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The limit-point and limit-circle classifications of the singular point, x = ∞ of the q-
difference equation were defined in [8], and using Titchmarsh’s technique, sufficient con-
ditions that the singular point is in a limit-point case were given. In the case when q = 1,
i.e. Dq = d

dx , the Dirac system (1.1) was studied in many works, and for more details we
refer the reader to Refs. [10, 14, 16, 22, 25–27, 30]. In [2, 3], a q-analog of one dimensional
Dirac system on a finite interval was investigated and the authors studied the existence and
uniqueness of its solution, and some spectral properties. Also, the asymptotic formulas for
the eigenvalues and the eigenfunctions were obtained in [18].

The paper is organized as follows. In Sect. 2, we introduce some q-notations and results
that will be useful in the next sections. In Sect. 3, we study some spectral properties of the
q-problem (1.1)–(1.3) by the theory of q-(basic) Sturm–Liouville problems [6]. Finally, in
Sect. 4, we prove the existence of a spectral function for singular q-Dirac system (1.1), and
a Parseval’s equality is established for vector functions in a Hilbert space.

2 q-notations and results
In this section, we introduce some the required q-notations and q-results which will be
used throughout the paper. Hereafter, q ∈ (0, 1) is fixed (for some details, see [6]). We start
with the q-shifted factorial for α ∈ R and n = 1, 2, 3, . . . :

(α; q)n :=
n–1∏

k=0

(
1 – αqk)

.

A set A ⊆ R is called a q-geometric set if qx ∈ A for all x ∈ A.
The q-analogous of sine and cosine functions [4, 6, 13] are defined on C by

sin(x; q) :=
∞∑

m=0

(–1)mqm(m+1)(x(1 – q))2m+1

(q; q)2m+1
,

cos(x; q) :=
∞∑

m=0

(–1)mqm2 (x(1 – q))2m

(q; q)2m
.

Let f be a real- or complex-valued function defined on a q-geometric set A. The q-
difference operator Dq, the Jackson q-derivative, is defined by

Dqf (x) :=
f (x) – f (qx)

x – qx
, x ∈ A\{0}.

If 0 ∈ A, the q-derivative at zero is defined by

Dqf (0) := lim
m→∞

f (xqm) – f (0)
xqm , x ∈ A,

if the limit exists and does not depend on x. Hence, for x ∈ A,

Dq–1 f (x) = (Dqf )
(
xq–1)

. (2.1)

In the q-derivative, as q → 1, the q-derivative is reduced to the classical derivative.
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The right-inverse to Dq, the Jackson q-integration [20], is given by

∫ x

0
f (t) dqt := x(1 – q)

∞∑

m=0

qmf
(
xqm)

, x ∈ A,

provided that the series converges, and

Dq

∫ x

0
f (t) dqt = f (x),

moreover, if limm→∞ f (xqm) = f (0) for all x ∈ A (in this case, we say f is q-regular at zero),
then

∫ x

0
Dqf (t) dqt = f (x) – f (0). (2.2)

Hahn [17] defined the q-integration for a function f over [0,∞) by

∫ ∞

0
f (t) dqt = (1 – q)

∞∑

m=–∞

qmf
(
qm)

.

Furthermore, the following non-symmetric Leibniz formula holds:

Dq(fg)(x) = g(x)Dqf (x) + f (qx)Dqg(x).

If f and g are q-regular at zero, we get

∫ a

0
g(x)Dqf (x) dqx = (fg)(a) – (fg)(0) –

∫ a

0
f (qx)Dqg(x) dqx.

The q-Wronskian of f (x) and g(x) is defined to be

Wq(f , g)(x) := f (x)Dqg(x) – g(x)Dqf (x), x ∈ A.

{Y1, Y2} forms a fundamental set of solutions for (1.1) if their q-Wronskian does not vanish
at any point of A.

For more details of q-calculus, we also refer the reader to Refs. [5, 7, 13, 24].

3 Spectral properties of the q-Dirac problem
In this section, we investigate some spectral properties of the q-Dirac problem (1.1)–(1.3).
Further, the integral equations corresponding to the solution of (1.1) are presented.

Theorem 3.1 The vector eigenfunctions Y (x,λ1), Y (x,λ2) corresponding to the different
eigenvalues λ1, λ2 are orthogonal.

