ≤ t. Then, for
every i = 1, . . . , m,

Q12 ≤ 12ε4HE

∣
∣∣∣
∣

m∑

i=1

∫ iT

(i–1)T

[
a
(
s, zε(s)

)
– ā

(
zε(s)

)]
ds

∣
∣∣∣
∣

2

+ 12ε4HE
∣∣∣
∣

∫ t

mT

[
a
(
s, zε(s)

)
– ā

(
zε(s)

)]
ds

∣∣∣
∣

2

≤ 36ε4HE

∣∣
∣∣
∣

m∑

i=1

∫ iT

(i–1)T

[
a
(
s, zε(s)

)
– a

(
s, zε(iT)

)]
ds

∣∣
∣∣
∣

2

+ 36ε4HE

∣
∣∣
∣∣

m∑

i=1

∫ iT

(i–1)T

[
a
(
s, zε(iT)

)
– ā

(
zε(iT)

)]
ds

∣
∣∣
∣∣

2

+ 36ε4HE

∣∣
∣∣
∣

m∑

i=1

∫ iT

(i–1)T

[
ā
(
zε(iT)

)
– ā

(
zε(s)

)]
ds

∣∣
∣∣
∣

2

+ 12ε4HE
∣
∣∣
∣

∫ t

mT

[
a
(
s, zε(s)

)
– ā

(
zε(s)

)]
ds

∣
∣∣
∣

2

. (6)

Note that, by the definition of ā, we have

E

∣
∣∣
∣∣

m∑

i=1

∫ iT

(i–1)T

[
a
(
s, zε(iT)

)
– ā

(
zε(iT)

)]
ds

∣
∣∣
∣∣

2

≤ m
m∑

i=1

E
∣∣∣
∣

∫ T

0
a
(
s, zε(iT)

)
ds – Tā

(
zε(iT)

)
∣∣∣
∣

2

= 0,

thus, by the Jensen inequality and Assumptions A, C, Eq. (6) becomes

Q12 ≤ 72ε4HmT
∫ T

0
κ
(
E
∣
∣zε(s) – zε(iT)

∣
∣2)ds + 48ε4HuMT .

Then we can deduce that Q1 has the following approximation:

Q1 ≤ 6ε4Hu
∫ t

0
κ
(
E
∣∣xε(s) – zε(s)

∣∣2)ds

+ 72ε4HmT
∫ T

0
κ
(
E
∣∣zε(s) – zε(iT)

∣∣2)ds + 48ε4HuMT

:= εHK1

∫ t

0
κ
(
E
∣∣xε(s) – zε(s)

∣∣2)ds

+ εHK2

∫ T

0
κ
(
E
∣∣zε(s) – zε(iT)

∣∣2)ds + εHO1. (7)
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Now, to estimate Q2, we have

Q2 ≤ 6ε2HE
∣
∣∣
∣

∫ t

0
b
(
s, xε(s)

)
– b

(
s, zε(s)

)
d◦W H (s)

∣
∣∣
∣

2

+ 6ε2HE
∣
∣∣
∣

∫ t

0
b
(
s, zε(s)

)
– b̄

(
zε(s)

)
d◦W H (s)

∣
∣∣
∣

2

= Q21 + Q22. (8)

Thanks to Lemma 2.7 and Assumption A, we can obtain

Q21 ≤ 12ε2Hu2H–1H
∫ t

0
κ
(
E
∣∣xε(s) – zε(s)

∣∣2)ds + 24ε2H u2C.

And, similar to Eq. (6),

Q22 ≤ 12ε2HE

∣∣∣
∣∣

m∑

i=1

∫ iT

(i–1)T

[
b
(
s, zε(s)

)
– b̄

(
zε(s)

)]
d◦W H (s)

∣∣∣
∣∣

2

+ 12ε2HE
∣∣
∣∣

∫ t

mT

[
b
(
s, zε(s)

)
– b̄

(
zε(s)

)]
d◦W H (s)

∣∣
∣∣

2

≤ 36ε2HE

∣∣∣
∣∣

m∑

i=1

∫ iT

(i–1)T

[
b
(
s, zε(s)

