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Abstract
The key objective of this paper is to study and discuss the application of fractional
calculus on an arbitrary-order inventory control problem. Using the concepts of
fractional calculus followed by fractional derivative, we construct different possible
models like generalized fractional-order economic production quantity (EPQ) model
with the uniform demand and production rate and generalized fractional-order EPQ
model with the uniform demand and production rate and deterioration. Also, we
show that the classical EPQ model is the particular case of the corresponding
generalized fractional EPQ model. This greatly facilitates the researcher a novel tactic
to analyse the solution of the EPQ model in the presence of fractional index.
Furthermore, this attempt also provides the solution obtained through the
optimization techniques after using the real distinct poles rational approximation of
the generalized Mittag-Leffler function.

Keywords: Fractional derivative; Differential equation of arbitrary-order; EPQ model;
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1 Introduction
The journey of the concept of fractional calculus (FC) has started in the seventeenth cen-
tury. Newton and Leibnitz are considered to be the first researchers among the mathemati-
cians for working in this direction in mathematics. Through many decades the concepts
regarding FC has been used to illustrate many real life problems relating to various fields
of science and economy. FC explores integrals and derivatives of functions. Here the order
of differentiation may be real or complex and hence in a particular case it may be of integer
order. These days, global interest in FC has seemed to be exponential. Due to the differ-
ent results of fractional derivatives, FC has attained much attention for modelling of the
image processes, and various fields of mathematics, economics, physics and engineering
[1–7].

A differential equation is understood to be a fractional differential equation (FDE) when
differential operator is of a fractional order. FC simplifies the idea of a derivative of the
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integer order to a derivative operator of an arbitrary-order (may be real or complex).
Both in the theoretic and useful outcomes had sharp out that FDEs extant outstanding
outcomes in solving the different multipart problems that stand up in the field of engi-
neering and science. It was established by several authors (see, e.g., [8–10]). It has been
established that the fractional-order modelling is mostly beneficial to symbolize systems
where computational effect on productions, this quality is the most important gain [11].
For the solutions of FDEs, it is complicated to acquire the analytical solutions owing their
nonlocal stuff of the fractional derivative. Therefore, some systems were altered to ob-
tain assessed solutions such as spectral methods [12], variational iteration methods [13],
differential transform method [14] and Adomian decomposition method [15]. In recent
years, researchers have had much attention for the field of FDEs. Recently, Hajipour et al.
[16] discussed an accurate discretization of a variable-order fractional reaction–diffusion
equation. The variable-order fractional description of compression deformation of amor-
phous glassy polymers was considered by Meng et al. [17]. The results for the nonlinear
dynamical systems within the generalized fractional derivatives with Mittag-Leffler kernel
were illustrated by Baleanu et al. [18]. For application purposes a new fractional analysis
on the interaction of HIV with CD4+ T-cells was treated by Jajarmi and Baleanu [19].
A new aspect of the poor nutrition in the life cycle within the FC was investigated by
Baleanu et al. [20]. Suboptimal control of fractional-order dynamic systems with delay ar-
gument was investigated by Jajarmi and Baleanu [21]. Recently, some interesting work re-
garding very realistic and physical problems was done as an application of the fractional-
or arbitrary-order derivative method [22]. A fractional epidemiological model has been
studied to describe computer viruses by Singh et al. [23]. Thereafter, Singh et al. [24] ex-
tended the Biswas–Milovic (BM) model which plays a vital role to describe the long dis-
tance optical communications. In addition, a rumor spreading dynamical model in a social
network has been described by Singh. et al. [25]. A diabetes model and its complications
with the Caputo–Frarizo fractional derivative have been investigated by Singh et al. [26].
Also, there is some work related to the application of FC on some production inventory
problems which is interesting [27–31]. Also, a solution algorithm of fractional Drinfeld–
Sokolov–Wilson equation in the numerical approach was given by Singh et al. [32].

1.1 Research gap between our work and related published work with our
contribution

There are few papers [28–31] on the application of FC on EOQ models. On comparison,
the same work on EPQ model is a little rare [27]. Moreover, the existing literature does not
explain clearly the importance of the introduction of fractional concept on inventory the-
ory. Besides that, there is no detailed explanation of the analytical or numerical optimiza-
tion on the generalized EPQ model. The present study tries to overcome this deficiency.

Apart from these, in this paper we introduce the generalized EPQ model with deterio-
ration which is totally novel. For numerical and analytical optimization, we use in a real
distinct pole approximation the Mittag-Leffler function which is given by Iyiola, Asante-
Asamani and Wade [33].

The contribution of the current study is:
(i) The modification of the woks by Das and Roy [27], especially in numerical result

and motivation for using arbitrary order.
(ii) Arbitrary-order generalization of an EPQ model with and without deterioration

when only the rate change of the inventory problem is arbitrary.
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(iii) Application of a real distinct pole rational approximation to optimize the inventory
problem with Mittag-Leffler function. This was not used by earlier researchers of
the fractional-order inventory model.

1.2 The idea for taking the use of fractional calculus in inventory model
Firstly, though the concept of the FC is a little abstract, one of its finest physical interpre-
tations is that it has power to remember the previous effects of the input in order to deter-
mine the current output. Again, in the real world production system, the demand varies
with the environment and circumstances. One of the important issues for the marketing
system is the memory effect. Generally, the selling of the products depends on the quality
of the product as well as the attitude or dealing policy of the supplier to the customers. Due
to the good previous experience, a consumer gains interest for buying a product. On the
contrary, for the bad impression on product or supplier, the consumer’s demand gradually
decreases. Thus, the memory effect is an important issue for the management system and
intuitionally the introduction of the FC is justified.

Secondly, our main objective in this study is to view some common EPQ models in more
generalized form. In this perspective, arbitrary-order calculus is an important tool. Usu-
ally, an inventory model is described by differential equations of integer order. But one
thing to remember is that the FC is not the calculus of fractional order only. Here, the
order may be real, complex or in particular integer.

So, if we use the notion of fractional derivative, integration, and differential equation,
then we have the following facilities.

First of all, the EPQ model described by FDE is more realistic as it illustrates the idea of
memory effect of the previous experience. Secondly, introducing the fractional (arbitrary)
differential equation to describe the model, we can extend the theory of EPQ. And lastly,
the classical inventory model with integer-order differential equation can be described as
a particular case of the fractional one.

1.3 Structure of the paper
Furthermore, the remaining structure of the paper is organized as follows. After a detailed
discussion and a general overview on FC in Sect. 2, the notations, units and their descrip-
tions are elaborated in Sect. 3. The inventory problem of EPQ type is defined in Sect. 4.
Details discussion of mathematical modelling for EPQ in different scenario is illustrated
in Sect. 5. Theoretical or analytical results of corresponding optimization of the problems
are shown in Sect. 6. The numerical results are shown in Sect. 7. The concluding remarks
are made in Sect. 8.

2 General overview on fractional calculus
2.1 Riemann–Liouville fractional derivative
Let f be a real valued continuous function. Then the left Riemann–Liouville derivative of
fractional order α is defined to be

aDα
x
(
f (x)

)
=

1
Γ (m – α)

(
d

dx

)m ∫ x

a
(x – t)(m–α–1)f (t) dt,

where x > 0 and m < α < m + 1.



Rahaman et al. Advances in Difference Equations         (2020) 2020:16 Page 4 of 30

And the right Riemann–Liouville derivative of fractional order α is defined to be

aDα
x
(
f (x)

)
=

1
Γ (m – α)

(
–

d
dx

)m ∫ a

x
(x – t)(m–α–1)f (t) dt,

where x > 0 and m < α < m + 1.