Proof Since the vector eigenfunctions

Y (x,λ1) =
(
Y1(x,λ1), Y2(x,λ1)

)
, Y (x,λ2) =

(
Y1(x,λ2), Y2(x,λ2)

)
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satisfy the q-system (1.1), then

1
q

DqY2(x,λ1) + p(x)Y1(x,λ1) = λ1Y1(x,λ1), (3.1)

–Dq–1 Y1(x,λ1) + r(x)Y2(x,λ1) = λ1Y2(x,λ1), (3.2)

1
q

DqY2(x,λ2) + p(x)Y1(x,λ2) = λ2Y1(x,λ2), (3.3)

–Dq–1 Y1(x,λ2) + r(x)Y2(x,λ2) = λ2Y2(x,λ2). (3.4)

Multiplying (3.1)–(3.4) by Y1(x,λ2), Y2(x,λ2), –Y1(x,λ1) and –Y2(x,λ1), respectively, and
applying (2.1) we have

Dq
(
Y2(x,λ1)Y1

(
xq–1,λ2

)
– Y1

(
xq–1,λ1

)
Y2(x,λ2)

)

= (λ1 – λ2)
(
Y1(x,λ1)Y1(x,λ2) + Y2(x,λ1)Y2(x,λ2)

)
.

Thus, for each n ∈ N,

∫ q–n

0
Dq

(
Y2(x,λ1)Y1

(
xq–1,λ2

)
– Y1

(
xq–1,λ1

)
Y2(x,λ2)

)
dqx

= (λ1 – λ2)
∫ q–n

0
Y (x,λ1)Y T (x,λ2) dqx,

where T is the transposition sign. This together with (2.2) yields

(
Y2(x,λ1)Y1

(
xq–1,λ2

)
– Y1

(
xq–1,λ1

)
Y2(x,λ2)

)∣
∣q–n

x=0

= (λ1 – λ2)
∫ q–n

0
Y (x,λ1)Y T (x,λ2) dqx,

therefore, from (1.2)–(1.3) we obtain

(λ1 – λ2)
∫ q–n

0
Y (x,λ1)Y T (x,λ2) dqx = 0, ∀n ∈ N, (3.5)

since λ1 �= λ2, consequently, Y (x,λ1) and Y (x,λ2) are orthogonal. �

Theorem 3.2 The eigenvalues of the q-Dirac problem (1.1)–(1.3) are real.

Proof Suppose, on the contrary that λ0 is a non-real eigenvalue of (1.1)–(1.3), and Y (x,λ0)
is the corresponding vector eigenfunction of λ0. Then Y (x,λ0) is the corresponding vector
eigenfunction of λ0. Hence, it follows from λ0 �= λ0 and (3.5) with λ1 = λ0, λ2 = λ0 that

∫ q–n

0

(∣
∣Y1

(
x,λ0)∣

∣2 +
∣
∣Y2

(
x,λ0)∣

∣2)
dqx = 0,

i.e., Y (x,λ0) ≡ 0. This contradiction proves the theorem. �
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For each n ∈ N, the characteristic function for the problem (1.1)–(1.3) is defined by

�n(λ) := Y1
(
q–n–1,λ

)
– Y2

(
q–n,λ

)
. (3.6)

Let ζ (x,λ) = (ζ1(x,λ), ζ2(x,λ)) be the unique solution [2] of the q-Dirac system (1.1) under
the initial conditions

ζ1(0,λ) = 1 = ζ2(0,λ). (3.7)

Obviously, ζ (x,λ) satisfies (1.2). In the following lemma, we present the integral equa-
tions corresponding to the solution ζ (x,λ).

Lemma 3.3 For the solution ζ (x,λ), the following integral equations hold:

ζ1(x,λ)

= cos(λ
√

qx; q) –
1

√q
sin(λ

√
qx; q)

+
√

q
∫ x

0

{
cos(λ

√
qt; q) sin(λ

√
qx; q) – sin(λ

√
qt; q) cos(λ

√
qx; q)

}
r(t)ζ1(t,λ) dqt

–
∫ x

0

{
cos(λqt; q) cos(λ

√
qx; q) +

√
q sin(λqt; q) sin(λ

√
qx; q)

}
p(qt)ζ2(qt,λ) dqt,

ζ2(x,λ)

= q sin(λx; q) + cos(λx; q)

– q
∫ x

0

{
cos(λx; q) cos(λ

√
qt; q) +

√
q sin(λx; q) sin(λ

√
qt; q)

}
r(t)ζ1(t,λ) dqt

+ q
∫ x

0

{
cos(λx; q) sin(λqt; q) – sin(λx; q) cos(λqt; q)

}
p(qt)ζ2(qt,λ) dqt.