)
– b

(
s, zε(iT)

)]
d◦W H (s)

∣∣∣
∣∣

2

+ 36ε2HE

∣∣
∣∣
∣

m∑

i=1

∫ iT

(i–1)T

[
b
(
s, zε(iT)

)
– b̄

(
zε(iT)

)]
d◦W H (s)

∣∣
∣∣
∣

2

+ 36ε2HE

∣∣
∣∣
∣

m∑

i=1

∫ iT

(i–1)T

[
b̄
(
zε(iT)

)
– b̄

(
zε(s)

)]
d◦W H (s)

∣∣
∣∣
∣

2

+ 12ε2HE
∣
∣∣∣

∫ t

mT

[
b
(
s, zε(s)

)
– b̄

(
zε(s)

)]
d◦W H (s)

∣
∣∣∣

2

,

employing Lemma 2.7 and Assumptions A, C implies

Q22 ≤ 144ε2Hu2H–1mTH
∫ T

0
κ
(
E
∣∣zε(s) – zε(iT)

∣∣2)ds + 288ε2H Cu2

+ 72ε2Hu2H–1mTHE
∫ T

0

∣∣b
(
s, zε(s)

)
– b̄

(
zε(s)

)∣∣2 ds + 144ε2H Cu2

+ 24ε2Hu2H–1HE
∫ T

0

∣
∣b

(
s, zε(s)

)
– b̄

(
zε(s)

)∣∣2 ds + 48ε2HCu2

≤ 144ε2Hu2H–1mTH
∫ T

0
κ
(
E
∣∣zε(s) – zε(iT)

∣∣2)ds + 288ε2H Cu2

+ 288ε2Hu2H–1mHT2M + 144ε2HCu2

+ 96ε2Hu2H–1mHT2M + 48ε2HCu2.
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Consequently, taking Q21 and Q22 into account, we conclude that

Q2 ≤ 12ε2Hu2H–1H
∫ t

0
κ
(
E
∣∣xε(s) – zε(s)

∣∣2)ds + 24ε2Hu2C

+ 144ε2Hu2H–1mTH
∫ T

0
κ
(
E
∣
∣zε(s) – zε(iT)

∣
∣2)ds + 288ε2HCu2

+ 288ε2Hu2H–1mHT2M + 144ε2H Cu2 + 96ε2Hu2H–1mHT2M + 48ε2HCu2

:= εHK3

∫ t

0
κ
(
E
∣
∣xε(s) – zε(s)

∣
∣2)ds

+ εHK4

∫ T

0
κ
(
E
∣∣zε(s) – zε(iT)

∣∣2)ds + εHO2. (9)

Arriving at the last term Q3, we apply Assumption B to obtain

Q3 ≤ 6ε4Hk(m + 1)E
k∑

j=1

∣
∣Ij

(
xε(tj)

)∣∣2

+ 6ε4Hk(m + 1)
t

T2 E
k∑

j=1

∫ t

0

∣∣Ij
(
zε(s)

)∣∣2 ds

≤ 6ε4Hk2(m + 1)N1 + 6ε4Hk2(m + 1)2N1 := εHO3. (10)

Now, combining (7), (9), and (10) together, we get

E
∣
∣xε(t) – zε(t)

∣
∣2 ≤ εHÕ + εH (K2 + K4)

∫ T

0
κ
(
E
∣
∣zε(s) – zε(iT)

∣
∣2)ds

+ εH (K1 + K3)
∫ t

0
κ
(
E
∣∣xε(s) – zε(s)

∣∣2)ds, (11)

where Õ = O1 + O2 + O3. Obviously, the function κ(x) is nondecreasing on R+ and κ(0) = 0.
Then, for any t0 > 0, by setting G(t) =

∫ t
t0

ds
κ(s) , it follows from Lemma 2.8 that

E
∣
∣xε(t) – zε(t)

∣
∣2 ≤ G–1

(
G

[
εHÕ + εH (K2 + K4)

∫ T

0
κ
(
E
∣
∣zε(s) – zε(iT)

∣
∣2)ds

]

+ εH (K1 + K3)T
)

.