Remark 2.1 The basic difference of the R–L derivative from the ordinary calculus is that
the R–L derivative of constant term is not equal to zero.

Remark 2.2 For m = 1 the left and right Riemann–Liouville derivative will be of the form
aDα

x (f (x)) = 1
Γ (1–α)

d
dx

∫ x
a (x – t)–αf (t) dt, where x > 0 and aDα

x (f (x)) = 1
Γ (1–α) (– d

dx )
∫ a

x (x –
t)–αf (t) dt, where x > 0.

2.2 Riemann–Liouville fractional integral
Let f be a real valued continuous function. Then the Riemann–Liouville integral of frac-
tional order α is defined to be

aD–α
x

(
f (x)

)
=

1
Γ (α)

∫ x

a
(x – t)(α–1)f (t) dt, where x > 0 and m < α < m + 1.

Remark 2.3 For a = 0 above we have the definition of the Riemann integral and for a = –∞
the same is the definition of the Liouville integral.

2.3 Memory dependent derivative
Using the kernel, the derivative of any function can be written as

D
(
f (x)

)
=

∫ x

a
K(x – t)f ′(t) dt.

Remark 2.4
(1) If we take K(x – t) = δ(x – t), it gives the memory-less derivative i.e. a derivative of

integer order.
(2) If we consider K(x – t) = (x–t)(m–α)

Γ (m–α) , then we get the expression

Dα
a
(
f (x)

)
=

∫ x

a
K(x – t)f m(t) dt.

Here f m denotes the common derivative of mth order.
(3) The fractional derivative is not a local property. The total effects of the αth order

derivative on the interval [a, x] describe the variation of a system in which the
instantaneous change rate depends on the past state; it is called the “memory effect”.

(4) The memory strength is controlled by α. As α → 1, the system becomes weaker in
the sense of memory and for α = 1 it becomes totally memory-less. Lower value of α

indicates a long memory of the system.

2.4 Laplace transformation of fractional derivative
The differential equation of arbitrary-order is the generalization of the differential equa-
tion. There are several ideas to find the solution of a fractional differential equation and
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the Laplace transformation is one of them. In this section of our study, we give a brief
discussion of the Laplace transformation of a fractional derivative and its consequence.

Definition 2.1 The Laplace transform of a function f (t) is given by

F(s) = L
{

f (t); s
}

=
∫ ∞

0
e–stf (t) dt.

Definition 2.2 The inverse Laplace transform of a function F(s) is given by

f (t) = L–1(F(s)
)

=
∫ ∞

–∞
estF(s) ds.

Corollary 2.1 The Laplace transformation of the derivative of the integer order n is given
by

L
{

f n(t); s
}

= snF(s) –
n–1∑

k=0

skf (n–k–1)(0) = snF(s) –
n–1∑

k=0

s(n–k–1)f k(0).

2.5 Laplace transformation of the Riemann–Liouville derivative and integral
The Laplace transform associated with the Riemann–Liouville derivative having fractional
order p > 0 is given by

L
{

0Dp
t f (t); s

}
= spF(s) –

n–1∑

k=0

sk[
0Dp–k–1

t f (0)
]
, for n – 1 ≤ p < n.

The Laplace transform associated with the Riemann–Liouville integral having the order
p, where p > 0 is

L
{

0D–p
t f (t); s

}
= s–pF(s).

Corollary 2.2
(1) For n = 1 the last expression takes the form

L
{

0Dp
t f (t); s

}
= spF(s) – 0Dp–1

t f (0), where 0 ≤ p < 1.

(2) For n = 2 the last expression takes the form

L
{

0Dp
t f (t); s

}
= spF(s) – 0Dp–1

t f (0) – s
[

0Dp–2
t f (0)

]
, where 1 ≤ p < 2.

(3) The m-times differentiated Mittag-Leffler function is given by

E(m)
α,β (z) =

∞∑

k=0

(k + m)!
k!

zk

Γ (αk + αm + β)
.

Then L{tαm+β–1E(m)
α,β (atα); s} = m!sα–β

(sα–a)m+1 .
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2.6 Gamma function
Let z ∈C, then the Gamma function is given by

Γ (z) =
∫ ∞

0
e–ttz–1 dt, for Re(z) > 0.

By splitting this integral, at a point x ≥ 0, we obtain two incomplete gamma functions;

γ (z, x) =
∫ x

0
e–ttz–1 dt,

and Γ (z, x) =
∫ ∞

x e–ttz–1 dt.

Remark 2.5
(1) γ (z, x) + Γ (z, x) = Γ (z), for all x ≥ 0 and for all Re(z) > 0.
(2) If we consider Γ (1, x) = e–x then γ (1, x) = 1 – e–x.

2.7 Beta function
Let z, w ∈C then the Beta function is given by

B(z, w) =
∫ 1

0
tz–1(1 – t)w–1 dt, for Re(z), Re(w) > 0.

2.8 The Mittag-Leffler function
The exponential function ez has a great importance in the study of the differential equation
of integer order. This can also be written in a series form, which is given by

ez =
∞∑

k=0

zk

Γ (k + 1)
.

More generally, we can consider the expression

Eα(z) =
∞∑

k=0

zk

Γ (αk + 1)
, which is named the Mittag-Leffler function,

and the further generalization

Eα,β (z) =
∞∑

k=0

zk

Γ (αk + β)
, where α,β ∈C and Re(α) > 0;

this is also called the Mittag-Leffler function.

Remark 2.6
(1) For the special case of α = 1 and β = 1, we have E1,1(z) = ez .
(2) The Mittag-Leffler function plays a major role n the study of the functional calculus.

Corollary 2.3 Let z ∈ C, α,β ∈ C, Re(α) > 0 and m ∈ N, then the m-times differentiated
Mittag-Leffler function is given by

E(m)
α,β (z) =

∞∑

k=0

(k + m)!
k!

zk

Γ (αk + αm + β)
.
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2.9 A real distinct pole rational approximation of the generalized Mittag-Leffler
function

A real distinct pole rational function is given by

R∗(z) =
1 + az

(1 – bz)(1 – cz)
, where a, b, c ∈ R and a 	= b.

A real distinct pole rational approximation of the generalized Mittag-Leffler function,

Eα,β (–z) =
∞∑

k=0

(–z)k

Γ (αk + β)
,

is given by

Eα,β (–z) ≈ 1 – az
Γ (β)(1 + bz)(1 + cz)

,

where a = Γ (β)
Γ (α+β) – b – c, b = Γ (α+β)

Γ (2α+β) – 1
4 , c = Γ (β)Γ (2α+β)

Γ (α+β)(5Γ (2α+β)–4Γ (α+β)) .

Special cases
(1) Eα(z) = Eα,1(z) ≈ 1+az

(1–bz)(1–cz) .
Here a = 1

αΓ (α) – b – c, b = Γ (α)
2Γ (2α) – 1

4 , c = Γ (2α)
αΓ (α)(5Γ (2α)–2Γ (α)) .

(2) ez = E1,1(z) ≈ 1+ 5
12 z

(1– 1
4 z)(1– 1

3 z)
.

Remark 2.7 This is useful for solving scalar linear fractional differential equations.

3 Different notations, units and their description for inventory model
To describe our proposed problem, we use the following notations with certain units and
description (see Tables 1 and 2).