Proof For p(x) = r(x) = 0, the q-system (1.1) has two solutions

ψ1(x,λ) =
(
cos(λ

√
qx; q), q sin(λx; q)

)
,

ψ2(x,λ) =
(
–
√

q sin(λ
√

qx; q), q cos(λx; q)
)
,

with the q-Wronskian

Wq(ψ1,ψ2)(x,λ) = q. (3.8)

Therefore, in the case when p(x) = r(x) = 0,

ζg(x,λ) =

[
c1 cos(λ√qx; q) – c2

√q sin(λ√qx; q)
c1q sin(λx; q) + c2q cos(λx; q)

]T

(3.9)
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is a fundamental set of (1.1). Moreover, a particular solution ζp(x,λ) = (ζ1(x,λ), ζ2(x,λ)) of
the q-system (1.1) may be written as

⎧
⎨

⎩

ζ1(x,λ) = v1(x) cos(λ√qx; q) – v2(x)√q sin(λ√qx; q),

ζ2(x,λ) = v1(x)q sin(λx; q) + v2(x)q cos(λx; q),
(3.10)

by q-analog of the method of variation of parameters, where v1(x), v2(x) are q-regular at
zero. Substituting (3.10) into (1.1), we obtain the following system:

⎧
⎨

⎩

cos(λq– 1
2 x; q)Dq–1 v1(x) – √q sin(λq– 1

2 x; q)Dq–1 v2(x) = –qp(x)ζ2(x,λ),

q sin(λx; q)Dq–1 v1(x) + q cos(λx; q)Dq–1 v2(x) = –qr(xq–1)ζ1(x,λ),

and hence by Cramer’s rule and applying (3.8) we have

⎧
⎨

⎩

Dq–1 v1(x) = –qp(x) cos(λx; q)ζ2(x,λ) – r(xq–1)√q sin(λq– 1
2 x; q)ζ1(xq–1,λ),

Dq–1 v2(x) = qp(x) sin(λx; q)ζ2(x,λ) – r(xq–1) cos(λq– 1
2 x; q)ζ1(xq–1,λ).

(3.11)

Since Dq–1 vi(x) = (Dqvi)(xq–1), it follows from replacing x by xq in (3.11) and integrating
from 0 to x that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v1(x) = c1 – √q
∫ x

0 r(t) sin(λ√qt; q)ζ1(t,λ) dqt

– q
∫ x

0 p(qt) cos(λqt; q)ζ2(qt,λ) dqt,

v2(x) = c2 –
∫ x

0 r(t) cos(λ√qt; q)ζ1(t,λ) dqt

+ q
∫ x

0 p(qt) sin(λqt; q)ζ2(qt,λ) dqt.

(3.12)

Now, from (3.9) and (3.12), we can write the general solution of (1.1) as

ζ1(x,λ) = 2c1 cos(λ
√

qx; q) – 2c2
√

q sin(λ
√

qx; q)

+
√

q
∫ x

0

{
cos(λ

√
qt; q) sin(λ

√
qx; q)

– sin(λ
√

qt; q) cos(λ
√

qx; q)
}

r(t)ζ1(t,λ) dqt

–
∫ x

0

{
cos(λqt; q) cos(λ

√
qx; q)

+
√

q sin(λqt; q) sin(λ
√

qx; q)
}

p(qt)ζ2(qt,λ) dqt, (3.13)

ζ2(x,λ) = 2c1q sin(λx; q) + 2c2q cos(λx; q)

– q
∫ x

0

{
cos(λ

√
qt; q) cos(λx; q) +

√
q sin(λ

√
qt; q) sin(λx; q)

}
r(t)ζ1(t,λ) dqt

+ q
∫ x

0

{
sin(λqt; q) cos(λx; q)

– cos(λqt; q) sin(λx; q)
}

p(qt)ζ2(qt,λ) dqt. (3.14)

Using (3.7), (3.13) and (3.14) we obtain c1 = 1
2 , c2 = 1

2q , and then the proof is complete. �
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In the following theorem, we prove another property of the eigenvalues of (1.1)–(1.3).