Note that

{
εHÕ + εH (K2 + K4)

∫ T

0
κ
(
E
∣∣zε(s) – zε(iT)

∣∣2)ds
}

→ 0,

as ε converges to zero. Recalling the condition
∫

0+
ds

κ(s) = ∞, we can conclude that

G
[
εHÕ + εH (K2 + K4)

∫ T

0
κ
(
E
∣∣zε(s) – zε(iT)

∣∣2)ds
]

+ εH (K1 + K3)T → –∞.
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On the other hand, because the function G is strictly increasing, we obtain that G has an
inverse function which is strictly increasing too, and G–1(–∞) = 0. Namely,

G–1
(

G
[
εHÕ + εH (K2 + K4)

∫ T

0
κ
(
E
∣
∣zε(s) – zε(iT)

∣
∣2)ds

]
+ εH (K1 + K3)T

)
→ 0

as ε → 0. Finally, we get

lim
ε→0

E
∣
∣xε(t) – zε(t)

∣
∣2

≤ lim
ε→0

(
G–1

(
G

[
εH (Õ) + εH (K2 + K4)

∫ T

0
κ
(
E
∣
∣zε(s) – zε(iT)

∣
∣2)ds

]

+ εH (K1 + K3)T
))

= 0.

This completes the proof. �

Remark 3.2 In Theorem 3.1, we establish the strong convergence (in the moment sense)
of the processes xε and zε under non-Lipschitz condition. In other words, we have proved
that, for a sufficiently small ε, the solutions of xε and zε are close enough.

For the sake of establishing the periodic stochastic averaging of Eq. (4) in finite time
interval, we need the following auxiliary lemma.

Lemma 3.3 Let (4) be averaged SDE of standard ISDE (3). If Assumption C holds, then, for
ε1 ∈ (0, ε0], there exist ε ∈ (0, ε1] and a positive constant D > 0 such that

E
∣∣zε(t) – zε(iT)

∣∣2 ≤ D

for all t ∈ [(i – 1)T , iT], i = 1, 2, . . . , m, m ∈N.

Proof By Eq. (4), taking expectation and using the simple inequality |a + b|2 ≤ 2|a|2 + 2|b|2
yield

E
∣
∣zε(t) – zε(iT)

∣
∣2 ≤ 2ε4HE

∣∣
∣∣

∫ t

iT
ā
(
zε(s)

)
ds

∣∣
∣∣

2

+ 2ε2HE
∣∣
∣∣

∫ t

iT
b̄
(
zε(s)

)
d◦W H (s)

∣∣
∣∣

2

.

Now, let 0 ≤ t ≤ u ≤ T , then by the Cauchy–Schwarz inequality, Lemma 2.7, and Assump-
tion C we get

E
∣∣
∣∣

∫ t

iT
ā
(
zε(s)

)
ds

∣∣
∣∣

2

≤ uE
∫ t

iT

∣
∣ā

(
zε(s)

)∣∣2 ds ≤ (m + 1)T2M

and

E
∣∣
∣∣

∫ t

iT
b̄
(
zε(s)

)
d◦W H(s)

∣∣
∣∣

2

≤ 2Hu2H–1E
∫ t

iT

∣
∣b̄

(
zε(s)

)∣∣2 ds + 4Cu2

≤ 2H(m + 1)2H–1T2HM + 4C(m + 1)2T2,

where m is the largest integer such that mT ≤ t.
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Finally, one can deduce that

E
∣∣zε(t) – zε(iT)

∣∣2 ≤ 2ε4H (m + 1)T2M + 4ε2HH(m + 1)2H–1T2HM

+ 8ε2HC(m + 1)2T2

:= D.

Hence, proved. �

Theorem 3.4 Suppose that Assumptions A–C are fulfilled for standard ISDE (3) and for
averaged SDE (4), then, for given β > 0, α ∈ (0, 1), and ε1 ∈ (0, ε0], there exist γ > 0 and
ε ∈ (0, ε1] such that

E
∣∣xε(t) – zε(t)

∣∣2 ≤ γ εH (12)

for all t ∈ [0,βε–αH ].