Table 1 EPQ model without deterioration

Notations Units Descriptions

c1 /unit Holding cost per unit time
c3 /unit Ordering cost per unit time
K Units Production rate per cycle
D Units Demand rate per cycle
T Year Total time cycle
t1 Year Production time
qmax Units Highest level of inventory
TAC /Year Total average cost
TACα,β /Year Total generalized average cost
α Constant The order of integration
β Constant The order of differention

Decision variable for integer-order model
T Year Total time cycle

Decision variable for arbitrary-order model
T Year Total time cycle
t1 Year Production time
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Table 2 EPQ model with deterioration

Notations Units Descriptions

ch /unit Holding cost per unit time
c0 /unit Ordering cost per unit time
cp /unit Production cost per unit time
K Units Production rate per cycle
D Units Demand rate per cycle
T Year Total time cycle
t1 Year Production time
qmax Units Highest level of inventory
θ1 Constant Rate of deterioration in [0, t1]
θ2 Constant Rate of deterioration in [t1, T ]
TAC /Year Total average cost
TACα,β /Year Total generalized average cost
α Constant The order of integration
β Constant The order of differention

Decision variable for integer/arbitrary-order model
T Year Total time cycle
t1 Year Production time

4 Defining the problem for inventory planning of EPQ type
4.1 Integer-order EPQ model without deterioration
The classical (integer-order) EPQ model is developed under the following assump-
tions:

(i) Demand is deterministic and uniform.
(ii) No shortage is allowed.

(iii) Lead time is zero.
(iv) Production rate is finite.
(v) Planning horizon is infinite.

4.2 Arbitrary-order EPQ model with deterioration
Along with all the above-mentioned assumptions, here, the additional assumption is that
the EPQ model is memory sensitive i.e. the demand depends on the memory of the cus-
tomer with the previous experience concerned with the behaviour of the shopkeeper or
the quality of the product etc.

4.3 Integer-order EPQ model with deterioration
Along with all the assumptions, mentioned in Section 4.1, the additional assumption is
that the products will be deteriorated with different rates in production time and non-
productive time.

4.4 Arbitrary-order EPQ model with deterioration
Along with all the assumptions, described in Section 4.3, the additional assumption is
that the EPQ model is memory sensitive i.e. the demand depends on the memory of the
customer with the previous experience concerned with the behaviour of the shopkeeper
or the quality of the product.

5 Details discussion of mathematical modelling for EPQ in different scenario
5.1 Classical (integer-order) EPQ model without deterioration (Model 1)
There are two parts of this whole cycle during the first scheduling period T . The produc-
tion starts at t = 0 and throughout the time interval [0, t1], the inventory level is increased
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Figure 1 EPQ model without deterioration

gradually at the rate K – D due to production rate K and to meet the demand the D. At
the time t = t1, the inventory reaches its highest level and here the production is stopped.
Then during the time interval [t1, T], the inventory level gradually decreases as regards
it being payable to happen up the customer’s demands and at t = T the inventory level
reaches 0, as no shortage is allowed (see Fig. 1).

If q(t) represents the inventory level at any time, then the corresponding differential
equation is given by

dq(t)
dt

= K – D, for 0 ≤ t ≤ t1, (5.1)

dq(t)
dt

= –D, for t1 ≤ t ≤ T . (5.2)

We have the boundary conditions q(0) = q(T) = 0.
Now (5.1) along with the initial condition gives q(t) = (K – D)t, for 0 ≤ t ≤ t1.
Let q(t1) = qmax.
Now (5.2) along with the initial condition gives q(t) = (T – t)D, for t1 ≤ t ≤ T .
So, we have

t1 =
qmax

K – D
(5.3)

and

T – t1 =
qmax

D
. (5.4)

So T = t1 + (T – t1) = qmax( 1
K–D + 1

D ), i.e.,

qmax = D
(

1 –
D
K

)
T . (5.5)

Some relevant costs
(i) The holding cost is

HC = c1

[∫ t1

o
q(t) dt +

∫ T

t1

q(t) dt
]

= c1

[
(K – D)

t2
1
2

+ D
(T – t1)2

2

]

=
c1

2

(
1 –

D
K

)
DT2, using the last three equations. (5.6)
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(ii) The total cost is

TC = c1 +
c1

2

(
1 –

D
K

)
DT2. (5.7)

(iii) The total average cost is

TAC =
c3

T
+

c1

2

(
1 –

D
K

)
DT. (5.8)

So, the classical EPQ model is

Minimize TAC(T) =
c3

T
+

c1

2

(
1 –

D
K

)
DT.

Subject to T > 0.
(5.9)

5.2 Generalized (arbitrary-order) EPQ model without deterioration (Model 2)
Here, we consider the memory effect with the same assumption and notations as for clas-
sical EPQ model. Then, the differential equation of fractional order α, due to memory
(0 ≤ α ≤ 1), corresponding to the generalized EPQ model, is

dαq(t)
dtα = K – D, for 0 ≤ t ≤ t1, (5.10)

dαq(t)
dtα = –D, for t1 ≤ t ≤ T , (5.11)

With the initial condition q(0) = 0 and boundary condition q(T) = 0. (5.12)

Let

q(t1) = qmax. (5.13)

Taking the Laplace transformation of (5.10) we get

sαq(s) – sα–0–1q(0) =
K – D

s
.

Or

q(t) = L–1(q(s)
)

= (K – D)
tα

Γ (α + 1)
. (5.14)

Then

q(t1) = qmax = (K – D)
tα
1

Γ (α + 1)
. (5.15)

Again, taking the Laplace transformation of (5.11) we have

sαq(s) – sα–0–1q(t1) =
–D

s
.
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Or

q(t) = L–1(q(s)
)

= qmax – D
tα

Γ (α + 1)
. (5.16)

Now, let t2 = T – t1.
Again, q(T) = 0 or

qmax =
DTα

Γ (α + 1)
. (5.17)

Hence, from (5.15) and (5.17) we have

(K – D)
tα
1

Γ (α + 1)
=

DTα

Γ (α + 1)
. (5.18)

Then, for 0 ≤ t ≤ t1, we get

q(t) = (K – D)
tα

Γ (α + 1)
. (5.19)

For t1 ≤ t ≤ T , we get

q(t) =
D

Γ (α + 1)
[
Tα – tα

]
. (5.20)

Now q(t) is continuous at t = t1.
So, qmax = q(t1) or (K – D) tα1

Γ (α+1) = D
Γ (α+1) [Tα – tα

1 ].
Or

Ktα
1 = DTα . (5.21)

Again, by (5.19) and (5.20) we get

qmax =
D

Γ (α + 1)

(
1 –

D
K

)
Tα . (5.22)

Some relevant costs
(i) The holding cost HCα,β (T) = c1D–βq(T).

Here

D–βq(T) =
1

Γ (β)

∫ T

0
(T – x)β–1q(x) dx

=
1

Γ (β)

[∫ t1

0
(T – x)β–1q(x) dx +

∫ T

t1

(T – x)β–1q(x) dx
]

=
1

Γ (β)

[∫ t1

0
(T – x)β–1(K – D)

xα

Γ (α + 1)
dx

+
∫ T

t1

(T – x)β–1 D
Γ (α + 1)

[
Tα – xα

]
dx

]

=
1

Γ (β)
(I1 + I2). (5.23)
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Here

I1 =
∫ t1

0
(T – x)β–1(K – D)

xα

Γ (α + 1)
dx (5.24)

and

I2 =
∫ T

t1

(T – x)β–1 D
Γ (α + 1)

[
Tα – xα

]
dx. (5.25)

So, the holding cost is

HCα,β (T) =
c1

Γ (β)
(I1 + I2). (5.26)

(ii) The total cost = the holding cost + the set up cost

=
c1

Γ (β)
(I1 + I2) + c3.

(iii) The total average cost, TACα,β (T) = c1
Γ (β)T (I1 + I2) + c3

T .
Therefore, the model will be of the form

Minimize TACα,β (T) =
c1

Γ (β)T
(I1 + I2) +

c3

T
.