Theorem 3.4 The eigenvalues of the problem (1.1)–(1.3) are simple.

Proof The eigenvalues of (1.1)–(1.3) are the zeros of �n(λ). From (3.6) we have

∂�n(λ)
∂λ

=
∂Y1(q–n–1,λ)

∂λ
–

∂Y2(q–n,λ)
∂λ

, n ∈ N.

Now, let λ = λ0 be a double eigenvalue of (1.1)–(1.3) with the corresponding vector eigen-
function Y (x,λ0). Then �n(λ0) = 0 and ∂�n

∂λ (λ0) = 0, i.e., for n ∈ N, the system

⎧
⎨

⎩

aY1(q–n–1,λ0) + bY2(q–n,λ0) = 0,

a ∂Y1
∂λ (q–n–1,λ0) + b ∂Y2

∂λ (q–n,λ0) = 0,

has the nontrivial solution (a, b) = (1, –1). Hence,

Y1
(
q–n–1,λ0)∂Y2

∂λ
(
q–n,λ0)

– Y2
(
q–n,λ0)∂Y1

∂λ
(
q–n–1,λ0)

= 0. (3.15)

On the other hand, differentiating (1.1) with respect to λ, we get

⎧
⎨

⎩

1
q Dq( ∂Y2

∂λ ) + (p(x) – λ) ∂Y1
∂λ = Y1,

–Dq–1 ( ∂Y1
∂λ ) + (r(x) – λ) ∂Y2

∂λ = Y2.
(3.16)

Multiplying (1.1) and (3.16) by ∂Y1
∂λ , ∂Y2

∂λ , –Y1 and –Y2, respectively, and applying (2.1), we
obtain

1
q

Dq

{

Y1
(
xq–1,λ

)∂Y2(x,λ)
∂λ

– Y2(x,λ)
∂Y1(xq–1,λ)

∂λ

}

= Y 2
1 (x,λ) +

1
q2 Y 2

2 (x,λ).

Therefore, integrating with respect to x from 0 to q–n, with applying (2.2), we have

1
q

{

Y1
(
xq–1,λ

)∂Y2(x,λ)
∂λ

– Y2(x,λ)
∂Y1(xq–1,λ)

∂λ

}∣
∣
∣
∣

q–n

x=0

=
∫ q–n

0

(

Y 2
1 (x,λ) +

1
q2 Y 2

2 (x,λ)
)

dqx, n ∈ N. (3.17)

According to Lemma 3.3, ∂Y1
∂λ (0,λ0) = ∂Y2

∂λ (0,λ0) = 0. Taking this and (3.15) into the left-side
of (3.17), we obtain

∫ q–n

0

(

Y 2
1 (x,λ) +

1
q2 Y 2

2 (x,λ)
)

dqx = 0, n ∈ N.

Consequently, Y1(x,λ0) = Y2(x,λ0) ≡ 0, i.e. Y (x,λ0) ≡ 0. Thus, we arrive at the contradic-
tion. The proof is complete. �
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4 Spectral function and Parseval’s equality
Let λm,n, m ≥ 0, n ∈ N, be the eigenvalues of the q-Dirac problem (1.1)–(1.3) (i.e. the roots
of �n(λ)) with the corresponding eigenfunctions

Ym,n(x) = Y (x,λm,n) =
(
Y1(x,λm,n), Y2(x,λm,n)

)
.

If f (x) = (f1(x), f2(x)) is a vector function, f1, f2 ∈ L2
q(0, q–n), n ∈ N, Ym,n,i(x) = Yi(x,λm,n),

i = 1, 2, and

α2
m,n,i =

∫ q–n

0
Y 2

m,n,i(x) dqx, i = 1, 2,

then from [7] we have

∫ q–n

0

(
f 2
1 (x) + f 2

2 (x)
)

dqx =
∞∑

m=–∞

2∑

i=1

1
α2

m,n,i

(∫ q–n

0
fi(x)Ym,n,i(x) dqx

)2

. (4.1)

Denote the non-decreasing step function ρn by

ρn(λ) =

⎧
⎪⎨

⎪⎩

–
∑

λ<λm,n<0
∑2

i=1
1

α2
m,n,i

, λ < 0,
∑

0≤λm,n<λ
∑2

i=1
1

α2
m,n,i

, λ ≥ 0.