Proof By Assumption A, the concave function κ satisfies

κ(x) ≤ λ1x + λ2,

where λ1 and λ2 are positive constants. Applying this property for Eq. (11) yields

E
∣∣xε(t) – zε(t)

∣∣2 ≤ εHK5λ1

∫ t

0
E
∣∣xε(s) – zε(s)

∣∣2 ds + εHK5λ2t

+ εHK6λ1

∫ T

0
E
∣∣zε(s) – zε(iT)

∣∣2 ds + εHK6λ2T + εHÕ.

Thanks to Lemma 3.3, we can obtain

E
∣
∣xε(t) – zε(t)

∣
∣2 ≤ εHK5λ1

∫ t

0
E
∣
∣xε(s) – zε(s)

∣
∣2 ds + εHK5λ2t

+ εHK6λ1DT + εHK6λ2T + εHÕ

:= εHK
∫ t

0
E
∣∣xε(s) – zε(s)

∣∣2 ds + εHO.

Finally, applying Gronwall’s inequality implies

E
∣∣xε(t) – zε(t)

∣∣2 ≤ εHOeεH Kt .

Now, choose α ∈ (0, 1) and β > 0, we can select ε1 ∈ (0, ε0] such that, for every ε ∈ (0, ε1],
t ∈ [0,βε–αH ] ⊆ [0,∞). And let γ = OeKβ , we conclude

E
∣
∣xε(t) – zε(t)

∣
∣2 ≤ γ εH .

Therefore, Theorem 3.4 is proved. �
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Remark 3.5 Theorem 3.4 indicates that the order of convergence of the processes xε and zε

in finite time is about ε–αH for α ∈ (0, 1).

Next, we shall use the previous results to establish the convergence in probability be-
tween the solutions of Eq. (3) and Eq. (4).

Corollary 3.6 Let Assumptions A–C hold, for arbitrary small number δ > 0, there exist
ε1 ∈ (0, ε0], β > 0, and 0 < α < 1 such that, for all ε ∈ (0, ε1], we have

lim
ε→0

P
(

sup
0≤t≤βε–αH

∣
∣xε(t) – zε(t)

∣
∣ > δ

)
= 0.

Proof By Theorem 3.4 and employing the Chebyshev–Markov inequality, for any given
number δ > 0, one can obtain that

P
(

sup
0≤t≤βε–αH

∣
∣xε(t) – zε(t)

∣
∣ > δ

)
≤ 1

δ2 E
(

sup
0≤t≤βε–αH

∣
∣xε(t) – zε(t)

∣
∣2

)

≤ εHOeεH Kt

δ2 ,

letting ε → 0. Then the required result follows. �

4 Example
In this section, we provide an example to illustrate the foregoing averaging principle re-
sults.

Consider the following impulsive stochastic dynamical system:

dxε(t) = –ε2H dt + εH cos2(t)λd◦W H(t), t �= tj

�xε(t) = ε2Hj3xε

(
t–
j
)
, t = tj, j ∈N,

xε(0) = x0,

(13)

where a(t, x) = –1, b(t, x) = λ cos2(t), and Ij(x) = j3x. Let T = 1 and λ = 3. Then, by the
definitions of ā(·), b̄(·), and Ī(·) in Sect. 2, we have

ā(zε) =
1
T

∫ T

0
a(t, zε) dt = –1,

b̄(zε) =
1
T

∫ T

0
b(t, zε) dt = λ

∫ 1

0
cos2(t) dt = 3 × 0.73 = 2.19,

Ī(zε) =
1
T

k∑

j=1

j3zε = zε

k∑

j=1

j3 =
k2(k + 1)2

4
zε .

So then, the solution to averaged SDE for the impulsive dynamical system (13) can be
interpreted as follows:

zε(t) = x0 +
k2(k + 1)2

4
ε2H

∫ t

0

(
zε(s) – 1

)
ds + 2.19εH

∫ t

0
d◦W H (t). (14)
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It is easy to verify that the conditions of Theorem 3.1, Theorem 3.4, and Corollary 3.6 are
satisfied. Then the solution of averaged SDEs (14) converges to that of standard Eq. (13)
in the sense of mean square and in probability.
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