Such that T > 0.
(5.27)

This is the generalized EPQ model.

5.3 Classical (integer-order) EPQ model with deterioration (Model 3)
During the first scheduling period T , there are two parts of this whole cycle. The produc-
tion starts at t = 0 and throughout the time interval [0, t1], the inventory level is increased
at the rate K – D due to the production rate K and to meet the demand we have D. Also the
deterioration affects the inventory level. In the time interval [0, t1], the deterioration rate is
θ1. At the time t = t1, the inventory reaches its highest level and the production is stopped.
Then, throughout the time interval [t1, T], the inventory level gradually decreases as re-
gards being payable to meet the customer’s demands and for the deterioration at the rate
θ2 and at t = Tthe inventory level reaches 0, as no shortage is allowed (see Fig. 2).

Figure 2 EPQ model with deterioration
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If q(t) represents the inventory level at any time, then the corresponding differential
equation is given by

dq(t)
dt

+ θ1q(t) = K – D, for 0 ≤ t ≤ t1, (5.28)

dq(t)
dt

+ θ2q(t) = –D, for t1 ≤ t ≤ T . (5.29)

We have the boundary conditions

q(0) = q(T) = 0. (5.30)

Also, let

qmax = q(t1). (5.31)

Solving Eqs. (5.28) and (5.29) and by using the boundary conditions we have

q(t) =
K – D

θ1

(
1 – e–θ1t), for 0 ≤ t ≤ t1. (5.32)

q(t) =
D
θ2

(
eθ2(T–t) – 1

)
, for t1 ≤ t ≤ T . (5.33)

Then,

qmax = q(t1) =
K – D

θ1

(
1 – e–θ1t1

)
, (5.34)

Also, using the continuity condition we have

K – D
θ1

(
1 – e–θ1t1

)
=

D
θ2

(
eθ2(T–t1) – 1

)
. (5.35)

Some relevant costs
(i) The total holding cost is

HC = ch

[∫ t1

0
q(t) dt +

∫ T

t1

q(t) dt
]

= ch

[
K – D

θ1
t1 +

K – D
θ2

1

(
e–θ1t1 – 1

)
+

D
θ2

2

{
eθ2(T–t1) – θ2(T – t1) – 1

}]
. (5.36)

(ii) The production cost,

PC = cp

∫ t1

0
K dt = cpKt1. (5.37)

(iii) Total cost of the system during the entire circle is given by

X = c0 + HC + PC. (5.38)
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(iv) Total average cost of the system during the entire circle is given by

TAC =
X
T

. (5.39)

So, the problem can be written as

Minimize TAC =
X
T

.

Subject to T > 0.
(5.40)

5.4 Generalized (arbitrary-order) EPQ model with deterioration (Model 4)
Here, we consider the memory effect with the same assumptions and notations as the
integer-order EPQ model with deterioration. Then the differential equation of fractional
order α, due to memory (0 ≤ α ≤ 1), corresponding to the generalized EPQ model, is

dαq(t)
dtα

+ θ1q(t) = K – D, for 0 ≤ t ≤ t1, (5.41)

dαq(t)
dtα

+ θ2q(t) = –D, for t1 ≤ t ≤ T . (5.42)

We have the boundary conditions

q(0) = q(T) = 0. (5.43)

Also, let

qmax = q(t1). (5.44)

Now, taking the Laplace transformation of (5.41) we have

sαq(s) – sα–0–1q(0) + θ1q(s) =
K – D

s
.

Or

q(s) =
K – D

θ1

θ1

s(sα + θ1)
. (5.45)

Therefore, using the inverse Laplace transformation of (5.45) we have

q(t) = L–1(q(s)
)

=
K – D

θ1
L–1

(
θ1

s(sα + θ1)

)

=
K – D

θ1

(
1 – Eα

(
–θ1tα

))
, for 0 ≤ t ≤ t1. (5.46)

Here

Eα

(
–θ1tα

)
=

∞∑

k=0

(–θ1tα)k

Γ (αk + 1)
. (5.47)
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Now, taking the Laplace transformation of (5.42) we have

sαq(s) – sα–0–1q(t1) + θ2q(s) =
–D

s
,

Or

q(s) =
sαqmax

s(sα + θ2)
–

D
θ2

θ2

s(sα + θ2)
. (5.48)

Therefore, using the inverse Laplace transformation of (5.48) we have

q(t) = L–1(q(s)
)

= L–1
(

sαqmax

s(sα + θ2)

)
–

D
θ2

L–1
(

θ2

s(sα + θ2)

)

= qmaxEα

(
–θ2tα

)
–

D
θ2

(
1 – Eα

(
–θ2tα

))
, for t1 ≤ t ≤ T . (5.49)

Here

Eα

(
–θ2tα

)
=

∞∑

k=0

(–θ2tα)k

Γ (αk + 1)
. (5.50)

Now, let t2 = T – t1.
Again, q(T) = 0.
So

qmax =
D
θ2

(1 – Eα(–θ2Tα))
(Eα(–θ2Tα))

=
D
θ2

{(
Eα

(
–θ2Tα

))–1 – 1
}

. (5.51)

Then (5.49) takes the form

q(t) =
D
θ2

{(
Eα

(
–θ2Tα

))–1 – 1
}

Eα

(
–θ2tα

)
–

D
θ2

(
1 – Eα

(
–θ2tα

))

=
D
θ2

{
Eα

(
θ2Tα

)
Eα

(
–θ2tα

)
– 1

}
. (5.52)

Again, from (5.46) we have

qmax = q(t1) =
K – D

θ1

(
1 – Eα

(
–θ1tα

1
))

. (5.53)

Now, from (5.51) and (5.52) we have

K – D
θ1

(
1 – Eα

(
–θ1tα

1
))

=
D
θ2

{(
Eα

(
–θ2Tα

))–1 – 1
}

. (5.54)

Then, for 0 ≤ t ≤ t1, we get

q(t) =
K – D

θ1

(
1 – Eα

(
–θ1tα

))
, (5.55)

and, for t1 ≤ t ≤ T , we get

q(t) =
D
θ2

{
Eα

(
θ2Tα

)
Eα

(
–θ2tα

)
– 1

}
. (5.56)

Now, q(t) is continuous at t = t1.
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So qmax = q(t1) i.e.,

K – D
θ1

(
1 – Eα

(
–θ1tα

1
))

=
D
θ2

{
Eα

(
θ2Tα

)
Eα

(
–θ2tα

1
)

– 1
}

. (5.57)

Some relevant costs
(i) The holding cost is

HCα,β (T) = chD–βq(T). (5.58)

Here

D–βq(T) =
1

Γ (β)

∫ T

0
(T – x)β–1q(x) dx

=
1

Γ (β)

[∫ t1

0
(T – x)β–1q(x) dx +

∫ T

t1

(T – x)β–1q(x)
]

dx

=
1

Γ (β)

[∫ t1

0
(T – x)β–1 K – D

θ1

(
1 – Eα

(
–θ1xα

))
dx

+
∫ T

t1

(T – x)β–1 D
θ2

{
Eα

(
θ2Tα

)
Eα

(
–θ2xα

)
– 1

}
dx

]

=
1

Γ (β)
(I1 + I2). (5.59)

Here

I1 =
∫ t1

0
(T – x)β–1 K – D

θ1

(
1 – Eα

(
–θ1xα

))
dx (5.60)

and

I2 =
∫ T

t1

(T – x)β–1 D
θ2

{
Eα

(
θ2Tα

)
Eα

(
–θ2xα

)
– 1

}
dx. (5.61)

(ii) The production cost is

PC = cpD–βK = cp
1

Γ (β)

∫ t1

0
(t1 – x)β–1K dx

= cpK
1

Γ (β)

∫ t1

0
(t1 – x)β–1 dx. (5.62)

(iii) The total cost of the system during the entire circle is given by

TPα,β (T) = c0 + HC + PC. (5.63)

(iv) The total average cost of the system during the entire circle is given by

TAPα,β (T) =
TPα,β (T)

T
. (5.64)
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So, the problem can be written as

Minimize TAPα,β (T) =
TPα,β (T)

T
.