Therefore, (4.1) can be written as

∫ q–n

0

(
f 2
1 (x) + f 2

2 (x)
)

dqx =
∫ ∞

–∞

(
F2

1,n(λ) + F2
2,n(λ)

)
dρn(λ), (4.2)

where Fi,n(λ) =
∫ q–n

0 fi(x)Yi(x,λ) dqx, i = 1, 2.

Lemma 4.1 For any positive τ , the following inequality holds:

∑

–τ≤λm,n<τ

2∑

i=1

1
α2

m,n,i
= ρn(τ ) – ρn(–τ ) <

4
τ

. (4.3)

Proof Since ζ1(x,λ) and ζ2(x,λ) are continuous at zero, it follows from (3.7) that there is a
positive number τ and nearby zero such that

1
τ

2∑

i=1

(∫ τ

0
ζi(x,λ) dqx

)2

>
1
2

. (4.4)

Denote the vector function τ f (x) = (τ f1(x), τ f2(x)) by

τ fi(x) =

⎧
⎨

⎩

1
τ , 0 ≤ x ≤ τ ,

0, x > τ .
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Then, from (4.2) and (4.4), we obtain

∫ τ

0

(
τ f 2

1 (x) + τ f 2
2 (x)

)
dqx =

2
τ

=
∫ ∞

–∞

2∑

i=1

(∫ τ

0

1
τ

ζi(x,λ) dqx
)2

dρn(λ)

≥
∫ τ

–τ

2∑

i=1

(
1
τ

∫ τ

0
ζi(x,λ) dqx

)2

dρn(λ)

>
1
2

(
ρn(τ ) – ρn(–τ )

)
,

and we arrive at (4.3). �

The following lemmas were proved in [21].

Lemma 4.2 Let {vn}∞n=1 be a uniformly bounded sequence of real non-decreasing function
of λ on a finite interval [a, b]. Then there exist a subsequence {vnk }

∞
k=1 and a non-decreasing

function v such that, for λ ∈ [a, b], limk→∞ vnk (λ) = v(λ).

Lemma 4.3 Assume {vn}∞n=1 is a real uniformly bounded sequence of real non-decreasing
function of λ on a finite interval [a, b], and suppose for λ ∈ [a, b], limn→∞ vn(λ) = v(λ). If g
is any continuous function of λ on [a, b], then limn→∞

∫ b
a g(λ) dvn(λ) =

∫ b
a g(λ) dv(λ).

Now, let ρ be any non-decreasing function of λ on the interval (–∞,∞). We define by
L2

ρ(–∞,∞) × L2
ρ(–∞,∞) the Hilbert space of all vector functions g = (g1, g2) : (–∞,∞) ×

(–∞,∞) → R which g1, g2 are measurable with respect to the Lebesgue–Stieltjes measure
defined by ρ , such that

∫ ∞
–∞ gi(λ) dρ(λ) < ∞, i = 1, 2, with inner product

〈g, h〉ρ :=
∫ ∞

–∞

(
g1(λ)h1(λ) + g2(λ)h2(λ)

)
dρ(λ).

In the following theorem, we prove the main result of this section.

Theorem 4.4 For the q-Dirac problem (1.1)–(1.3), there exists a non-decreasing function
ρ(λ) on the interval (–∞,∞) such that satisfies the following property:

If f = (f1, f2) is a vector function, fi ∈ L2
q(0, q–n), i = 1, 2, then there exists a function F =

(F1, F2) ∈ L2
ρ(–∞,∞) × L2

ρ(–∞,∞) such that

lim
n→∞

∫ ∞

–∞

{

F1(λ) + F2(λ) –
∫ q–n

0

(
f1(x)Y1(x,λ) + f2(x)Y2(x,λ)

)
dqx

}

dρ(λ) = 0,

and the Parseval’s equality holds:

∫ ∞

0

(
f 2
1 (x) + f 2

2 (x)
)

dqx =
∫ ∞

–∞

(
F2

1 (λ) + F2
2 (λ)

)
dρ(λ).

The function ρ is called the spectral function for the q-problem (1.1)–(1.3).