Subject to T > 0.
(5.65)

6 Theoretical/analytical results for optimization of the problems
6.1 Model 1
Solving a (5.9), we can show that T∗ =

√
2c3

C1D(1– D
K )

is the optimal cycle time at which the

optimal average cost is TAC∗(T∗) =
√

2c1c3D(1 – D
K ) and q∗

max =
√

2c3D(1– D
K )

C1
.

6.2 Model 2
Case 6.1 (α = 1 and β = 1)

(i) The holding cost

HC1,1 =
c1

Γ (1)

[∫ t1

0
(T – x)1–1q(x) dx+

]∫ T

t1

(T – x)1–1q(x) dx

=
c1

Γ (1)

[∫ t1

0
(K – D)

x
Γ (1 + 1)

dx +
∫ T

t1

D
Γ (1 + 1)

[T – x] dx
]

= c1

[
(K – D)

t2
1
2

+ D
(T – t1)2

2

]

=
c1

2

(
1 –

D
K

)
DT2, using Kt1 = DT.

(ii) The total average cost TAC1,1 = c1
2 (1 – D

K )DT + c3
T .

So, the EPQ model is

Minimize TAC1,1(T) =
c1

2

(
1 –

D
K

)
DT +

c3

T
.

Such that T > 0.

Remark 6.1 This is the classical EPQ model. It is seen that the classical EPQ model is a
particular case of the general EPQ model.

Case 6.2 (When β = 1 and α is any arbitrary number such that 0 < α ≤ 1)
(i) The holding cost

HCα,1 =
c1

Γ (1)

[∫ t1

0
(T – x)1–1q(x) dx +

∫ T

t1

(T – x)1–1q(x) dx
]

=
1

Γ (1)

[∫ t1

0
(T – x)1–1(K – D)

xα

Γ (α + 1)
dx

+
∫ T

t1

(T – x)1–1 D
Γ (α + 1)

[
Tα – xα

]
dx

]

= c1
K – D

Γ (α + 1)
tα+1
1

(α + 1)
+ c1

D
Γ (α + 1)

[
Tα+1 –

Tα+1

α + 1
– Tαt1 +

tα+1
1

α + 1

]
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=
αc1

Γ (α + 2)
D

[
1 –

(
D
K

) 1
α
]

Tα+1,

using (K – D)
tα
1

Γ (α + 1)
=

D
Γ (α + 1)

[
Tα – tα

1
]

and Ktα
1 = DTα .

(ii) The total average cost

TACα,1 =
αc1

Γ (α + 2)
D

[
1 –

(
D
K

) 1
α
]

Tα +
c3

T
= c2Tα +

c3

T
,

where
αc1

Γ (α + 2)
D

[
1 –

(
D
K

) 1
α
]

= c2.

So, the EPQ model is

Min TACα,1(T) = c2Tα +
c3

T
.

Such that T > 0.

Analytical solution using geometric programming method

The corresponding dual problem is

Maximize d(w) =
(

c2

w1

)w1( c3

w2

)w2

,

subject to the normalized and orthogonal conditions

w1 + w2 = 1, αw1 – w2 = 0,

w1, w2 ≥ 0.

This gives w1 = 1
α+1 and w2 = α

α+1 .
Also, the primal-dual relationship will be

c2Tα = w1d(w),
c3

T
= w2d(w).

This gives T = ( c3
c2α

) 1
α+1 and

Maximize d(w) = c
1

α+1
2 c

α
α+1
3 α– α

α+1 (α + 1).

So, finally the problem will be

Minimize TACα,1(T) = c
1

α+1
2 c

α
α+1
3 α– α

α+1 (α + 1)

and T = ( c3
c2α

) 1
α+1 , qmax = D

Γ (α+1) (1 – D
K )Tα = D

Γ (α+1) (1 – D
K )( c3

c2α
) 1

α+1 .
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Case 6.3 (When α = 1 and β is any arbitrary number such that 0 < β ≤ 1) Therefore, the
model will be of the form

Min TAC1,β (T) =
c1

Γ (β)T
(I1 + I2) +

c3

T
.

Such that T > 0.

Here

I1 = (K – D)
∫ t1

0
x(T – x)β–1 dx = (K – D)

∫ t1

0

[
T(T – x)β–1 – (T – x)β

]
dx

= (K – D)
[

T (β+1) – (T – t1)β (T + βt1)
β(β + 1)

]

and

I2 = D
∫ T

t1

(T – x)β dx = –
D(T – t1)(β+1)

(β + 1)
.

Case 6.4 (For arbitrary values of α and β the analytical illustration for the model is a
little tough. For the sake of simplicity we take particular values of α and β . Here in our
discussion we take α = 0.5 and β = 0.5) Then,

I1 =
(K – D)
Γ (1.5)

∫ t1

0
(T – x)–0.5x0.5 dx =

(K – D)
Γ (1.5)

[
T sin–1

√
t1

T
–

√
t1(T – t1)

]
,

I1 =
D

Γ (1.5)

∫ T

t1

(T – x)–0.5(T0.5 – x0.5)dx

=
D

Γ (1.5)

[
2
√

T(T – t1) –
π

2
T + T sin–1

√
t1

T
–

√
t1(T – t1)

]
.

So the holding cost is HC0.5,0.5(T) = c1
Γ (0.5) (I1 + I2).

Therefore the model will be of the form

Minimize TAC0.5,0.5(T) =
c1

Γ (0.5)T
(I1 + I2) +

c3

T
.

Such that T > 0.

6.3 Model 3
We think that there is no need to illustrate further theoretical results after describing in
detail the part of mathematical modelling.

6.4 Model 4
Case 6.5 (When α = 1 and β = 1)

(i) The holding cost is HC1,1(T) = chD–1q(T).
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Here

D–1q(t) =
1

Γ (1)

∫ T

0
(T – x)1–1q(x) dx =

[∫ t1

0
q(x) dx +

∫ T

t1

q(x)
]

dx

=
[∫ t1

0

K – D
θ1

(
1 – E1

(
–θ1x1))dx

+
∫ T

t1

D
θ2

(
E1

(
–θ2x1) – E1

(
–θ2T1))dx

]

= (I1 + I2).

Here

I1 =
∫ t1

0

K – D
θ1

(
1 – E1

(
–θ1x1))dx =

∫ t1

0

K – D
θ1

(
1 – e–θ1x)dx

=
K – D

θ1
t1 +

K – D
θ2

1

(
e–θ1t1 – 1

)

and

I2 =
∫ T

t1

(T – x)1–1 D
θ2

{
E1

(
θ2T1)E1

(
–θ2x1) – 1

}
dx

=
∫ T

t1

D
θ2

(
eθ2(T–x) – 1

)
) dx

=
D
θ2

2

{
eθ2(T–t1) – θ2(T – t1) – 1

}
.

This shows that it is the holding cost for the classical EPQ model with deterioration.
(ii) The production cost is

PC = cpD–1K = cp
1

Γ (1)

∫ t1

0
(t1 – x)1–1K dx

= cpKt1.

This is the production cost of the classical EPQ model with deterioration.
(iii) The total cost of the system during the entire circle is given by

TC1,1(T) = c0 + HC + PC.

(iv) The total average cost of the system during the entire circle is given by

TAC1,1(T) =
TP1,1(T)

T
.

So the problem can be written as

Minimize TAC1,1(T) =
TP1,1(T)

T
.

Subject to T > 0.
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Remark 6.2 The above discussion shows that the classical EPQ model with deterioration
is a particular case of the generalized fractional EPQ model with deterioration.

Case 6.6 (When α is any arbitrary number such that 0 < α ≤ 1 and β = 1) Here, we use
the real distinct pole approximation of the Mittag-Leffler function to avoid complexity of
the function.

(i) The holding cost is

HCα,1(T)

= ch

∫ T

0
q(x) dx

= ch

[∫ t1

0
q(x) dx +

∫ T

t1

q(x)
]

dx

= ch

[∫ t1

0

K – D
θ1

(
1 – Eα

(
–θ1xα

))
dx +

∫ T

t1

D
θ2

{
Eα

(
θ2Tα

)
Eα

(
–θ2xα

)
– 1

}
dx

]

= ch

[∫ t1

0

K – D
θ1

(
1 –

1 – a1(θ1xα)
(1 + a2(θ1xα))(1 + a3(θ1xα))

)
dx

+
∫ T

t1

D
θ2

{
1 + b1(θ2Tα)

(1 – b2(θ2Tα))(1 – b3(θ2Tα))
1 – c1(θ2xα)

(1 + c2(θ2xα))(1 + c3(θ2xα))
– 1

}
dx

]
.

Here

a1 =
1

αΓ (α)
– a2 – a3, a2 =

Γ (α)
2Γ (2α)

–
1
4

, a3 =
Γ (2α)

αΓ (α)(5Γ (2α) – 2Γ (α))
;

b1 =
1

αΓ (α)
– b2 – b3, b2 =

Γ (α)
2Γ (2α)

–
1
4

, b3 =
Γ (2α)

αΓ (α)(5Γ (2α) – 2Γ (α))

and

c1 =
1

αΓ (α)
– c2 – c3, c2 =

Γ (α)
2Γ (2α)

–
1
4

, c3 =
Γ (2α)

αΓ (α)(5Γ (2α) – 2Γ (α))
.

For a particular value of α, say α = 0.5 we have the following:

HC0.5,1(T) = ch(I1 + I2),

where

I1 =
∫ t1

0

K – D
θ1

(
1 –

1 – a1(θ1xα)
(1 + a2(θ1xα))(1 + a3(θ1xα))

)
dx

=
K – D

θ1

×
{

t1 + 2
(a1a2a3θ

4
1 (a2 – a3)

√
t1 – a2

2θ
3
1 (a3 + a1) log(a3θ1

√
t1 + 1) + a2

3θ
3
1 (a2 + a1) log(a2θ1

√
t1 + 1))

a2
2a2

3θ
5
1 (a2 – a3)

}
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and

I2 =
∫ T

t1

D
θ2

{
1 + b1(θ2Tα)

(1 – b2(θ2Tα))(1 – b3(θ2Tα))
1 – c1(θ2xα)

(1 + c2(θ2xα))(1 + c3(θ2xα))
– 1

}
dx

=
D
θ2

[{
1 + b1(θ2

√
T)

(1 – b2(θ2
√

T))(1 – b3(θ2
√

T))

}
(J3 – J4) – T + t1

]
.

Here

J3 = –2
(c1c2c3θ

4
1 (c2 – c3)

√
T – c2

2θ
3
1 (c3 + c1) log(c3θ1

√
T + 1) + c2

3θ
3
1 (c2 + c1) log(c2θ1

√
T + 1))

c2
2c2

3θ
5
1 (c2 – c3)

,

J4 = –2
(c1c2c3θ

4
1 (c2 – c3)

√
t1 – c2

2θ
3
1 (c3 + c1) log(c3θ1

√
t1 + 1) + c2

3θ
3
1 (c2 + c1) log(c2θ1

√
t1 + 1))

c2
2c2

3θ
5
1 (c2 – c3)

.

(ii) The production cost is PC0.5,1 = cp
∫ t1

0 K dx = cpKt1.
So the problem can be written as

Minimize TAPα,1(T) =
c0 + HC + PC

T
.

Subject to T > 0.

Case 6.7 (When α = 1 and β is arbitrary number such that 0 < β ≤ 1)
(i) The holding cost is HC1,β (T) = chD–βq(T) = ch

Γ (β) (I1 + I2).
Here

I1 =
∫ t1

0

K – D
θ1

(T – x)β–1(1 – e–θ1x)dx

=
K – D

θ1

[
Tβ – (T – t1)β

β
– e–θ1T (–θ1)–β

{
Γ

(
β , θ1(t1 – T)

)
– Γ (β , –θ1T)

}]

and

I2 =
∫ T

t1

D
θ2

(T – x)β–1(eθ2(T–x) – 1
)

dx

=
D
θ2

[
(–θ2)–β

{
Γ (β , 0) – Γ

(
β , θ2(t1 – T)

)}
–

(T – t1)β

β

]
.

(ii) The production cost is PC1,β(T) = cpD–1K = cp
1

Γ (β)
∫ t1

0 (t1 – x)β–1K dx.
(iii) The total cost of the system during the entire circle is given by

TC1,β (T) = c0 + HC + PC.

So, the problem can be written as

Minimize TAC1,β(T) =
TP1,β(T)

T
.

Subject to T > 0.
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Case 6.8 For arbitrary values of α and β the problem becomes more complicated. But
for particular values of α and β the problem can be solved numerically with approach
described in Case 6.6.

7 Numerical results and sensitivity analysis
Some numerical examples have been taken and sensitivity analysis on the examples has
been done to justify the theoretical aspects.

7.1 Model 1
For numerical illustration, we take the following numerical values:

c1 = 4, c3 = 30, K = 2500, D = 1200.

Then the minimum total average cost is TAC∗ = 386.9884 which is obtained for the opti-
mal time cycle T∗ = 96.74709. Also then the maximum inventory level q∗

max = 96.74709.
In Table 3, the sensitivity of the optimality with respect to the values of the parameters

is shown.
From Table 3, we can make the following observations:

(i) As the values of c1 increase, T∗ gradually decreases and TAC∗ gradually increases.
This indicates that as the holding cost increases the total schedule time has to
decrease to minimize the total average cost.

Table 3 Sensitivity table for case Model 1

Parameters Change in values T∗ TAC∗ q∗
amx

c1 3.6 0.1634301 367.1294 101.9804
3.8 0.1590712 377.1896 99.26042
3.9 0.1570186 382.1204 97.97959
4 0.1550434 386.9884 96.74709
4.1 0.1531410 391.7959 95.55997
4.2 0.1513069 396.5451 94.41550
4.3 0.1495372 401.2381 93.31118

c3 27 0.1470871 367.1294 91.78235
28 0.1497862 373.8663 93.46657
29 0.1524375 380.4839 95.12098
30 0.1550434 386.9884 96.74709
31 0.1576063 393.3853 98.34633
32 0.1601282 399.6799 99.91997
33 0.1626109 405.8768 101.4692

K 2470 0.1559199 384.8129 96.20323
2480 0.1556237 385.5453 96.38632
2490 0.1553316 386/2704 96.56760
2500 0.1550434 386.9884 96.74709
2510 0.1547591 387.6993 96.92483
2520 0.1544786 388.4033 97.10083
2530 0.1542018 389.1005 97.27513

D 1170 0.1552376 386.5043 96.62608
1180 0.1551628 386.6906 96.67264
1190 0.1550981 386.8519 96.71298
1200 0.1550434 386.9884 96.74709
1210 0.1549987 387.1000 96.77500
1220 0.1549640 387.1868 96.79669
1230 0.1549392 387.2488 96.81219
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(ii) As the values of c3 increase, both T∗ and TAC∗ gradually increase. This fact can be
interpreted as follows: if the ordering cost increases then to minimize the total
average cost the inventory procedure needs to run a long time.