Proof Assume that the vector function fη(x) = (fη,1(x), fη,2(x)) satisfies the following condi-
tions:
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(1) fη(0) = (1, 1);
(2) fη(x) vanishes outside [0, q–η] × [0, q–η], q–η < q–n;
(3) fη,i(x) and Dqfη,i(x), i = 1, 2, are q-regular at zero.

According to (4.2), we can write

∫ q–η

0

(
f 2
η,1(x) + f 2

η,1(x)
)

dqx =
∫ ∞

–∞

(
F2

1 (λ) + F2
2 (λ)

)
dρ(λ), (4.5)

where

Fi(λ) =
∫ q–η

0
fη,i(x)Yi(x,λ) dqx, i = 1, 2.

Since Y (x,λ) = (Y1(x,λ), Y2(x,λ)) satisfies the q-system (1.1), we have

⎧
⎨

⎩

Y1(x,λ) = 1
λ ( 1

q DqY2(x,λ) + p(x)Y1(x,λ)),

Y2(x,λ) = 1
λ (–Dq–1 Y1(x,λ) + r(x)Y2(x,λ)).

Denote

Fn,1(λ) :=
1
λ

∫ q–n

0
fη,1(x)

(
1
q

DqY2(x,λ) + p(x)Y1(x,λ)
)

dqx,

Fn,2(λ) :=
1
λ

∫ q–n

0
fη,2(x)

(
–Dq–1 Y1(x,λ) + r(x)Y2(x,λ)

)
dqx.

Since fη(x) vanishes in a neighborhood of (q–n, q–n), and fη(0) = Y (0,λ) = (1, 1), using q-
integration by parts we get

Fn,1(λ) =
1
λ

∫ q–n

0

{
1
q

Y2(x,λ)Dqfη,1(x) + p(x)fη,1(x)Y1(x,λ)
}

dqx,

Fn,2(λ) =
1
λ

∫ q–n

0

{
–Y1(x,λ)Dq–1 fη,2(x) + r(x)fη,2(x)Y2(x,λ)

}
dqx.

Applying (4.2), we have, for any τ > 0,

∫

|λ|>τ
F2

n,1(λ) dρn(λ)

≤
1
τ 2

∫

|λ|>τ

{∫ q–n

0

{
1
q

Y2(x,λ)Dqfη,1(x)

+ p(x)fη,1(x)Y1(x,λ)
}

dqx
}2

dρn(λ)

≤
1
τ 2

∫ ∞

–∞

{∫ q–n

0

{
1
q

Y2(x,λ)Dqfη,1(x)

+ p(x)fη,1(x)Y1(x,λ)
}

dqx
}2

dρn(λ)

=
1
τ 2

{∫ ∞

–∞

(∫ q–n

0

1
q

Y2(x,λ)Dqfη,1(x) dqx
)2

dρn(λ)
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+
∫ ∞

–∞

(∫ q–n

0
Y1(x,λ)p(x)fη,1(x) dqx

)2

dρn(λ) + M1

}

,

where

M1 =
2
q

∫ ∞

–∞

{∫ q–n

0
Y1(x,λ)p(x)fη,1(x) dqx

}{∫ q–n

0
Y2(x,λ)Dqfη,1(x) dqx

}

dρn(λ).

Hence, from (4.2) we obtain

∫

|λ|>τ
F2

n,1(λ) dρn(λ)

≤
1
τ 2

{∫ q–n

0

(
p(x)fη,1(x)

)2 dqx +
∫ q–n

0

(
1
q

Dqfη,1(x)
)2

dqx + M1

}

. (4.6)

Similarly, we have

∫

|λ|>τ
F2

n,2(λ) dρn(λ)

≤
1
τ 2

{∫ q–n

0

(
Dq–1 fη,2(x)

)2 dqx +
∫ q–n

0

(
r(x)fη,2(x)

)2 dqx + M2

}

, (4.7)

where

M2 = –2
∫ ∞

–∞

{∫ q–n

0
Y1(x,λ)Dq–1 fη,2(x) dqx

}{∫ q–n

0
Y2(x,λ)r(x)fη,2(x) dqx

}

dρn(λ).