(iii) As the value of K increases, T∗ gradually decreases and TAC∗ gradually increases.
That means that, for a high production rate, the total schedule time must be shorter
and the total average cost will be minimized.

(iv) As the values of D increases, T∗ gradually decreases and TAC∗ gradually increases.
That means that to meet a large demand the total time must be shorter and then
obviously the total average cost will be minimized.

7.2 Model 2
We consider the same numerical value as taken for Model 1. Then, for this arbitrary model
we have the following cases:

Case 6.1: When α = 1 and β = 1

In the theoretical discussion we have shown that for this case Model 2 reduces to Model 1.
The same thing happens for the numerical example also, i.e., if we take the same numerical
example as Model 1 with α = 1 and β = 1 then we can illustrate Model 2 using Model 1.

Case 6.2: When α > 0 is arbitrary and β = 1

Here we discuss the same numerical example as Model 1, i.e., c1 = 4, c3 = 30, K = 2500,
D = 1200.

In Table 4, the sensitivity of the optimality with respect to the different values of the
memory index α is shown.

From Table 4, we can make the observation that there is a critical value of the mem-
ory parameter, say = 0.3, for which the minimized total average cost becomes maximum
(480.7231) and then the value of TAC∗ decreases above and below the table. The lower
values of α indicates a large memory. So, another interpretation from the table is that for
large memory the system needs more time to minimize the total average cost. That means
that to reach the same minimum cost like the memory-less inventory system, the dealer
has to change the policy of dealing with customers.

In Table 5, the sensitivity of the optimality with respect to the value of the parameters is
shown for the fixed values of the memory parameters α = 0.5 and β = 1.

Table 4 Results for α > 0 with the fixed value β = 1 of Case 6.2

α Γ (α + 2) Γ (α + 1) αc1
Γ (α+2)D[1 – (

D
K )

1
α ] = c2 T∗ TAC∗ q∗

max

0.1 1.04648585469 0.9135076987 458.3802 0.6801931 319.2005 631.1130
0.2 1.10180249088 0.9181687424 879.0985 0.2358365 446.3459 509.0779
0.3 1.16671190520 0.8974706963 1127.364 0.1551386 480.7231 397.5395
0.4 1.24216934450 0.8872638175 1298.952 0.1304171 476.9366 311.3620
0.5 1.32934038818 0.8862269255 1389.441 0.1230857 460.6260 247.0264
0.6 1.42962455886 0.8935153493 1421.718 0.1234093 441.9322 199.0175
0.7 1.54468584585 0.9086387329 1412.893 0.1279405 414.5195 162.8167
0.8 1.67649078776 0.9313837710 1375.371 0.1351746 409.5117 135.1363
0.9 1.82735508062 0.9617658319 1318.186 0.1443518 397.0645 113.6567
1 2.00000000000 1.0000000000 1248.000 0.1550434 386.9884 96.74709



Rahaman et al. Advances in Difference Equations         (2020) 2020:16 Page 25 of 30

Table 5 Sensitivity table for Case 6.2 for fix α = 0.5 and β = 1

Parameters Change in values T∗ TAC∗ q∗
amx

c1 3.6 0.1320421 429.3816 255.8562
3.8 0.1273674 445.1409 251.2863
3.9 0.1251808 452.9165 249.1199
4 0.1230857 460.6260 247.0264
4.1 0.1210760 468.2714 245.0015
4.2 0.1191465 475.8550 243.0414
4.3 0.1172920 483.3786 241.1426

c3 27 0.1147367 444.7295 238.5014
28 0.1175525 450.1535 241.4102
29 0.1203350 455.4500 244.2506
30 0.1230857 460.6260 247.0264
31 0.1258059 465.6882 249.7412
32 0.1284971 470.6127 252.3982
33 0.1311603 475.4950 255.0004

K 2470 0.1236897 458.3764 244.8555
2480 0.1234851 459.1360 245.5850
2490 0.1232838 459.8858 246.3086
2500 0.1230857 460.6260 247.0264
2510 0.1228907 461.3568 247.7384
2520 0.1226988 462.0783 248.4448
2530 0.1225099 462.7902 249.1455

D 1170 0.1239622 457.3688 247.2847
1180 0.1236581 458.4937 247.2192
1190 0.1233659 459.5795 247.1331
1200 0.1230857 460.6260 247.0264
1210 0.1220171 461.6330 246.8992
1220 0.1225603 462.6004 246.7515
1230 0.1223150 463.5280 246.5834

Table 6 Result for Case 6.3

β T∗ t∗1 TAC∗ q∗
max

0.1 0.9578852 0.4597849 344.5089 597.7204
0.2 0.3246652 0.1558393 554.4172 202.5911
0.3 0.2031685 0.9752090 639.8628 126.1772
0.4 0.1614390 0.07749071 650.4005 100.7379
0.5 0.1446220 0.06941856 622.3119 90.24313
0.6 0.1386208 0.06653798 577.1140 86.49937
0.7 0.1383842 0.06642440 526.4847 86.35172
0.8 0.1417004 0.06801618 476.3573 88.4203
0.9 0.1474590 0.07078033 429.4978 92.0143
1.0 0.1550434 0.07442084 386.9884 96.74709

The observations in Table 5 and the interpretations regarding it are the same as that of
Table 3.

Case 6.3: When α = 1 and β is arbitrary

Here we fix the value of β = 0.5 and take the same example as Case 6.2. Then the minimum
value of the total average cost is TAC∗ = 622.3119, which is given for the optimal time cycle
T∗ = 0.1446220. Also the maximum inventory will be q∗

max = 90.24413, which is obtained
at t∗

1 = 0.0694185.
In Table 6, the sensitivity of the optimality with respect to the different values of the

memory index β is shown.
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From Table 6, we can make the observation that there is a critical value of the mem-
ory parameter, say 0.4, for which the minimized total average cost becomes maximum
(650.4005) and then the value of TAC∗ decreases above and below the table. The lower
values of β indicate a large memory. So, another interpretation from the table is that for
large memory the system needs more time to minimize the total average cost. That means
that to reach the same minimum cost like the memory-less inventory system, the dealer
has to change the policy of dealing with customers.

In Table 7, the sensitivity of the optimality with respect to the value of the parameters is
shown for the fixed values of the memory parameters α = 1 and β = 0.5.

The observations in Table 7 and the interpretations regarding it are the same as that of
Table 3.

Case 6.4: When α, β are arbitrary

In our discussion we take α = 0.5, β = 0.5 and c1 = 4, c3 = 40, K = 250, D = 120.
Then, the minimum value of the total average cost, TAC∗ = 146.3850, which is given for

the optimal time interval, T∗ = 1.010695 and t∗
1 = 0.2562614 and q∗

max = 70.78638.
In Table 8, the sensitivity of the optimality with respect to the value of the parameters is

shown.