Therefore, it follows from (4.5)–(4.7) that

∣
∣
∣
∣

∫ q–η

0

(
f 2
η,1(x) + f 2

η,2(x)
)

dqx –
∫ τ

–τ

(
F2

n,1(λ) + F2
n,2(λ)

)
dρn(λ)

∣
∣
∣
∣

=
∫

|λ|>τ

(
F2

n,1(λ) + F2
n,2(λ)

)
dρn(λ)

<
1
τ 2

∫ q–η

0

{
(
p(x)fη,1(x)

)2 +
(

1
q

Dqfη,1(x)
)2

+
(
Dq–1 fη,2(x)

)2

+
(
r(x)fη,2(x)

)2 + M1 + M2

}

dqx. (4.8)

On the other hand, according to Lemma 4.1, the set {ρn(λ)} is bounded. Thus, by Lem-
mas 4.2 and 4.3, there is a subsequence {nk} such that {ρnk (λ)} converges to a monotone
function ρ(λ). Passing to the limit with respect to {nk} in (4.8), we obtain

∣
∣
∣
∣

∫ q–η

0

(
f 2
η,1(x) + f 2

η,2(x)
)

dqx –
∫ τ

–τ

(
F2

n,1(λ) + F2
n,2(λ)

)
dρ(λ)

∣
∣
∣
∣

<
1
τ 2

∫ q–η

0

{
(
p(x)fη,1(x)

)2 +
(

1
q

Dqfη,1(x)
)2

+
(
Dq–1 fη,2(x)

)2

+
(
r(x)fη,2(x)

)2 + M1 + M2

}

dqx.
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So,

∫ q–η

0

(
f 2
η,1(x) + f 2

η,2(x)
)

dqx =
∫ ∞

–∞

(
F2

n,1(λ) + F2
n,2(λ)

)
dρ(λ)

as τ → ∞. Now, let f = (f1, f2) be an arbitrary vector function in L2
q(0,∞) × L2

q(0,∞). We
know that there exists a sequence {fη(x) = (fη,1(x), fη,2(x))} satisfying the conditions (1)–(3)
such that

lim
η→∞

∫ ∞

0

(
fi(x) – fη,i(x)

)2 dqx = 0, i = 1, 2.

Then
∫ ∞

0

(
f 2
η,1(x) + f 2

η,2(x)
)

dqx =
∫ ∞

–∞

(
F2

η,1(λ) + F2
η,2(λ)

)
dρ(λ),

where Fη,i(λ) =
∫ ∞

0 fη,i(x)Yi(x,λ) dqx. Since for i = 1, 2,

∫ ∞

0

(
fη1,i(x) – fη2,i(x)

)2 dqx → 0

as η1,η2 → ∞, we get

∫ ∞

–∞

(
Fη1,i(λ) – Fη2,i(λ)

)2 dρ(λ) =
∫ ∞

0

(
fη1,i(x) – fη2,i(x)

)2 dqx → 0, i = 1, 2,

as η1,η2 → ∞. This is means that there is a limit vector function F = (F1, F2) such that by
the completeness of the space L2

ρ(–∞,∞) × L2
ρ(–∞,∞),

∫ ∞

0

(
f 2
1 (x) + f 2

2 (x)
)

dqx =
∫ ∞

–∞

(
F2

1 (λ) + F2
2 (λ)

)
dρ(λ).

Now, it remains to show that the function F̃η(λ) := (̃Fη,1, F̃η,2) with

F̃η,i(λ) :=
∫ q–η

0
fi(x)Yi(x,λ) dqx,

as η → ∞, converges to F = (F1, F2) in L2
ρ(–∞,∞)×L2

ρ(–∞,∞). For this purpose, assume
that s = (s1, s2) is another function in L2

q(0,∞) × L2
q(0,∞), and by a similar argument, S(λ)

is defined by s. Clearly,

∫ ∞

0

(
fi(x) – si(x)

)2 dqx =
∫ ∞

–∞

(
Fi(λ) – Si(λ)

)2 dρ(λ), i = 1, 2.

For i = 1, 2, set

si(x) =

⎧
⎨

⎩

fi(x), x ∈ [0, q–η],

0, x ∈ (q–η,∞).
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Then
∫ ∞

–∞

(
Fi(λ) – F̃η,i(λ)

)2 dρ(λ) =
∫ ∞

q–η
f 2
i (x) dqx, i = 1, 2,

as η → ∞. Consequently, F̃η converges to F in L2
ρ(–∞,∞) × L2

ρ(–∞,∞) as η → ∞. This
completes the proof. �
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