Table 7 Sensitivity table for Case 6.3 for fixed α = 1 and β = 0.5

Parameters Change in values T∗ t∗1 TAC∗ q∗
max

c1 3.9 0.1470837 0.0760019 611.89 91.78025
4 0.1446220 0.06941856 622.3119 90.24413
4.1 0.1422608 0.06828517 632.3411 88.77972

c3 25 0.1280698 0.06147352 585.6180 79.91558
30 0.1446220 0.06941856 622.3119 90.24413
35 0.1602749 0.0769319 655.1243 100.0115

K 2490 0.1449054 0.06983392 621.0949 90.08576
2500 0.1446220 0.06941856 622.3119 90.24413
2510 0.1443425 0.06900838 623.5168 90.40098

D 1190 0.1448451 0.06894628 621.3533 90.31963
1200 0.1446220 0.06941856 622.3119 90.24413
1210 0.1444108 0.06989481 623.2223 90.16430

Table 8 Sensitivity table for Case 6.4 for fixed α = 0.5 and β = 0.5

Parameters Change in values T∗ TAC∗ q∗
max

c1 3.9 1.010935 143.7147 70.79477
4 1.010695 146.3850 70.78638
4.2 1.010246 151.7250 70.77065

c3 38 1.010223 144.4057 70.76986
40 1.010695 146.3850 70.78638
42 1.011161 148.3634 70.80270

K 247 (non-feasible) 0.02102814 2033.175 10.09586
250 1.010695 146.3850 70.78638
253 1.010959 146.9759 71.57052

D 119 1.010960 145.9075 70.74572
120 1.010695 146.3850 70.78638
123 1.009944 147.7492 70.85533
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The observations in Table 8 and the interpretations regarding it are the same as that of
Table 3.

7.3 Model 3
We set an example given as follows:

ch = 50, c0 = 500, cp = 36, K = 25,000,

D = 15,000, θ1 = 0.35, θ2 = 0.005.

Then the minimum cost TAC∗ is 561,866.9, which is given for the optimal value of T∗ =
0.1454915 and t∗

1 = 0.08783444. Also, then the maximum inventory level will be q∗
max =

81,183.
In Table 9, the sensitivity of the optimality with respect to the value of the parameters is

shown.
From Table 9, we can make the following observations.

(i) When the value of ch increases then T∗ and TAC∗ remain the same. So, we can say
the optimality is stable with respect to the change of the holding cost.

(ii) When the value of c0 increases then both T∗ and TAC∗ gradually increase. This
fact can be interpreted as follows: if the ordering cost increases then to minimize
the total average cost the inventory procedure needs to run a long time.

(iii) When the value of cp increases TAC∗ gradually increases. This fact can be
interpreted as follows: if the production cost increases, the total average cost
increases.

Table 9 Sensitivity table for Model 3

Parameters Change in values T∗ t∗1 TAC∗ q∗
max

ch 48 0.1454915 0.08783444 561,866.9 81,183
50 0.1454915 0.08783444 561,866.9 81,183
52 0.1454915 0.08783444 561,866.9 81,183

cp 34 0.1417628 0.09164477 516,582.9 81,162.12
36 0.1454915 0.08783444 561,866.9 81,183
40 0.1399389 0.0844624 607,139.6 81,201.39

c0 490 0.1440319 0.08694787 561,797.8 81,187.85
500 0.1454915 0.08783444 561,866.9 81,183
510 0.1469366 0.0887122 561,935.3 81,178.20

K 24,950 0.1455730 0.08805949 561,863.1 80,771.88
25,000 0.1454915 0.08783444 561,866.9 81,183
25,050 0.1454113 0.08761109 561,870.6 81,594.15

D 14,950 0.1456006 0.0876086 560,011.5 81,596.95
15,000 0.1454915 0.08783444 561,866.9 81,183
15,050 0.1453860 0.0806192 563,722.1 80,769.23

θ1 0.345 0.1465341 0.08845998 561,818.1 83,556.77
0.35 0.1454915 0.08783444 561,866.9 81,183
0.355 0.1444709 0.08722204 561,915.3 78,908.90

θ2 0.0045 0.1455589 0.08787488 561,863.7 81,182.80
0.005 0.1454915 0.08783444 561,866.9 81,183
0.0055 0.1454242 0.08779406 561,870.1 81,183.21



Rahaman et al. Advances in Difference Equations         (2020) 2020:16 Page 28 of 30

(iv) If the value of K increases then T∗ gradually decreases and TAC∗ gradually
increases. That means that for high production rate the total time must be shorter
and the total average cost will be minimized.

(v) When the value of D increases then T∗ gradually decreases and TAC∗ gradually
increases. That means that to meet a large demand the total time must be shorter
and then obviously the total average cost will be minimized.

(vi) When the values of θ1, θ2 increase then T∗ gradually decreases and TAC∗ gradually
increases. That means that as the total cost gradually increases due to deterioration,
for minimum cost the procedure has to run for shorter time.

7.4 Model 4
Case 6.5: When α = 1 and β = 1

In this case Model 4 is reduces to the model 3. So if we take the same numerical data as
model-3 the numerical discussion will be done for this case.

Case 6.6: When α > 0 is arbitrary and β = 1

For example if we take α = 0.5 and set an example given by

ch = 50, c0 = 500, cp = 36, K = 2500,

D = 1500, θ1 = 0.5, θ2 = 0.005,

then the minimum cost is TAC∗
0.5,1 = 568575.9, which is given for the optimal value of

T∗ = 9.978575.9 and t∗
1 = 0.0004.

In Table 10, the sensitivity of the optimality with respect to the value of the parameters
is shown.

Table 10 Sensitivity table for Case 6.6 for fixed α = 0.5 and β = 1

Parameters Change in values T∗ t∗1 TAC∗
0.5,1

ch 40 9.974794 0.0004 454,871.5
50 9.974794 0.0004 568,575.9
60 9.974795 0.0004 682,280.2

cp 30 9.974794 0.0004 568,575.3
36 9.974794 0.0004 568,575.9
40 9.974794 0.0004 568,576.3

c0 450 9.974795 0.0004 568,570.8
500 9.974794 0.0004 568,575.9
550 9.974795 0.0004 568,580.8

K 2400 9.974795 0.000416666 511,600.2
2500 9.974794 0.0004 568,575.9
2600 9.974795 0.0003846154 625,570.2

D 1400 9.974795 0.0004 625,427.6
1500 9.974794 0.0004 568,575.9
1600 9.974795 0.0004 511,724.0

θ1 0.4 77.14196 0.0004 171,729.7
0.5 9.974794 0.0004 568,575.9
0.6 27.81227 0.0004 99,140.86

θ2 0.004 9.912312 0.0004 572,159.9
0.005 9.974794 0.0004 568,575.9
0.006 10.03836 0.0004 564,975.5
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The observations in Table 10 and the interpretations regarding it are the same as that of
Table 9.

8 Conclusion
In this paper, we realize that classical economic production quantity model (EPQ) may be
generalized as a fractional-order EPQ model with and without deterioration. It is being
perceived that holding costs and total average costs for non-fractional cases are the par-
ticular cases of generalized holding costs and generalized total average costs. That means
that the classical EPQ model may be seen as a particular case of the generalized EPQ
model. We have also seen that the generalized EPQ model (fractional EPQ) is not so easy
to optimize analytically by any ordinary optimization method. It needs some different so-
lution procedure. For that, we use the real distinct poles rational approximation method of
the generalized Mittag-Leffler function and after simplifying we get the result of the opti-
mization problem. In the future, we shall be looking for the analytical as well as numerical
optimization method for fractional EPQ models. Hence the FC may be exploited to grow
any other classical EPQ and EPQ model with different verity. Moreover, we conclude that
the fractional-order inventory model mechanism has been successfully implied for a busi-
ness which has been a new result. More work with practical info needs to be carried out
for future features.
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